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Abstract

We propose three novel solvers for estimating the rela-
tive pose of a multi-camera system from affine correspon-
dences (ACs). A new constraint is derived interpreting the
relationship of ACs and the generalized camera model. Us-
ing the constraint, we demonstrate efficient solvers for two
types of motions assumed. Considering that the cameras
undergo planar motion, we propose a minimal solution us-
ing a single AC and a solver with two ACs to overcome the
degenerate case. Also, we propose a minimal solution using
two ACs with known vertical direction, e.g., from an IMU.
Since the proposed methods require significantly fewer cor-
respondences than state-of-the-art algorithms, they can be
efficiently used within RANSAC for outlier removal and ini-
tial motion estimation. The solvers are tested both on syn-
thetic data and on real-world scenes from the KITTI odom-
etry benchmark. It is shown that the accuracy of the esti-
mated poses is superior to the state-of-the-art techniques.

1. Introduction
Relative pose estimation from two views of a camera, or

a multi-camera system is regarded as a fundamental prob-
lem in computer vision [23, 11, 46, 47, 53], which plays
an important role in simultaneous localization and map-
ping (SLAM) and structure-from-motion (SfM). Thus, im-
proving the accuracy, efficiency and robustness of relative
pose estimation algorithms is always an important research
topic [31, 52, 1, 17, 6, 13, 32]. Motivated by the fact that
multi-camera systems are available in self-driving cars, mi-
cro aerial vehicles or AR headsets, this paper investigates
the problem of estimating the relative pose of multi-camera
systems from affine correspondences (ACs), see Fig. 1.

Since a multi-camera system contains multiple individ-

*Corresponding author.

Figure 1. An affine correspondence in camera Ci between consec-
utive frames k and k+1. The local affine transformation A relates
the infinitesimal patches around point correspondence (xij , x′

ij).

ual cameras connected by being fixed to a single rigid body,
it has the advantage of large field-of-view and high accu-
racy [49, 15]. The main difference of a multi-camera sys-
tem and a standard pinhole camera is the absence of a single
projection center [42]. Due to the different camera model,
the relative pose estimation problem of multi-camera sys-
tems [25] is different from the monocular cameras [40, 19],
which results in different equations. In order to remove out-
lier matches, most of the state-of-the-art SLAM and SfM
pipelines using a multi-camera system [22, 24] apply the
relative pose estimation algorithms repeatedly in a robust
estimation framework, e.g. the Random Sample Consensus
(RANSAC) [14]. This outlier removal process has to be ef-
ficient, which directly affects the real-time performance of
SLAM and SfM. The computational complexity and, thus,
the processing time of the RANSAC procedure depends ex-
ponentially on the number of points required for the relative
pose estimation of multi-camera system.

Therefore, exploring the minimal solutions for relative
pose estimation of multi-camera system is of significant
importance and has received sustained attention [25, 33,
11, 26, 34, 52, 29]. The idea of deriving minimal solu-
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tions for relative pose estimation of multi-camera systems
ranges back to the work of Stewénius et al. with the 6-point
method [25]. Then other classical works have been subse-
quently proposed, such as the 17-point linear method [33]
and techniques based on iterative optimization [28]. The
minimal number of necessary points can be further reduced
by taking additional motion constraints into account [30]
or exploiting the measurements from other sensors, like
an inertial measurement unit (IMU) [31, 50, 51, 35, 37].
Typically, the assumption of planar motion or considering
known vertical direction are common for self-driving cars
and ground robots [10, 21, 19, 45, 32], which makes the
outlier removal more efficient and numerically more stable.

All previously mentioned relative pose solvers estimate
the pose parameters from a set of point correspondences
(PCs), e.g., coming from SIFT [36] or SURF [7] detectors.
Due to containing more information about the underlying
surface geometry than PCs, ACs enable to estimate the pose
from fewer correspondences. In this paper, we focus on
the relative pose estimation of a multi-camera system from
ACs, instead of PCs. The contributions of this paper are:

• A new constraint that interprets the relationship of ACs
and the generalized camera model is derived under
general motion. This constraint can be easily gener-
alized to special cases of multi-camera motion, e.g.,
planar motion and known vertical direction.

• When the motion is planar (i.e., the body to which the
cameras are fixed moves on a plane; 3DOF), a single
AC is sufficient to recover the planar motion of a multi-
camera system. In order to deal with the degenerate
case of the 1AC solver, we also propose a new method
to estimate the relative pose from two ACs. The point-
based solver [30] requires at least two PCs and requires
the Ackermann motion model to hold.

• A third solver is proposed for the case when the verti-
cal direction is known (4DOF), e.g., from an IMU at-
tached to the multi-camera system. We show that two
ACs are enough to recover the relative pose. In con-
trast, the point-based solver requires four PCs [31, 50].

2. Related Work
Due to the absence of a single center of projection, the

camera model of multi-camera systems is different from
the standard pinhole camera. Pless proposed to express the
light rays as Plücker lines and derived the generalized cam-
era model which has become a standard representation for
the multi-camera systems [42]. Stewénius et al. proposed
the first minimal solution to estimate the relative pose of
a multi-camera system from 6 PCs, which produces up to
64 solutions [25]. Li et al. provided several linear solvers
to compute the relative pose, among which the most com-
monly used one requires 17 PCs [33]. Kneip et al. proposed

an iterative approach for the relative pose estimation based
on eigenvalue minimization [28]. Ventura et al. used first-
order approximation of the rotation to simplify the problem
and estimated the relative pose from 6 PCs [52].

By considering additional motion constraints or using
additional information provided by an IMU, the number of
required PCs can be further reduced. Lee et al. presented a
minimal solution with two PCs for the ego-motion estima-
tion of a multi-camera system, which constrains the relative
motion by the Ackermann motion model [30]. In addition,
a variety of algorithms have been proposed when a com-
mon direction of the multi-camera system is known, i.e. an
IMU provides the roll and pitch angles of the multi-camera
system. The relative pose estimation with known vertical
direction requires a minimum of 4 PCs [31, 50, 35].

Exploiting the additional affine parameters besides the
image coordinates has been recently proposed for the rela-
tive pose estimation of monocular cameras, which reduces
the number of required points significantly. Bentolila et al.
estimated the fundamental matrix from three ACs [8]. Ra-
poso et al. computed homography and essential matrix us-
ing two ACs [44]. Barath et al. derived the constraints be-
tween the local affine transformation and the essential ma-
trix and recovered the essential matrix from two ACs [4].
Hajder et al. [21] and Guan et al. [19, 20] proposed several
minimal solutions for relative pose from a single AC under
the planar motion assumption or with knowledge of a verti-
cal direction. The above mentioned works are only suitable
for the monocular perspective camera. For multi-camera
systems, Alyousefi et al. recently proposed a linear solver
to estimate the relative pose using 6 ACs [2]. Guan et al.
estimated the relative pose from 2 ACs by utilizing a first-
order rotation approximation [18]. In this paper, we focus
on the minimal number of ACs to estimate the relative pose
of a multi-camera system. Table 1 shows a summary of the
solvers, including the DOF of the motion, feature types and
number of points required.

Table 1. Relative pose solvers for multi-camera systems.
Solver [33] [28] [25] [2] [31] [50] [35] 1AC plane 2AC plane 2AC vertical
Motion 6DOF 4DOF 3DOF 4DOF
Feature PCs ACs PCs ACs
Point # 17 8 6 4 1 2

3. Geometric Constraints from ACs

A multi-camera system is made up of individual cameras
denoted by Ci, as shown in Fig. 1. Take an AC seen by
same camera for an example. The geometric constraints
can be easily generalized to the case that the AC is seen by
different cameras. The extrinsic parameters of camera Ci
expressed in a multi-camera reference frame are represented
as (Ri, ti). For general motion, there is a 3DOF rotation
and a 3DOF translation between two reference frames at
time k and k+1. Rotation R using Cayley parameterization
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and translation t can be written as:

R =
1

1 + q2x + q2y + q2z
.1 + q2x − q2y − q2z 2qxqy − 2qz 2qy + 2qxqz

2qxqy + 2qz 1− q2x + q2y − q2z 2qyqz − 2qx
2qxqz − 2qy 2qx + 2qyqz 1− q2x − q2y + q2z

 ,
(1)

t =
[
tx ty tz

]T
, (2)

where [1, qx, qy, qz]
T is a homogeneous quaternion vector.

Note that 180 degree rotations are prohibited in Cayley pa-
rameterization, but this is a rare case for consecutive frames.

3.1. Generalized Camera Model

We give a brief description of generalized camera model
(GCM) [42]. Let us denote an AC in camera Ci between
consecutive frames k and k + 1 as (xij ,x′ij ,A), where xij
and x′ij are the normalized homogeneous image coordinates
of feature point j and A is a 2×2 local affine transforma-
tion. Indices i and j are the camera and point index, re-
spectively. The related local affine transformation A is a
2×2 linear transformation which relates the infinitesimal
patches around xij and x′ij [3]. The normalized homoge-
neous image coordinates (pij ,p′ij) expressed in the multi-
camera reference frame are given as

pij = Rixij , p′ij = Rix
′
ij . (3)

The unit direction of rays (uij ,u′ij) expressed in the multi-
camera reference frame are given as: uij = pij/‖pij‖,
u′ij = p′ij/‖p′ij‖. The 6-dimensional vector Plücker lines
corresponding to the rays are denoted as lij = [uTij , (ti ×
uij)

T ]T , l′ij = [u′ij
T
, (ti × u′ij)

T ]T . The generalized
epipolar constraint is written as [42]

l′Tij

[
[t]×R, R
R, 0

]
lij = 0, (4)

where l′Tij and lij are Plücker lines between two consecutive
frames at time k and k + 1.

3.2. Affine Transformation Constraint

We denote the transition matrix of camera coordinate
system Ci between consecutive frames k and k + 1 as
(RCi, tCi), which is represented as:[

RCi tCi
0 1

]
=

[
Ri ti
0 1

]−1 [
R t
0 1

] [
Ri ti
0 1

]
=

[
RT
i RRi RT

i Rti +RT
i t−RT

i ti
0 1

]
.

(5)

Essential matrix E of two frames of camera Ci is given as:

E = [tCi]×RCi = RT
i [RitCi]×RRi, (6)

where [RitCi]× = R[ti]×R
T +[t]×− [ti]×. The relation-

ship of essential matrix E and local affine transformation A
is formulated as follows [4]:

(ETx′ij)(1:2) = −(ÂTExij)(1:2), (7)

where nij , ETx′ij and n′ij , Exij denote the epipolar
lines in their implicit form in frames of camera Ci at times
k and k + 1. The subscript 1 and 2 represent the first and
second equations of the equation system, respectively. Â is
a 3×3 matrix: Â = [A 0;0 0]. By substituting Eq. (6) into
Eq. (7), we obtain:

(RT
i R

T [RitCi]
T
×Rix

′
ij)(1:2)

= −(ÂTRT
i [RitCi]×RRixij)(1:2).

(8)

Based on Eq. (3), the above equation is reformulated and
expanded as follows:

(RT
i ([ti]×R

T +RT [t]× −RT [ti]×)p
′
ij)(1:2) =

(ÂTRT
i (R[ti]× + [t]×R− [ti]×R)pij)(1:2).

(9)

Eq. (9) interprets the new epipolar constraints which a
local affine transformation implies on the i-th camera from
a multi-camera system between two frames k and k + 1.

For each AC (xij ,x
′
ij ,A), we get three polynomials

based on Eqs. (4) and (9), see supplementary material
for details. Motivated by scenarios like self-driving cars,
ground robots or AR headsets, we investigate relevant spe-
cial cases of multi-camera motion, i.e., planar motion and
motion with known vertical direction, see Fig. 2. We show
that two special cases can be efficiently solved with ACs.

4. Relative Pose under Planar Motion

(a) Planar motion (b) Motion with known vertical direction

Figure 2. Special cases of multi-camera motion: (a) Planar motion
in top-view. There are three unknowns: yaw angle θ, translation
direction φ and translation distance ρ. (b) Motion with known
vertical direction. There are four unknowns: a Y-axis rotation Ry

and 3D translation t̃ = [t̃x, t̃y, t̃z]
T .

When assuming that the body, to which the camera sys-
tem is rigidly fixed, moves on a planar surface (as visualized
in Fig. 2(a)), there are only a Y-axis rotation and 2D trans-
lation between the reference frames k and k+ 1. Similar to
Eqs. (1) and (2), the rotation R = Ry and the translation t
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from frame k to k + 1 is written as:

Ry =
1

1 + q2y

1− q2y 0 −2qy
0 1 + q2y 0
2qy 0 1− q2y

 ,
t =

[
tx 0 tz

]T
.

(10)

where qy = tan( θ2 ), tx = ρ sin (φ), tz = −ρ cos (φ), ρ is
the distance between two multi-camera reference frames.

4.1. Solution by Reduction to a Single Polynomial

By substituting Eq. (10) into Eqs. (4) and (9), we get an
equation system of three polynomials for three unknowns
qy , tx and tz . Since an AC generally provides three inde-
pendent constraints for relative pose, a single AC is suffi-
cient to recover the planar motion of a multi-camera sys-
tem. After separating qy from tx, tz , the three independent
constraints from an AC form matrix equation:

1

1 + q2y

M11 M12 M13

M21 M22 M23

M31 M32 M33


︸ ︷︷ ︸

M(qy)

txtz
1

 = 0, (11)

where Mij (i, j ∈ [1, 3]) is an element of coefficient matrix
M(qy) and are formed by the polynomial coefficients and
one unknown variable qy , see supplementary material for
details. Since M(qy) is a square matrix, Eq. (11) has a non-
trivial solution only if the determinant of M(qy)/(1 + q2y)
is zero. The expansion of det(M(qy)/(1 + q2y)) = 0 gives
a 4-degree univariate polynomial as follows:

quot(
∑6
i=0 wiq

i
y, q

2
y + 1) = 0, (12)

where quot(a, b) means calculating the quotient of a di-
vided by b, w0, . . . , w6 are formed by a Plücker line cor-
respondence and an affine transformation between the cor-
responding feature points.

Note that the coefficients are divided by q2y + 1, which
reduces the polynomial degree and improves the efficiency
of the solution. The univariate polynomial Eq. (12) leads
to an explicit analytic solution with a maximum of 4 real
roots. Once the solutions for qy are found, the remaining un-
knowns tx and tz are solved by substituting qy into M(qy)
and solving the linear system via calculating its null vector.
Finally, the rotation matrix Ry is recovered from Eq. (10).

However, we proved that the solver using a single AC
has a degenerate case, i.e., the distances between the motion
plane and optical centers of the cameras being equal, see
supplementary material for details. This degenerate case
might happen in the self-driving scenario, which would lead
to that both the translation direction and the translation scale
cannot be calculated using one AC. To overcome this issue,

two ACs are used to estimate the relative pose. For exam-
ple, the first and second constraints of the first AC, and the
first constraint of the second AC are also stacked into three
equations in three unknowns, just as Eq. (11). The solu-
tion procedure remains the same, except that the code for
constructing the coefficient matrix M(qy) is replaced.

5. Relative Pose with Known Vertical Direction
In this section a minimal solution using two ACs is pro-

posed for relative motion estimation for multi-camera sys-
tems with known vertical direction, see Fig. 2(b). In this
case, an IMU is coupled with the multi-camera system and
the relative rotation between the IMU and the reference
frame is known. The IMU provides the known roll and pitch
angles for the reference frame. So the reference frame can
be aligned with the measured vertical direction, such that
the X-Z-plane of the aligned reference frame is parallel to
the ground plane and the Y-axis is parallel to the vertical
direction. Rotation Rimu for aligning the reference frame to
the aligned reference frame is written as:

Rimu = RpRr

=

1 0 0
0 cos(θp) sin(θp)
0 − sin(θp) cos(θp)

 cos(θr) sin(θr) 0
− sin(θr) cos(θr) 0

0 0 1

 ,
where θr and θp are roll and pitch angles provided by
the coupled IMU, respectively. Thus, there are only a Y-
axis rotation R = Ry and 3D translation t̃ = R′imut =
[t̃x, t̃y, t̃z]

T to be estimated between the aligned multi-
camera reference frames at time k and k+1. In this section,
we show that the geometric constraints in Section 3 can be
generalized to the multi-camera motion with known vertical
direction.

5.1. Generalized Camera Model

Let us denote the rotation matrices from the roll and
pitch angles of the two corresponding multi-camera refer-
ence frames at time k and k + 1 as Rimu and R′imu. The
relative rotation between two reference frames is

R = (R′imu)
TRyRimu. (13)

We substitute Eq. (13) into Eq. (4) yields:([
R′imu 0
0 R′imu

]
l′ij

)T
︸ ︷︷ ︸

l̃′ij

[[
t̃
]
×Ry Ry

Ry 0

]

([
Rimu 0
0 Rimu

]
lij

)
︸ ︷︷ ︸

l̃ij

= 0,

(14)

where l̃ij ↔ l̃′ij are the corresponding Plücker lines ex-
pressed in the aligned multi-camera reference frame.
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5.2. Affine Transformation Constraint

In this case, the transition matrix of the camera coordi-
nate system Ci between consecutive frames k and k + 1 is
represented as follows:[

RCi tCi
0 1

]
=

([
R′imu 0
0 1

] [
Ri ti
0 1

])−1
[
Ry t̃
0 1

]([
Rimu 0
0 1

] [
Ri ti
0 1

])
.

(15)

we denote that[
R̃imu t̃imu
0 1

]
=

[
Rimu 0
0 1

] [
Ri ti
0 1

]
,[

R̃′imu t̃′imu
0 1

]
=

[
R′imu 0
0 1

] [
Ri ti
0 1

]
.

(16)

By substituting Eq. (16) into Eq. (15), we obtain[
RCi tCi

0 1

]
=

[
(R̃′

imu)
TRyR̃imu (R̃′

imu)
T (Ry t̃imu + t̃− t̃′imu)

0 1

]
.

(17)

Essential matrix E between the two frames is given as

E = [tCi]×RCi = (R̃′imu)
T [R̃′imutCi]×RyR̃imu, (18)

where [R̃′imutCi]× = Ry[t̃imu]×R
T
y + [t̃]× − [t̃′imu]×. By

substituting Eq. (18) into Eq. (7), we obtain

(R̃T
imuR

T
y [R̃

′
imutCi]

T
×R̃
′
imux

′
ij)(1:2) =

− (ÂT (R̃′imu)
T [R̃′imutCi]×RyR̃imuxij)(1:2).

(19)

We denote the normalized homogeneous image coordinates
expressed in the aligned multi-camera reference frame as
(p̃ij , p̃

′
ij), which are given as

p̃ij = R̃imuxij , p̃′ij = R̃′imux
′
ij . (20)

Based on the above equation, Eq. (19) is rewritten as

(R̃T
imu([t̃imu]×R

T
y +RT

y [t̃]× −RT
y [t̃
′
imu]×)p̃

′
ij)(1:2) =

(ÂT (R̃′imu)
T (Ry[t̃imu]× + [t̃]×Ry − [t̃imu]×Ry)p̃ij)(1:2)

(21)

5.3. Solution by Reduction to a Single Polynomial

Based on Eqs. (14) and (21), we get an equation system
of three polynomials for four unknowns qy , t̃x, t̃y and t̃z .
Recall that there are three independent constraints provided
by one AC. Thus, one more equation is required which can
be taken from a second AC. In principle, one arbitrary equa-
tion can be chosen from Eqs. (14) and (21), for example,

three constraints of the first AC, and the first constraint of
the second AC are stacked into 4 equations in 4 unknowns:

1

1 + q2y


M̃11 M̃12 M̃13 M̃14

M̃21 M̃22 M̃23 M̃24

M̃31 M̃32 M̃33 M̃34

M̃41 M̃42 M̃43 M̃44


︸ ︷︷ ︸

M̃(qy)


t̃x
t̃y
t̃z
1

 = 0, (22)

where the elements M̃ij(i = 1, . . . , 4; j = 1, . . . , 4) of
the coefficient matrix M̃(qy) are formed by the polyno-
mial coefficients and one unknown variable qy , see supple-
mentary material for details. Since M̃(qy)/(1 + q2y) is a
square matrix, Eq. (22) has a non-trivial solution only if the
det(M̃(qy)/(1 + q2y)) = 0. The expansion of the determi-
nant equation gives a 6-degree univariate polynomial:

quot(
∑8
i=0 wiq

i
y, q

2
y + 1) = 0, (23)

where w̃0, . . . , w̃8 are formed by two Plücker line corre-
spondences and two affine transformations between the cor-
responding feature points.

This univariate polynomial leads to a maximum of 6
solutions. Equation (23) can be efficiently solved by
the companion matrix method [12] or Sturm bracketing
method [40]. Once qy has been obtained, the rotation ma-
trix Ry is recovered from Eq. (10). For the relative pose
between two multi-camera reference frames at time k and
k+ 1, the rotation matrix R is recovered from Eq. (13) and
the translation is computed by t = (R′imu)

T t̃.

6. Experiments
In this section, we conduct extensive experiments on

both synthetic and real-world data to evaluate the perfor-
mance of the proposed methods. Our solvers are compared
with state-of-the-art techniques.

For relative pose estimation under planar motion,
the solvers using one AC and two ACs proposed
in Section 4 are referred to as 1AC plane method
and 2AC plane method, respectively. The accu-
racy of 1AC plane and 2AC plane are compared
with the methods 17pt-Li [33], 8pt-Kneip [28],
6pt-Stewénius [25] and 6AC-Ventura [2].

For relative pose estimation with known vertical di-
rection, the solver proposed in Section 5 is referred to as
2AC vertical method. We compare the accuracy of
2AC vertical with the methods 17pt-Li [33],
8pt-Kneip [28], 6pt-Stewénius [25],
4pt-Lee [31], 4pt-Sweeney [50], 4pt-Liu [35]
and 6AC-Ventura [2].

A single run of the proposed solvers 1AC plane,
2AC plane and 2AC vertical take 3.6, 3.6 and
17.8 µs in C++, respectively. Due to space limitations, the
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efficiency comparison and stability study are provided in the
supplementary material. In the experiments, all the solvers
are integrated within RANSAC to reject outliers. For the
point-based solvers, only the point coordinates of ACs are
used. The relative pose which produces the highest num-
ber of inliers is chosen. The confidence of RANSAC is set
to 0.99 and an inlier threshold angle is set to 0.1◦ by fol-
lowing the definition in OpenGV [27]. We also show the
feasibility of our methods on the KITTI dataset [16]. This
experiment demonstrates that our methods are well suited
for visual odometry in road driving scenarios.

6.1. Experiments on Synthetic Data

We made a simulated 2-camera rig system by follow-
ing the KITTI autonomous driving platform. The baseline
length between two simulated cameras is set to 1 meter and
the cameras are installed at different altitude. The multi-
camera reference frame is set at the center of the camera
rig and the translation between two multi-camera reference
frames is 3 meters. The resolution of the cameras is 640 ×
480 pixels and the focal lengths are 400 pixels. The princi-
pal points are set to the image center (320, 240).

The synthetic scene is composed of a ground plane and
50 random planes. All 3D planes are randomly generated
within the range of -5 to 5 meters (along axes X and Y),
and 10 to 20 meters (Z-axis direction), that are expressed in
the respective axis of the multi-camera reference frame. We
choose 50 ACs from the ground plane and an AC from each
random plane randomly, thus, having a total of 100 ACs.
For each AC, a random 3D point from a plane is reprojected
onto two cameras to get the image point pair. The corre-
sponding affine transformation is obtained by the following
procedure. First, four points are chosen as the vertices of a
square in view 1, where the center of the square is the point
coordinates of AC. The side length of the square is set as
20 or 40 pixels. A larger side length causes smaller noise
of affine transformation. Second, the four corresponding
points in view 2 are calculated by the ground truth homog-
raphy. Third, four sampled point pairs are contaminated by
Gaussian noise, which is similar to the noise added to the
coordinates of image point pair. Fourth, the noisy homogra-
phy matrix is estimated using the four sampled point pairs.
The noisy affine transformation is the first-order approxi-
mation of the noisy homography matrix. This procedure
enables an indirect but geometrically interpretable way of
adding noise to the affine transformation [5].

A total of 1000 trials are carried out in the synthetic ex-
periment. In each test, 100 ACs are generated randomly.
The ACs for the methods are selected randomly and the
error is measured on the relative pose which produces the
most inliers within the RANSAC scheme. This also allows
us to select the best candidate from multiple solutions by
counting their inliers in a RANSAC-like procedure. The

17pt-Li 8pt-Kneip 6pt-Stewenius

1AC plane (20*20) 1AC plane (40*40) 2AC plane (20*20) 2AC plane (40*40)

6AC-Ventura (20*20) 6AC-Ventura (40*40)
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Figure 3. Rotation and translation error under planar motion. (a–
c): varying image noise under perfect planar motion. (d–f): vary-
ing planar motion noise and fixed 1.0 pixel std. image noise.

median of errors are used to assess the rotation and transla-
tion error. The rotation error is computed as the angular dif-
ference between the ground truth rotation and the estimated
rotation: εR = arccos((trace(RgtR

T )−1)/2), where Rgt

and R are the ground truth and estimated rotation matrices.
Following the definition in [43, 31], the translation error is
defined as: εt = 2 ‖(tgt − t)‖ /(‖tgt‖ + ‖t‖), where tgt
and t are the ground truth and estimated translations.

6.1.1 Planar Motion Estimation

In this scenario, the planar motion of the multi-camera sys-
tem is described by (θ, φ), see Fig. 2(a). The magnitudes
of both angles ranges from −10◦ to 10◦. We use Gaus-
sian image noise with a standard deviation ranging from
0 to 1 pixel. Fig. 3(a–c) shows the performance of the
proposed 1AC plane and 2AC plane methods against
image noise. Since the noise magnitude of affine trans-
formation is influenced by the support region of sampled
points, the AC-based methods have better performance with
larger support region at the same magnitude of image noise.
It can be seen that 2AC plane performs better than the
other compared methods under perfect planar motion, even
though the size of the square is 20 pixels. The 1AC plane
method performs better than the PC-based methods and
the 6AC-Ventura method in rotation estimation, but has
worse performance in translation estimation. As shown in
Fig. 3(c), we plot the translation direction error as an ad-
ditional evaluation. It is interesting to see that when the
side length of the square is 40 pixels, the 1AC plane
method performs better than the PC-based methods and the
6AC-Ventura method in translation direction estimation.
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We also evaluate the accuracy of the proposed methods
1AC plane and 2AC plane for increasing planar mo-
tion noise. To test such noise, we added a small randomly
generated X-axis, Z-axis rotation and a YZ-plane transla-
tion [10] to the motion of the multi-camera system. The
magnitude of non-planar motion noise ranges from 0◦ to 1◦

and the standard deviation of the image noise is set to 0.5
pixel. Figures 3(d–f) show the performance of the proposed
1AC plane method and 2AC plane method against
planar motion noise. Methods 17pt-Li, 8pt-Kneip,
6pt-Stewénius and 6AC-Ventura deal with the
6DOF motion case and, thus they are not affected by the
noise in the planarity assumption. It can be seen that the ro-
tation accuracy of the 2AC plane method performs better
than comparative methods when the planar motion noise is
less than 0.2◦. Since the estimation accuracy of translation
direction of the 2AC plane method in Fig. 3(f) performs
satisfactory, the main reason for poor performance of trans-
lation estimation is that the metric scale estimation is sen-
sitive to the planar motion noise. In comparison with the
2AC plane method, the 1AC plane method has similar
performance in rotation estimation, but performs poorly in
translation estimation. The translation accuracy decreases
significantly with the increase of the planar motion noise.

Both the 1AC plane and 2AC plane methods have
a significant computational advantage over comparative
methods, because the efficient solver for 4-degree polyno-
mial equation takes only about 3.6 µs. Moreover, since only
a single AC is required, the 1AC plane method has the
advantage of detecting a correct inlier set efficiently, which
can then be used for accurate motion estimation with non-
linear optimization. See supplementary material for details.

6.1.2 Motion with Known Vertical Direction

In this set of experiments, the translation direction of two
multi-camera reference frames is chosen to produce either
forward, sideways or random motions. The second refer-
ence frame is rotated around three axes randomly with an-
gles ranging from −10◦ to 10◦. Assuming known roll and
pitch angles, the multi-camera reference frame is aligned
with the vertical direction. Due to space limitations, we
only show the results for random motion. Other results are
in the supplementary material. Figs. 4(a) and (d) show the
performance of 2AC vertical against image noise with
perfect IMU data. The proposed method is robust to image
noise and performs better than the other methods.

Figs. 4(b,e) and (c,f) show the performance of
2AC vertical against IMU noise in the random mo-
tion case, while the standard deviation of the image noise
is fixed at 0.5 pixel. Note that the methods 17pt-Li,
8pt-Kneip, 6pt-Stewénius and 6AC-Ventura are
not influenced by IMU noise, because these methods do not
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Figure 4. Rotation and translation error under random motion with
known vertical direction. Upper row: rotation error. Bottom row:
translation error. (a,d): varying image noise. (b,e) and (c,f): vary-
ing IMU angle noise and fixed 1.0 pixel std. image noise.

use the known vertical direction as a prior. The methods
4pt-Lee, 4pt-Sweeney and 4pt-Liu use the known
vertical direction as a prior. It is interesting to see that
the proposed method outperforms the comparative meth-
ods in the random motion case, even though the IMU noise
is around 0.4◦. The results under forward and sideways
motion also demonstrate that the 2AC vertical method
performs basically better than all comparative methods
against image noise and provides comparable accuracy for
increasing IMU noise.

6.2. Experiments on Real Data

We test the performance of our methods on the KITTI
dataset [16] that consists of successive video frames from
a forward facing stereo camera. The ground truth pose is
provided from the built-in GPS/IMU units. We ignore the
overlap in their fields of view and treat it as a general multi-
camera system. The sequences labeled from 0 to 10, which
have ground truth, are used for the evaluation. Therefore,
the methods were tested on a total of 23000 image pairs.
The ACs between consecutive frames in each camera are
established by applying the ASIFT [39] detector. The ex-
traction of ACs can also be sped up by MSER [38], GPU
acceleration, or approximating ACs from SIFT features for
subsequent video frames. The ACs across the two cameras
are not matched and the metric scale is not estimated as the
movement between consecutive frames is small. Besides,
integrating the acceleration over time from an IMU is more
suitable for recovering the scale [41]. All the solvers have
been integrated into a RANSAC scheme.
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Sequence
17pt-Li [33] 8pt-Kneip [28] 6pt-St. [25] 4pt-Lee [31] 4pt-Sw. [50] 4pt-Liu [35] 6AC-Ven. [2] 2AC plane 2AC vertical
εR εt εR εt εR εt εR εt εR εt εR εt εR εt εR εt εR εt

00 (4541 images) 0.139 2.412 0.130 2.400 0.229 4.007 0.065 2.469 0.050 2.190 0.066 2.519 0.142 2.499 0.280 2.243 0.031 1.738
01 (1101 images) 0.158 5.231 0.171 4.102 0.762 41.19 0.137 4.782 0.125 11.91 0.105 3.781 0.146 3.654 0.168 2.486 0.025 1.428
02 (4661 images) 0.123 1.740 0.126 1.739 0.186 2.508 0.057 1.825 0.044 1.579 0.057 1.821 0.121 1.702 0.213 1.975 0.030 1.558
03 (801 images) 0.115 2.744 0.108 2.805 0.265 6.191 0.064 3.116 0.069 3.712 0.062 3.258 0.113 2.731 0.238 1.849 0.037 1.888
04 (271 images) 0.099 1.560 0.116 1.746 0.202 3.619 0.050 1.564 0.051 1.708 0.045 1.635 0.100 1.725 0.116 1.768 0.020 1.228
05 (2761 images) 0.119 2.289 0.112 2.281 0.199 4.155 0.054 2.337 0.052 2.544 0.056 2.406 0.116 2.273 0.185 2.354 0.022 1.532
06 (1101 images) 0.116 2.071 0.118 1.862 0.168 2.739 0.053 1.757 0.092 2.721 0.056 1.760 0.115 1.956 0.137 2.247 0.023 1.303
07 (1101 images) 0.119 3.002 0.112 3.029 0.245 6.397 0.058 2.810 0.065 4.554 0.054 3.048 0.137 2.892 0.173 2.902 0.023 1.820
08 (4071 images) 0.116 2.386 0.111 2.349 0.196 3.909 0.051 2.433 0.046 2.422 0.053 2.457 0.108 2.344 0.203 2.569 0.024 1.911
09 (1591 images) 0.133 1.977 0.125 1.806 0.179 2.592 0.056 1.838 0.046 1.656 0.058 1.793 0.124 1.876 0.189 1.997 0.027 1.440
10 (1201 images) 0.127 1.889 0.115 1.893 0.201 2.781 0.052 1.932 0.040 1.658 0.058 1.888 0.203 2.057 0.223 2.296 0.025 1.586

Table 2. Rotation and translation error on KITTI sequences (unit: degree).

Methods 17pt-Li [33] 8pt-Kneip [28] 6pt-St. [25] 4pt-Lee [31] 4pt-Sw. [50] 4pt-Liu [35] 6AC-Ven. [2] 2AC plane 2AC vertical
Mean time 52.82 10.36 79.76 0.85 0.63 0.45 6.83 0.07 0.09

Standard deviation 2.62 1.59 4.52 0.093 0.057 0.058 0.61 0.0071 0.0086

Table 3. Runtime of RANSAC averaged over KITTI sequences combined with different solvers (unit: s).

The proposed methods 2AC plane and 2AC
vertical are compared against 17pt-Li [33],
8pt-Kneip [28], 6pt-Stewénius [25],
4pt-Lee [31], 4pt-Sweeney [50], 4pt-Liu [35]
and 6AC-Ventura [2]. Since the KITTI dataset is
captured by a stereo rig with both cameras having the same
altitude, that is a degenerate case for the 1AC plane
method, it is not performed in the experiment. For the
2AC plane method, the results are also compared to the
ground truth of the 6DOF relative pose, even though this
method only estimates two angles (θ, φ) with the plane
motion assumption. For the 2AC vertical method, the
roll and pitch angles obtained from the GPS/IMU units are
used to align the multi-camera reference frame with the
vertical direction [45, 19, 32]. To ensure the fairness of
the experiment, the roll and pitch angles are also provided
for the methods 4pt-Lee [31], 4pt-Sweeney [50] and
4pt-Liu [35], which use the known vertical direction
as a prior. Table 2 shows the results of the rotation and
translation estimation. The median error for each individual
sequence is used to evaluate the estimation accuracy. The
runtime of RANSAC averaged over KITTI sequences
combined with different solvers is shown in Table 3.
The reported runtimes include the robust relative pose
estimation without feature extraction, i.e., recovering the
relative pose by RANSAC combined with a minimal solver.

The proposed 2AC vertical method offers the
best overall performance among all the methods. The
6pt-Stewénius method performs poorly on sequence
01, because this sequence is a highway with few tractable
close objects, and this method always fails to select the best
candidate from multiple solutions under forward motion in
the RANSAC scheme. Besides, it is interesting to see that

the translation accuracy of the 2AC plane method ba-
sically outperforms the 6pt-Stewénius method, even
though the planar motion assumption does not fit the
KITTI dataset well. To visualize the comparison results,
the estimated trajectory for sequence 00 is plotted in the
supplementary material. Due to the benefits of compu-
tational efficiency, both the 2AC plane method and the
2AC vertical method are quite suitable for finding a
correct inlier set, which is then used for accurate motion
estimation in visual odometry.

7. Conclusion

By exploiting the geometric constraints which interprets
the relationship of ACs and the generalized camera model,
we have proposed three solutions for the relative pose esti-
mation of a multi-camera system. Under the planar motion
assumption, we present two solvers to recover the relative
pose of a multi-camera system, including a minimal solver
using a single AC and a solver based on two ACs. In addi-
tion, a minimal solution with two ACs is proposed to solve
for the relative pose of the multi-camera system with known
vertical direction. Both planar motion and known vertical
direction assumptions are realistic in autonomous driving
scenes. We evaluate the proposed solvers on synthetic data
and real image sequence datasets. The experimental results
clearly showed that the proposed methods provide better ef-
ficiency and accuracy for relative pose estimation in com-
parison to state-of-the-art methods.
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Supplementary Material

A. Geometric Constraints from ACs
For AC (xij ,x

′
ij ,A), we get three polynomials for six

unknowns {qx, qy, qz, tx, ty, tz} from Eqs. (4) and (9) in the
paper. After separating qx, qy , qz from tx, ty , tz , we arrive
at equation system

1

1 + q2x + q2y + q2z

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34


︸ ︷︷ ︸

M(qx,qy,qz)


tx
ty
tz
1

 = 0,

(24)
where the elements Mij (i = 1, . . . , 3; j = 1, . . . , 4) of the
coefficient matrix M(qx, qy, qz) are formed by the polyno-
mial coefficients and three unknown variables qx, qy, qz:

M(qx, qy, qz) =

[2] [2] [2] [2]
[2] [2] [2] [2]
[2] [2] [2] [2]

 , (25)

where [N ] denotes a polynomial of degree N in variables
qx, qy, qz .

Equation (24) imposes three independent constraints on
six unknowns {qx, qy, qz, tx, ty, tz}. This constraint can be
easily generalized to special cases of multi-camera motion,
e.g., planar motion and known vertical direction.

B. Relative Pose Under Planar Motion
B.1. Details about the Coefficient Matrix M(qy)

Refer to Eq. (11) in the paper, three constraints obtained
from a single AC are stacked into three equations in three
unknowns. The elements Mij (i = 1, . . ., 3; j = 1, . . ., 3)
of the coefficient matrix M(qy) are formed by the polyno-
mial coefficients and one unknown variable qy , which can
be described as:

M(qy) =

[2] [2] [2]
[2] [2] [2]
[2] [2] [2]

 , (26)

where [N ] denotes a polynomial of degreeN in variable qy .

B.2. Degenerate Case

Proposition 1. Consider a multi-camera system which is
under planar motion. Assume the following three condi-
tions are satisfied. (1) The rotation axis is y-axis, and the
translation is on xz-plane. (2) There is one AC across cam-
era Ci in frame k and camera Cj in frame k + 1 (Ci and
Cj can be the same or different cameras). (3) The optical
centers of camera Ci and Cj have the same y-coordinate.
Then this case is degenerate. Specifically, the rotation can
be correctly recovered, while both the translation direction
and the translation scale cannot be estimated using one AC.

y y
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𝐑′, 𝐭′

𝐯

𝐑i, 𝐭i 𝐑j, 𝐭j

frame k frame k+1

Figure 5. Planar motion of a multi-camera system.

Proof. Figure 5 illustrates the degenerate case described in
the proposition. Note that the multi-camera reference frame
is established on the multi-camera system, not on a certain
camera coordinate system. Our proof is based on the fol-
lowing observation: whether a case is degenerate is inde-
pendent of the relative pose solvers. Based on this point,
we construct a new minimal solver which is different from
the proposed solver in the paper.

(i) Since the multi-camera system is rotated by y-axis,
the camera Ci in frame k and camera Cj in frame k+1 are
under motion with known rotation axis. Thus we can use the
1AC method [19] for perspective cameras to estimate the
relative pose between Ci and Cj . This is a minimal solver
since one AC provides 3 independent constraints and there
are three unknowns (one unknown for rotation, two un-
knowns for translation by excluding scale-ambiguity). De-
note the recovered rotation and translation between Ci and
Cj as (R′, t′), where t′ is a unit vector. The scale of the
translation vector cannot be recovered at this moment. De-
note the unknown translation scale as λ.

(ii) From Fig. 5, we have[
R t
0 1

]
=

[
Rj tj
0 1

] [
R′ λt′

0 1

] [
Ri ti
0 1

]−1
=

[
RjR

′RT
i λRjt

′ + tj −RjR
′RT

i ti
0 1

]
.

(27)

From Eq. (27), we have

R = RjR
′RT

i , (28)

t = λRjt
′ + tj −RjR

′RT
i ti. (29)

From Eq. (28), the rotation R between frame k and frame
k + 1 for the multi-camera system can be recovered. From
Eq. (29), we have

λ(Rjt
′)− t+ (tj −Rti) = 0. (30)

In Eq. (30), note that t = [tx, 0, tz]
T due to planar motion.

Thus this linear equation system has 3 unknowns {λ, tx, tz}
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Methods 17pt-Li [33] 8pt-Kneip [28] 6pt-St. [25] 4pt-Lee [31] 4pt-Sw. [50] 4pt-Liu [35] 6AC-Ven. [2] 1AC plane 2AC plane 2AC vertical
Timings 43.3 102.0 3275.4 26.5 22.2 3.7 38.1 3.6 3.6 17.8

Table 4. Run-time comparison of motion estimation algorithms (unit: µs).

and 3 equations. Usually the unknowns can be uniquely
determined by solving this equation system. However, if
the second entry of Rjt

′ is zero, it can be verified that λ
becomes a free parameter. In other words, the translation
cannot be determined and this is a degenerate case.

(iii) Finally, we exploit the geometric meaning of the de-
generate case, i.e., the second entry of Rjt

′ is zero. Denote
the normalized vector originated from Ci to Cj as v. Since
v represents the normalized translation vector between Ci
and Cj , the coordinates of v in reference of camera Cj is
t′. Further, the coordinates of v in frame k + 1 is Rjt

′.
The second entry of Rjt

′ is zero means that the endpoints
of v have the same y-coordinate in frame k + 1, which is
the condition (3) in the proposition.

C. Relative Pose with Known Vertical Direc-
tion

Refer to Eq. (22) in the paper, four constraints obtained
from two ACs are stacked into four equations in four un-
knowns. The elements M̃ij (i = 1, . . ., 4; j = 1, . . ., 4) of
the coefficient matrix M̃(qy) are formed by the polynomial
coefficients and one unknown variable qy , which can be de-
scribed as:

M̃(qy) =


[2] [2] [2] [2]
[2] [2] [2] [2]
[2] [2] [2] [2]
[2] [2] [2] [2]

 , (31)

where [N ] denotes a polynomial of degreeN in variable qy .

D. Experiments
D.1. Efficiency Comparison

The runtimes of the solvers are evaluated on an In-
tel(R) Core(TM) i7-7800X 3.50GHz. All algorithms are
implemented in C++. Methods 17pt-Li, 8pt-Kneip
and 6pt-Stewenius are provided in the OpenGV li-
brary [27]. We implemented the 4pt-Lee method. For
methods 4pt-Sweeney, 4pt-Liu and 6AC-Ventura,
we used their publicly available implementations from
GitHub. The average, over 10,000 runs, processing times
of the solvers are shown in Table 4. The runtimes of the
methods 1AC plane , 2AC plane and 4pt-Liu are
the lowest, because these methods solve the 4-degree poly-
nomial equation. The 2AC vertical which solves the
6-degree polynomial equation also requires low computa-
tion time.
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Figure 6. Probability density functions over estimation errors in
the noise-free case (10 000 runs). The horizontal axis repre-
sents the log10 errors and the vertical axis represents the den-
sity. (a) reports the rotation error. (b) reports the translation er-
ror. The proposed 1AC plane method, 2AC plane method
and 2AC vertical are compared against 17pt-Li [33],
8pt-Kneip [28], 6pt-Stewénius [25], 4pt-Lee [31],
4pt-Sweeney [50], 4pt-Liu [35] and 6AC-Ventura [2].

D.2. Numerical Stability

Figure 6 reports the numerical stability of the
solvers in the noise-free case. The procedure is re-
peated 10,000 times. The empirical probability den-
sity functions (vertical axis) are plotted as the func-
tion of the log10 estimated errors (horizontal axis).
Methods 1AC plane, 2AC plane, 2AC vertical,
17pt-Li[33], 4pt-Lee [31], 4pt-Sweeney [50] and
6AC-Ventura [2] are numerically stable. It can also be
seen that the 4pt-Sweeney method has a small peak,
both in the rotation and translation error curves, around
10−2. The 8pt-Kneip method based on iterative opti-
mization is susceptible to falling into local minima. Due to
the use of first-order approximation of the relative rotation,
the 4pt-Liu method inevitably has greater than zero error
in the noise-free case.

D.3. Planar Motion Estimation

In addition to efficiency and numerical stability, another
important factor for a solver is the minimal number of re-
quired image points. The iteration number N of RANSAC
can be computed by N = log(1 − p)/ log(1 − (1 − ε)s),
where s is the number of minimal image points, ε is the out-
lier ratio, and p is the success probability. For a probability
of success p = 99%, the RANSAC iterations needed with re-
spect to the outlier ratio needed are shown in Figure 7. It can
be seen that the iteration number of the RANSAC estimator
increases exponentially with respect to the number of image
points needed. For example, in a percentage of outliers ε =
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Figure 7. Comparison of the RANSAC iteration number for 99%
of success probability.
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Figure 8. Rotation and translation error with varying planar motion
noise. The image noise is fixed at 0.5 pixel and the outlier ratio is
set to 50%.

50%, when the solvers require 1, 2, 4, 6, 8 and 17 points, the
RANSAC estimator need 7, 16, 71, 292, 1177 and 603607
iterations, respectively. The proposed 1AC planemethod
which only uses a single AC requires the lowest number
of RANSAC iterations. Since the proposed 2AC plane
method need two ACs, the iteration number of RANSAC
is also low in comparison to PC-based methods. Thus, our
solvers can be used efficiently for detecting a correct inlier
set when integrating them into the RANSAC framework.

We evaluate the performance of the proposed
1AC plane method and 2AC plane method for
outlier detection in presence of outliers. The outlier ratio
is set to 50%. The other configurations of this synthetic
experiment are set as same as using in Figures 3(d–f) in
the paper. Figure 8 shows the performance of the proposed
methods against planar motion noise. It is interesting
to see that the 1AC plane method recovers more than
50% inliers and requires fewer number of RANSAC
iterations, even though it performs poorly in translation
estimation as shown in Figures 3(e–f) in the paper. Thus,
the 1AC plane method has the advantage of detecting
a correct inlier set efficiently, which can then be used for
accurate motion estimation with non-linear optimization.
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Figure 9. Rotation and translation error under forward motion with
known vertical direction. Upper row: rotation error. Bottom row:
translation error. (a,d): varying image noise. (b,e) and (c,f): vary-
ing IMU angle noise and fixed 1.0 pixel std. image noise.
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Figure 10. Rotation and translation error under sideways motion
with known vertical direction. Upper row: rotation error. Bottom
row: translation error. (a,d): varying image noise. (b,e) and (c,f):
varying IMU angle noise and fixed 1.0 pixel std. image noise.

D.4. Motion with Known Vertical Direction

In this section we show the performance of the pro-
posed 2AC vertical under forward and sideways mo-
tion. Figure 9 shows the performance of the proposed
2AC vertical under forward motion. It can be seen
that 2AC vertical outperforms the comparative meth-
ods against image noise and provides comparable accuracy
for increasing IMU noise, even though the size of the square
is 20 pixels. Figure 10 shows the performance of the pro-
posed 2AC vertical under sideways motion. The re-
sults demonstrate that when the side length of the square
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is 40 pixels, the 2AC vertical performs basically bet-
ter than all compared methods against image noise and
achieves comparable performance for increasing noise on
the IMU data.

D.5. Using PCs converted from ACs

In this set of experiments, we evaluate the performance
of PC-based solvers using the PCs converted from ACs.
Given an AC as (x,x′,A), where x and x′ are the image
coordinates of feature point in two views and A is the cor-
responding 2×2 local affine transformation. Three gener-
ated PCs include an image point pair of AC and two hal-
lucinated image point pairs calculated by the local affine
transformation. Since local affine transformations are de-
fined as the partial derivative, w.r.t. the image directions,
of the related homography, they are valid only infinitesi-
mally close to the image coordinates of AC. Thereby, one
AC can only provide three approximate PCs – the error is
not zero even for noise-free input [4]. Three approximate
PCs converted from one AC can be computed as follows [6]:
x+[0, w, 0; 0, 0, w] and x′+A[0, w, 0; 0, 0, w], where
w determines the distribution area of the generated PCs. To
evaluate the performance of PC-based solvers with different
distribution area, w is set to 1, 5 and 10 pixels, respectively.

Take relative pose estimation with known vertical di-
rection for an example. A total of 1000 trials are
carried out in the synthetic experiment. In each test,
100 ACs are generated randomly with 40*40 support re-
gion. In the RANSAC loop, six ACs and two ACs
are selected randomly for the 6AC-Ventura method
and the proposed 2AC vertical method, respectively.
The hallucinated PCs converted from a minimal num-
ber of ACs are used as input for the PC-based solvers.
Thus, 6, 3 and 2 ACs are selected randomly for the
17pt-Li solver [33], the 8pt-Kneip solver [28], and
the solvers 6pt-Stewénius [25], 4pt-Lee [31],
4pt-Sweeney [50] and 4pt-Liu [35], respectively.
Note that the hallucinated PCs converted from ACs are only
used for hypothesis generation, and the inlier set is found by
evaluating the image point pairs of ACs. The solution which
produces the highest number of inliers is chosen. The other
configurations of this synthetic experiment are set as same
as using in Figures 4(a) and (d) in the paper.

Figure 11 shows the performance of the PC-based
solvers against image noise in the random motion case. The
estimation results using the image point pairs of ACs are
represented by solid lines. The estimation results using the
hallucinated PCs generated with different distribution area
are represented by dashed line (w = 1 pixel), dash-dotted
line (w = 5 pixels) and dotted line (w = 10 pixels), re-
spectively. We have the following observations. (1) The
PC-based solvers using the hallucinated PCs perform worse
than using the image point pairs of AC. Because the con-
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Figure 11. Rotation and translation error with varying image noise
under random motion with known vertical direction. Solid line in-
dicates using image point pairs of ACs. Dashed line, dash-dotted
line and dotted line indicate using the hallucinated PCs, which are
generated with different distribution area w = 1, 5, 10 pixels, re-
spectively.

version error between each AC and three PCs is newly in-
troduced. It can be seen that the estimation error of PC-
based solvers using the hallucinated PCs is not zero even
for image noise-free input. Moreover, the hallucinated PCs
generated by each AC are near each other which may be
a degenerate case for the PC-based solvers. (2) The per-
formance of PC-based solvers is influenced by the different
distribution area of hallucinated PCs. Since a smaller dis-
tribution area causes smaller conversion error between ACs
and PCs, the PC-based solvers have better performance with
smaller distribution area. (3) The performance of the pro-
posed 2AC vertical method is best. Because the AC-
based solvers use the relationship between local affine trans-
formations and epipolar lines (Eq. (9) in the paper). This is
a strictly satisfied constraint and does not result in any er-
ror for noise-free input. In addition, the 2AC vertical
method is robust to image noise and performs better than
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Part
17pt-Li [33] 8pt-Kneip [28] 6pt-St. [25] 4pt-Lee [31] 4pt-Sw. [50] 4pt-Liu [35] 6AC-Ven. [2] 2AC plane 2AC vertical
εR εt εR εt εR εt εR εt εR εt εR εt εR εt εR εt εR εt

01 (3376 images) 0.161 2.680 0.156 2.407 0.203 2.764 0.083 1.780 0.078 1.659 0.108 1.941 0.143 2.366 0.344 2.284 0.057 1.469

Table 5. Rotation and translation error on nuScenes sequences (unit: degree).

the 6AC-Ventura method.

D.6. Experiments on KITTI dataset

We also show the empirical cumulative error distribu-
tions for KITTI sequence 00. These values are calcu-
lated from the same values which were used for creat-
ing Table 2 in the paper. Figure 12 shows the proposed
2AC vertical offers the best overall performance in
comparison to state-of-the-art methods.
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Figure 12. Empirical cumulative error distributions for KITTI
sequence 00. (a) reports the rotation error. (b) reports
the translation error. The proposed 2AC plane method
and 2AC vertical are compared against 17pt-Li [33],
8pt-Kneip [28], 6pt-Stewénius [25], 4pt-Lee [31],
4pt-Sweeney [50] and 4pt-Liu [35].

To visualize the comparison results, the estimated tra-
jectory for sequence 00 is plotted in Fig. 13. We are
directly concatenating frame-to-frame relative pose mea-
surements without any post-refinement. The trajectory for
2AC vertical is compared with the two best perform-
ing comparison methods in sequence 00 based on Table 2
in the paper: 8pt-Kneip in 6DOF motion case and
4pt-Sweeney in 4DOF motion case. Since all methods
were not able to estimate the scale correctly, in particular
for the many straight parts of the trajectory, the ground truth
scale is used to plot the trajectories. Then the trajectories are
aligned with the ground truth and the color along the trajec-
tory encodes the absolute trajectory error (ATE) [48]. Even
though all trajectories have a significant accumulation of
drift, it can still be seen that the 2AC vertical method
has the smallest ATE among the compared trajectories.

D.7. Experiments on nuScenes dataset

We also test the performance of our methods on the
nuScenes dataset [9], which consists of consecutive
keyframes from 6 cameras. All the keyframes of Part 1
are used for the evaluation and there are 3376 images in

total. The ground truth pose is provided from a lidar map-
based localization scheme. Similar to the experiments on
KITTI dataset, the ACs between consecutive keyframes in
each camera are established by applying the ASIFT [39] de-
tector. All solvers are used within RANSAC.

Table 5 shows the results of the rotation and translation
estimation for the Part1 of nuScenes dataset. The median
error is used to evaluate the estimation accuracy. It can be
seen that the proposed 2AC vertical method offers the
best overall performance among all the methods.
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Figure 13. Estimated trajectories without any post-refinement. The relative pose measurements between consecutive frames are directly
concatenated. The colorful curves are the trajectories estimated by 8pt-Kneip [28], 4pt-Sweeney [50] and 2AC vertical. Black
curves with stars are the ground truth trajectories. Best viewed in color.
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