Improving the Reliability of the Multiline TRL Calibration Algorithm

Ziad Hatab\#*, Michael Gadringer\#, Wolfgang Bosch**
\#Graz University of Technology, Graz, Austria
*Christian Doppler Laboratory - TONI, Graz, Austria

ARFTG-98 ${ }^{\text {th }}$ Las Vegas, Nevada, USA January $17^{\text {th }}-18^{\text {th }}, 2022$

TONI

VNA Error-box Model

- Measurement is modeled using the cascade-parameters (T-parameters):

$$
\boldsymbol{M}_{\text {DUT }}=\underbrace{k_{a}\left[\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & 1
\end{array}\right]}_{\text {left error-box }} \boldsymbol{T}_{\text {DUT }} \underbrace{\left[\begin{array}{cc}
b_{11} & b_{12} \\
b_{21} & 1
\end{array}\right] k_{b}}_{\text {right error-box }}
$$

- Combine k_{a} and k_{b} to form the 7-term model (6 in \boldsymbol{A} and \boldsymbol{B}, and k is the $7^{\text {th }}$):

$$
\boldsymbol{M}_{D U T}=k \boldsymbol{A} \boldsymbol{T}_{D U T} \boldsymbol{B}
$$

Thru-Reflect-Line (TRL) Calibration

- Thru standard, fully known:

$$
\boldsymbol{M}_{T h r u}=k \boldsymbol{A}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \boldsymbol{B}
$$

- Line standard, only length known:

$$
\boldsymbol{M}_{\text {Line }}=k \boldsymbol{A}\left[\begin{array}{cc}
e^{-\gamma l} & 0 \\
0 & e^{\gamma l}
\end{array}\right] \boldsymbol{B}
$$

- The eigenvalue problem:

$$
\boldsymbol{M}_{\text {Line }} \boldsymbol{M}_{T h r u}^{-1}=\boldsymbol{A}\left[\begin{array}{cc}
e^{-\gamma l} & 0 \\
0 & e^{\gamma l}
\end{array}\right] \boldsymbol{A}^{-1}
$$

When $e^{-\gamma l}=e^{\gamma l}$, the calibration becomes unsolvable.

- Reflect standard, unknown, but symmetric. Used with the Thru standard to finalize the calibration.

Extending TRL to Multiline TRL

- Use $N>2$ lines. Results in $\frac{N(N-1)}{2}$ pairs:

$$
\boldsymbol{M}_{i} \boldsymbol{M}_{j}^{-1}=\boldsymbol{A}\left[\begin{array}{cc}
e^{-\gamma\left(l_{i}-l_{j}\right)} & 0 \\
0 & e^{\gamma\left(l_{i}-l_{j}\right)}
\end{array}\right] \boldsymbol{A}^{-1}
$$

- Question: How to combine the solutions (eigenvectors) of all pairs?
- Idea: [r. B. Marks, MтT, 39, (1991)]

Combine the eigenvectors using the Gauss-Markov theorem (weighted sum).

- Constraints:

1) Error propagation through the eigenvectors (error-boxes) are assumed linear.
2) Only $N-1$ pairs allowed to be used, where one line is common among all pairs. $>$ allows for an invertible covariance matrix for the Gauss-Markov theorem.

Can we do better?

Questions:

Should we enforce linearization?
Must we use Gauss-Markov method to get the best results?

To overcome this, we need to re-develop multiline TRL.

Kronecker Product " \otimes " and Matrix Vectorization

- Given matrices \boldsymbol{X} and \boldsymbol{Y}, their Kronecker Product is defined as:

$$
\boldsymbol{X} \otimes \boldsymbol{Y}=\left[\begin{array}{ccc}
x_{11} \boldsymbol{Y} & x_{12} \boldsymbol{Y} & \ldots \\
x_{21} \boldsymbol{Y} & x_{22} \boldsymbol{Y} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]
$$

- Vectorization of a matrix \boldsymbol{X} is defined by stacking its columns:

$$
\boldsymbol{X}=\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right] \xrightarrow{\operatorname{vec}()} \operatorname{vec}(\boldsymbol{X})=\left[\begin{array}{l}
x_{11} \\
x_{21} \\
x_{12} \\
x_{22}
\end{array}\right]
$$

- Vectorization of matrix product: given $\boldsymbol{X}, \boldsymbol{Y}$ and \boldsymbol{Z}, then:

$$
\operatorname{vec}(\boldsymbol{X} \boldsymbol{Y} \boldsymbol{Z})=\left(\boldsymbol{Z}^{T} \otimes \boldsymbol{X}\right) \operatorname{vec}(\boldsymbol{Y})
$$

Reformulating mTRL Error-box Model (1/2)

- Measurement of i-th line standard:

$$
M_{i}=k A L_{i} B
$$

- Vectorization of \boldsymbol{M}_{i} :

$$
\operatorname{vec}\left(\boldsymbol{M}_{i}\right)=k\left(\boldsymbol{B}^{T} \otimes \boldsymbol{A}\right) \operatorname{vec}\left(\boldsymbol{L}_{i}\right)
$$

- Including all N lines:

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{lll}
\operatorname{vec}\left(\boldsymbol{M}_{1}\right) & \cdots & \left.\operatorname{vec}\left(\boldsymbol{M}_{N}\right)\right]
\end{array}\right.}_{\boldsymbol{M}}=k\left(\boldsymbol{B}^{T} \otimes \boldsymbol{A}\right) \underbrace{\left[\begin{array}{lll}
\operatorname{vec}\left(\boldsymbol{L}_{1}\right) & \cdots & \operatorname{vec}\left(\boldsymbol{L}_{N}\right)
\end{array}\right]}_{\boldsymbol{L}} \\
& \prod_{4 \times N}^{\boldsymbol{M}=k\left(\boldsymbol{B}^{T} \otimes \boldsymbol{A}\right) \boldsymbol{L}}
\end{aligned}
$$

Reformulating mTRL Error-box Model (2/2)

- Inverse measurement of i-th line standard:

$$
\boldsymbol{M}_{i}^{-1}=\frac{1}{k} \boldsymbol{B}^{-1} \boldsymbol{L}_{i}^{-1} \boldsymbol{A}^{-1}
$$

- Vectorization of \boldsymbol{M}_{i}^{-1} :

$$
\operatorname{vec}\left(\boldsymbol{M}_{i}^{-1}\right)=\frac{1}{k}\left(\boldsymbol{A}^{-T} \otimes \boldsymbol{B}^{-1}\right) \operatorname{vec}\left(\boldsymbol{L}_{i}^{-1}\right)
$$

- Including all N lines, and applying some tricks (see our paper!):

$$
\underbrace{\boldsymbol{D}^{-1} \boldsymbol{M}^{T} \boldsymbol{P Q}}_{N \times 4}=\frac{{ }_{k}}{\frac{1}{\boldsymbol{L}^{T} \boldsymbol{P} \boldsymbol{Q}} \underbrace{\left.\boldsymbol{N}^{\boldsymbol{B}^{T}} \otimes \boldsymbol{A}\right)^{-1}}_{N \times 4} \underbrace{}_{4 \times 4}}
$$

Eq. 2

$$
\boldsymbol{P}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; \quad \boldsymbol{Q}=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] ; \quad \boldsymbol{D}=\operatorname{diag}\left(\left[\operatorname{det}\left(\boldsymbol{M}_{1}\right) \quad \cdots \quad \operatorname{det}\left(\boldsymbol{M}_{N}\right)\right]\right)
$$

Solving for the Propagation Constant γ

- Simplifying notation by letting $X=\left(\boldsymbol{B}^{T} \otimes A\right)$

- Multiplying Eq. (1) to the right of Eq. (2):

$$
\underbrace{\boldsymbol{D}^{-1} \boldsymbol{M}^{T} \boldsymbol{P Q M}}_{\text {Measurement }}=\underbrace{\boldsymbol{L}^{T} \boldsymbol{P Q L}}_{\text {Line Model }}
$$

- Find γ through optimization:

$$
\gamma_{o p t}=\min _{\gamma}\left\|\boldsymbol{D}^{-1} \boldsymbol{M}^{T} \boldsymbol{P Q M}-\boldsymbol{L}_{(\gamma)}^{T} \boldsymbol{P Q} \boldsymbol{L}_{(\gamma)}\right\|_{F}^{2}
$$

Formulating the Eigenvalue Problem (1/2)

- We multiply an $N \times N$ matrix \boldsymbol{W} to Eq. (1):

$$
\begin{aligned}
M W & =k X L W \\
\boldsymbol{D}^{-1} \boldsymbol{M}^{T} \boldsymbol{P Q} & =\frac{1}{k} \boldsymbol{L}^{T} \boldsymbol{P} \boldsymbol{Q} X^{-1}
\end{aligned}
$$

- Then, we multiply Eq. (1) to the left of Eq. (2):

$$
\underbrace{\boldsymbol{M W} \boldsymbol{D}^{-1} \boldsymbol{M}^{T} \boldsymbol{P Q}}_{\boldsymbol{F}}=\boldsymbol{X} \underbrace{\boldsymbol{L W W} \boldsymbol{L}^{T} \boldsymbol{P Q}}_{\boldsymbol{H}} X^{-1}
$$

- We end up with a similarity equation:

$$
\boldsymbol{F}=\boldsymbol{X} \boldsymbol{H} \boldsymbol{X}^{-1}
$$

- If \boldsymbol{H} is diagonal, then we have an eigenvalue problem.

Formulating the Eigenvalue Problem (2/2)

- It turns out that if \boldsymbol{W} is skew-symmetric, then \boldsymbol{H} becomes diagonal:

$$
\begin{aligned}
& \boldsymbol{W}=\left[\begin{array}{ccccc}
0 & w_{12} & w_{13} & w_{14} & \cdots \\
-w_{12} & 0 & w_{23} & w_{24} & \ddots \\
-w_{13} & -w_{23} & 0 & w_{34} & \ddots \\
-w_{14} & -w_{24} & -w_{34} & 0 & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots
\end{array}\right] \xrightarrow{\text { yields }} \boldsymbol{H}=\left[\begin{array}{cccc}
-\lambda & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right] \\
& \lambda=\left[\sum_{i=1}^{N-1} w_{i j} \cdot\left(e^{\gamma\left(l_{i}-l_{j}\right)}-e^{-\gamma\left(l_{i}-l_{j}\right)}\right)\right. \\
&
\end{aligned}
$$

- The eigenvalue problem is only solvable if $|\lambda|>0$. This is enforced if:

$$
w_{i j}=\operatorname{conj}\left(e^{\gamma\left(l_{i}-l_{j}\right)}-e^{-\gamma\left(l_{i}-l_{j}\right)}\right)
$$

Solving the Calibration Problem

- The eigenvalue problem:

$$
\begin{aligned}
& \boldsymbol{F}=\boldsymbol{X}\left[\begin{array}{cccc}
-\lambda & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right] \boldsymbol{X}^{-1} \\
& \boldsymbol{\lambda}=\sum_{i=1}^{i<j \leq N}
\end{aligned}\left|e^{\gamma\left(l_{i}-l_{j}\right)}-e^{-\gamma\left(l_{i}-l_{j}\right)}\right|^{2} .
$$

- The eigenvectors of \boldsymbol{F} are the columns of \boldsymbol{X} (up to a scalar factor).
- The rest of the calibration is solved using the Reflect and Thru standards.

On-wafer Measurements

- Calibration standards: 4 CPWs lines $\{0.2,0.45,0.9,1.8\} \mathrm{mm}$ and a Short.
- 1 CPW line 3.5 mm used for verification (not part of the calibration).

Monte Carlo Experiment - Additive Noise

- Add noise to the measurements of the standards: $S_{i j}^{N e w}=S_{i j}^{\text {Meas }}+$ Noise
- Perform mTRL using distorted measurements at each trial ($M=2000$ trials).
- Calibrate a DUT and compute its Mean-Absolute-Error: $\operatorname{MAE}\left(S_{i j}\right)=\frac{1}{M} \sum_{m=1}^{M}\left|S_{i j, m}^{M C}-S_{i j}\right|$

Monte Carlo Experiment - Phase Sensitivity

- Distort the phase of the measurements of the standards: $\arg \left(S_{i j}\right)^{\text {New }}=\arg \left(S_{i j}\right)^{\text {Meas }}+$ Noise
- Perform mTRL using distorted measurements at each trial ($M=2000$ trials).
- Calibrate a DUT and compute its Mean-Absolute-Error: $\operatorname{MAE}\left(S_{i j}\right)=\frac{1}{M} \sum_{m=1}^{M}\left|S_{i j, m}^{M C}-S_{i j}\right|$

Summery

- VNA error-box model can be simplified with the help of Kronecker product and matrix vectorization.
- Combining all line measurement with a self-derived weighting matrix.
- No matrix inverse. No covariance matrices.
- Solving a single eigenvalue problem.
- Better statistical performance.
- Scalability. For example, if you have $\mathbf{1 0 0 0}$ Lines, you will still solve a single 4×4 eigenvalue problem. Imagine if you do that the old way!!
https://github.com/ZiadHatab/multiline-trl-calibration

Check my github repository and try the algorithm yourself. Feedbacks are very, very welcomed!!!
Contact: z.hatab@tugraz.at or zi.hatab@gmail.com
You can also reach me at Twitter: @ziad_hatab

