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VNA Error-box Model

Original reference plane
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New reference plane

= Measurement is modeled using the cascade-parameters (T-parameters):

aqy b b
Mpyr = kq [a21 ] Tpyr [bll 12] ky
left error—box right error— —box

= Combine k, and k, to form the 7-term model (6 in A and B, and k is the 7t):
Mpyr = kATpyrB
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Thru-Reflect-Line (TRL) Calibration

= Thru standard, fully known:

Mo = kA [ B

= Line standard, only Iengtw known' 1

M. = kA |° eyl] B

= The eigenvalue problem:

—vl
1 _ ale7Y 1
MLineMThru = A [ 0 eyl] a-
When e~ V! = e¥! the calibration becomes unsolvable.

= Reflect standard, unknown, but symmetric. Used
with the Thru standard to finalize the calibration.

Ty 3




Extending TRL to Multiline TRL

= Use N > 2 lines. Results in N(A;_l) pairs:
VM- — A e~ Y=l 0 2-1
v 0 ey(li_lj)

= Question: How to combine the solutions (eigenvectors) of all pairs?

» [dea: (r. B. Marks, MTT, 39, (1991)]
Combine the eigenvectors using the Gauss-Markov theorem (weighted sum).

= Constraints:
1) Error propagation through the eigenvectors (error-boxes) are assumed linear.

2) Only N — 1 pairs allowed to be used, where one line is common among all pairs.
> allows for an invertible covariance matrix for the Gauss-Markov theorem.
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Can we do better?

Questions:
Should we enforce linearization?
Must we use Gauss-Markov method to get the best results?

To overcome this, we need to re-develop multiline TRL.




Kronecker Product “&®" and Matrix Vectorization

= Given matrices X and Y, their Kronecker Product is defined as:

x11Y  x12¥

XQV =[xV xY -

= Vectorization of a matrix X is defined by stacking its columns:

0 o
- x11 x12 vec \ - le
X o [le x22] ’ VeC(X) o x12

| X929

= Vectorization of matrix product: given X, Y and Z, then:
vec(XYZ) = (Z' @ X)vec(Y)




Reformulating mTRL Error-box Model (1/2)

= Measurement of i-th line standard:
Mi — kALlB

= Vectorization of M;:
vec(M;) = k(BT ® A)vec(L))

= [ncluding all N lines:
[vec(My) -+ vec(My)] =k(B" ® 4) [vec(L,) - vec(Ly)]

N 4 N 4
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Reformulating mTRL Error-box Model (2/2)

= [nverse measurement of i-th line standard:

1
Mi_l — EB—lLi—lA—l

= Vectorization of M;*:
1
vec(M;') = A (AT ® B YHvec(L; )
= Including all N lines, and applying some tricks (see our paper!):

D-IMTPQ = - LTPQ(B” @ A)*

( - J k\—'—l' T J
N X 4 N X 4 4 X 4
1 0 0 O] 0 O 0 1]
_{0 01 0], o_|0 =1 0 O], — 4
p=[0 0 L 0 g=|0 1 O Ol p— diag(ldet(my) - det(My)])
0 0 O 1] 1 0 0 Ol




Solving for the Propagation Constant y

= Simplifying notation by letting X = (BT ® 4)

@—\ 0

D-IMTPQ = LTPQX—

= Multiplying EqQ. (1) to the right of Eq. (2):
D~'M"PQM = L"PQL
Measurement Line Model

= Find y through optimization:
— i - T 2
Yopt = myln”D IMTPQM — L(V)PQL(Y)”F




Formulating the Eigenvalue Problem (1/2)

= We multiply an N x N matrix W to Eq. (1):

mwW-fxiw) @

1
D™'M'PQ = L"PQX"" (2)

= Then, we multiply Eq. (1) to the left of Eq. (2):
MWD *MTPQ = X LWLTPQ X!
F H

= We end up with a similarity equation:
F=XHX!

= |If H is diagonal, then we have an eigenvalue problem.
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Formulating the Eigenvalue Problem (2/2)

= |t turns out that if W is skew-symmetric, then H becomes diagonal:
0 WSZ Wiz  Wiqa 2.0 0 0
—Wi2 Wa3  Wpy yields 0 0 0 0
W = —Wji3 —W»r3 0 W34 " — H =
- - B ; 0 0 0 0
W14 Woa “Wzs 0 0 0 Al

o .'._
z ey(l 1) _ e-V(li—lj))

L=1
<J=N

= The eigenvalue problem is only solvable if |A] > 0. This is enforced if:

w;j = conj (ey(li_lf) — e‘y(li_lf))




Solving the Calibration Problem

= The eigenvalue problem:

—1 0 0 O
_ 0 0 0 0fy_q
F=X 0 0 O OX

0 0 0 Al Im

N—1

-1 A

A=y fertut) -y — o ) o

i=1 Re

I<J<N

» The eigenvectors of F are the columns of X (up to a scalar factor).

= The rest of the calibration is solved using the Reflect and Thru standards.
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On-wafer Measurements

= Calibration standards: 4 CPWs lines
{0.2, 0.45, 0.9, 1.8}mm and a Short.

= 1 CPW line 3.5mm used for verification
(not part of the calibration).

l Calibrated short l
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Monte Carlo Experiment - Additive Noise

= Add noise to the measurements of the standards: S{}(ew = S{‘feas + Noise

= Perform mTRL using distorted measurements at each trial (M = 2000 trials).

= Calibrate a DUT and compute its Mean-Absolute-Error: MAE(S;;) = % M =1lSHTS — Sy
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Monte Carlo Experiment - Phase Sensitivity

= Distort the phase of the measurements of the standards: arg(Sij)NeW - arg(Sij)MeaS + Noise

= Perform mTRL using distorted measurements at each trial (M = 2000 trials).

= Calibrate a DUT and compute its Mean-Absolute-Error: MAE(S;;) = %Z%zlbf‘;{% — S|
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Summery

= VNA error-box model can be simplified with the help of Kronecker product
and matrix vectorization.

= Combining all line measurement with a self-derived weighting matrix.
= No matrix inverse. No covariance matrices.
= Solving a single eigenvalue problem.

= Better statistical performance.

= Scalability. For example, if you have 1000 Lines, you will still solve a single
4 %X 4 eigenvalue problem. Imagine if you do that the old way!!




https://github.com/ZiadHatab/multiline-trl-calibration
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Check my github repository and try the algorithm yourself.
Feedbacks are very, very welcomed!!!
Contact: z.hatab@tugraz.at or zi.hatab@gmail.com
You can also reach me at Twitter: @ziad_hatab
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