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Abstract. Fault attacks are active, physical attacks that an adversary can leverage to
alter the control-flow of embedded devices to gain access to sensitive information or
bypass protection mechanisms. Due to the severity of these attacks, manufacturers
deploy hardware-based fault defenses into security-critical systems, such as secure
elements. The development of these countermeasures is a challenging task due
to the complex interplay of circuit components and because contemporary design
automation tools tend to optimize inserted structures away, thereby defeating their
purpose. Hence, it is critical that such countermeasures are rigorously verified post-
synthesis. Since classical functional verification techniques fall short of assessing
the effectiveness of countermeasures (due to the circuit being analyzed when no
faults are present), developers have to resort to methods capable of injecting faults
in a simulation testbench or into a physical chip sample. However, developing test
sequences to inject faults in simulation is an error-prone task and performing fault
attacks on a chip requires specialized equipment and is incredibly time-consuming.
Moreover, identifying the fault-vulnerable circuit is hard in both approaches, and
fixing potential design flaws post-silicon is usually infeasible since that would require
another tape-out. To that end, this paper introduces SYNFI, a formal pre-silicon fault
verification framework that operates on synthesized netlists. SYNFI can be used to
analyze the general effect of faults on the input-output relationship in a circuit and its
fault countermeasures, and thus enables hardware designers to assess and verify the
effectiveness of embedded countermeasures in a systematic and semi-automatic way.
The framework automatically extracts sensitive parts of the circuit, induces faults into
the extracted subcircuit, and analyzes the faults’ effects using formal methods. To
demonstrate that SYNFI is capable of handling unmodified, industry-grade netlists
synthesized with commercial and open tools, we analyze OpenTitan, the first open-
source secure element. In our analysis, we identified critical security weaknesses in
the unprotected AES block, developed targeted countermeasures, reassessed their
security, and contributed these countermeasures back to the OpenTitan project. For
other fault-hardened IP, such as the life cycle controller, we used SYNFI to confirm
that existing countermeasures provide adequate protection.
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1 Introduction

In a fault attack, an adversary induces a fault into a chip to manipulate the execution of
the circuit. The physical effect of the fault can then be exploited to hijack the control-flow
of a CPU [SD15, NT19], to bypass secure-boot [VITM™17], or to leak sensitive data of
the device [BS97, PQ03, DEK™18]. Fault attackers often target secure elements, as they
handle highly security-sensitive assets. For this reason, these root-of-trust (RoT) elements,
such as OpenTitan [JRR 18], embed several hardware-based fault hardening techniques
into the chip. As the resistance of the circuit against faults relies on these countermeasures,
it must be assured that they provide the expected security guarantees.

To ensure the correctness of the countermeasures, hardware engineers responsible for
designing secure chips must analyze the circuit when influenced by faults in the design
phase. This pre-silicon evaluation needs to comprise two central analysis points: First, can
induced faults influence the input-output relation of a security-critical circuit and can the
countermeasures detect them? Here, the hardware designer wants to reveal whether a fault
affects the circuit and to verify that the countermeasure achieves the promised security
level, i.e., can handle up to a certain number of simultaneously induced faults specified in
the threat model. Second, can the embedded countermeasures hinder an adversary from
entering a specific, security-critical circuit state using faults? An example of such a state
is the debug mode of a secure element allowing the adversary to escalate privileges.

Testing the resilience of the circuit and its countermeasures against faults needs to
be conducted in the last stage of the front-end design, i.e., at synthesized gate-level
netlist. This approach ensures that (i) defective countermeasures are detected as early
as possible avoiding long design turnaround times. Additionally, at this (ii) level of
abstraction, the design uses the standard cell library provided by the manufacturer and,
therefore, is already close to the final circuit sent to the fab for the tape-out. Furthermore,
performing the security assessment at the netlist ensures (i) that flaws introduced by the
tooling can be detected. Here, especially the logic synthesis design flow step mapping the
register-transfer level (RTL) model to the synthesized gate-level netlist could negatively
affect countermeasures using redundancy to detect or mitigate faults. Here, the synthesis
optimization passes aiming to meet design constraints, e.g., the area consumption, could
be responsible of reducing security guarantees.

One approach of analyzing the resilience of the circuit against faults at the netlist level
is to manually induce faults and to analyze their effect in the simulation phase. However,
as the names of the wires and cells in the netlist are renamed or mangled by synthesis
tools, manually inducing faults in the testbench is an error-prone task. Additionally, the
analysis process is very time-consuming since the simulation needs to be restarted for each
induced fault. Hence, this process is often at risk of being foregone in the verification
phase of the design due to development schedule pressure.

In order to verify the functionality of fault countermeasures embedded into the chip,
a framework capable of automatically performing a pre-silicon analysis based on the
synthesized gate-level netlist is needed. It is crucial for such a tool to be capable of
handling industry-grade netlists using proprietary standard-cell libraries without imposing
any restrictions on the netlist and the design. Otherwise, such restrictions would render
the tool practically irrelevant, especially for commercial projects that rely on established
hardware design flows with a multi-stakeholder design team.

Recently published tools [BGET17, AWMN20, RBSS™21, BDN08, SKK13] cannot be
used to analyze unmodified netlists of industry-driven projects, as these frameworks impose
invasive requirements to the design. Tools, such as FIVER [RBSS*21], limit (a), the
supported gates in the netlist to a small set, preventing the usage of complex, proprietary
standard cell libraries. Furthermore, most of these frameworks [RBSS™21] require () that
the given netlist does not include any cycles, i.e., the hardware designer needs to manually
unroll the design before the evaluation. Additionally, related work often demands (¢) that
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the netlist is fully flattened, i.e., does not include any submodules or hierarchy, does not
support (d) all language features, or is not (e) open-source. Finally, as most fault injection
frameworks [BGET17, AWMN20, BDNOS8] exclusively focus on analyzing cryptographic
primitives (f), it remains unclear whether these frameworks also can be used to assess
the security of more generic hardware designs consisting of a diverse set of hardware IP
components, especially in respect with the two analysis points described above.

Contribution

In this paper, we present SYNFI, a versatile framework capable of performing a pre-silicon
fault analysis of synthesized gate-level netlists. SYNFI allows a hardware designer to
automatically analyze the resilience of a circuit and its countermeasures against fault attacks
with minimal setup overhead. More specifically, SYNFI enables hardware designers and
security engineers to study the impact of faults on the circuit, to analyze the functionality
of tailored fault countermeasures, and to investigate which cells are the most critical attack
targets and need special protection. This information can be used to find logical flaws
in the design as well as defects introduced by the hardware design flow tools before the
tape-out of the chip.

The SYNFI framework is capable of performing the pre-silicon fault analysis on
unmodified netlists generated with proprietary or open design flows and standard cell
libraries of designs using common hardware design patterns. For the fault experiment,
the security engineer needs to provide information about the circuit to analyze and the
fault model. SYNFI supports fault models comprising single and multiple faults injected
into various locations in the circuit and different fault effects, 7.e., transient or stuck-at
effects. With this configuration, SYNFI automatically extracts the circuit to analyze from
the netlist and injects faults according to the fault model. In the analysis phase, SYNFI
reveals whether a fault affects the input-output relation of the circuit, shows whether the
embedded countermeasures can detect faults up to a certain number, and verifies whether
a fault could enable an adversary to enter a security-critical state.

To emphasize the importance of conducting a pre-silicon fault analysis before an
upcoming tape-out, we utilize SYNFI to analyze components of the OpenTitan secure
element. In particular, we focus on analyzing the fault-resiliency of the most security-critical
components, such as the AES primitive, the life cycle controller, the lockstep mode of the
processor, and several other fault hardened IP. For our assessment, we study the impact of
single and multiple faults induced into different parts of the modules for various fault effects.
We conduct our analysis on the unmodified netlist generated with the internal, proprietary
hardware design flow of OpenTitan including a commercial standard cell library as well as
on the netlist synthesized with open-source tools. We utilize SYNFI to (%) reveal the impact
of faults to unprotected circuits, to (i) verify that the redundancy-based countermeasures
are not removed by the synthesis tool, and (i) to verify whether certain security-critical
states cannot be entered using faults without triggering the countermeasures. Our in-depth
analysis of the tested modules revealed that the AES module is highly susceptible to fault
attacks. More concretely, our evaluation disclosed that already a single fault into the AES
round counter, the handshake signals, or certain finite-state machines allow an adversary
to break the security of the module. To mitigate the encountered security violations, we
developed several fault hardening mechanism and integrated them into the OpenTitan
project. We ensured the correctness of these countermeasures by reassessing the hardened
module using SYNFI. For fault-hardened modules, such as the life cycle controller, we
were able to formally verify the expected fault-resiliency.

In summary, our contributions are:
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o We present and implement SYNFI, an open-source' framework capable of performing
a pre-silicon fault analysis at the gate-level. SYNFI allows security engineers to
automatically (7) reveal whether a fault affects the input-output relation of a circuit
and its countermeasures and (7) assess if an adversary can enter a particular circuit
state without triggering the countermeasures. In contrast to related work, the SYNFI
framework is able to process unmodified netlists of hardware designs making use
of a variety of design patterns and synthesized with commercial and open-source
synthesis tools.

o We identified several fault attack vectors for the unprotected AES module used in
the OpenTitan secure element allowing an adversary to threaten the security of the
encryption primitive. To prevent the exploitation of these flaws in the final taped-out
chip, we implemented, reassessed, and contributed several fault hardening techniques
to the upstream project.

e We verified with SYNFI that a selection of the most security-critical OpenTitan
IP blocks hardened against faults provides the expected security. In particular,
we verified, among other modules, that an adversary cannot hijack the life cycle
controller to enter the RMA debug state from the production state and that a fault
into the program counter of the processor is detected by the lockstep mode of the
CPU.

2 Background

In this section, we summarize fault attacks and provide detailed background on the
OpenTitan project.

2.1 Fault Attacks

Fault attacks are active, physical attacks that are commonly used to threaten the security
of embedded devices [DM12, TM17, O’F20, ELG20] and secure elements [Hér, VWWM11,
SWUH21]. In these attacks, a fault is induced into the chip causing several effects at
the physical level, e.g., transient voltage and current changes as well as timing viola-
tions [RBSG21]. These side-effects are then exploited allowing an adversary to bypass secu-
rity measures [VTM*17, TM17], attack cryptographic primitives [BS97, PQ03, DEK 18],
or redirect the control-flow [SD15, NT19] of the executed software. The fault model, which
is used to characterize such attacks, comprises the fault methodology, the spatial and
temporal properties, and the effect of the fault. The spatial and temporal properties
of the fault model define the location, the duration, and the time of the induced fault.
Although, depending on these different fault parameters, the effect of a fault varies, com-
monly bit-flips and stuck-at effects are observed [RU96]. To induce a glitch into a system,
various fault methodologies, such as voltage, clock, laser, and EM glitching [KSV13],
emerged in the previous years. While these fault methodologies originally only could be
performed locally, new fault methodologies even allow inducing faults in software over the
network [MOG™20, TSS17, QWLQ19].

2.2 OpenTitan

Secure elements and RoT chips are used in smartphones [Li20], computers [App21, Goo22],
and servers [Bro21] to establish a secure anchor point. These elements are trusted by
the system and offer various services, such as cryptographic functions, key storage and

Lhttps://github.com/lowRISC/synfi
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support for secure boot protocols. As a security breach could be fatal, these integrated
circuits typically offer a certain level of protection [RLMI21] against fault attacks. RoT
chips introduced so far are closed, proprietary designs making it necessary for the system
integrator to trust the manufacturer of these devices. The OpenTitan [JRRT 18] project
aims to obviate this requirement by providing the first open-source root-of-trust chip.
However, as the silicon design of the chip is open-source, an attacker also could discover
potential attack vectors. Hence, it must be assured that the installed countermeasures
work as intended by using a rigorous verification approach.

3 Design and Implementation

This section describes the fundamental concepts of the SYNFI framework along with the
design rationale. We first give a high-level overview of the framework and then provide an
in-depth description of all the design stages of SYNFI.

3.1 Overview

To analyze the effects of one or multiple faults to the input-output relation of a circuit
and its fault countermeasures, the gate-level netlist, the used standard cell library, as well
as a fault specification need to be provided to the SYNFI framework.

Netlist & Cell Library: The first input of the SYNFI framework is the unmodified
netlist of the module to analyze and the standard cell library that the design is mapped
against. As shown in the block diagram in Figure 1, the synthesis design flow step, which
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Figure 1: Block diagram of the SYNFI framework.
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is not part of the SYNFT framework, is responsible for transforming the RTL design into
the netlist using the standard cell library.

Fault Specification: The second input of the framework is the fault specification file
responsible for describing the fault experiment the designer wants to perform.

1 "Fault Specification": {

2 "Target Circuit": {

3 "inputs": ["in_portl": "2°b00", "in_port2": "2’b01"],
4 "outputs": ["out_porti": "2’b1l", "in_port2": "2’b10"]
5 1,

6 "Fault Model": {

7 "Simultaneous Faults": 2,

8 "Fault Locations": ["gatel", "gate2", "..."],

9 "Fault Mappings": ["NAND2": ["AND2", "OR2"], "XNOR2": ["XOR2"]]
10 }

1}

Listing 1: Fault specification.



6 SYNFI: Pre-Silicon Fault Analysis of an Open-Source Secure Element

As shown in Listing 1, the fault specification file is split into (i) the description of the
subcircuit the designer wants to evaluate and (i) the fault model describing the faults
injected into this subcircuit. The subcircuit to analyze (¢) is defined by the user by
providing input and output nodes, e.g., input or output ports, cells, or submodules of
the design. Furthermore, the user needs to assign inputs and expected output values for
the provided nodes. The fault model (i) describes all faults which are induced into the
subcircuit. Here, the fault model consists of the (a) number of faults injected into the
circuit, the (b) location, and the (¢) effects of the faults. With the number of faults (a),
the user can specify how many faults are simultaneously injected into the subcircuit. In
SYNFI, a fault is injected into (b) a certain location, i.e., a gate. Here, the user can either
provide a list of gates which are attacked or select an exhaustive approach where SYNFI
automatically injects faults into all gates. The last parameter is the (¢) fault effect. Similar
to [RBSG21], we model the effect of a fault induced into a certain gate by replacing the
boolean function of the gate type according to a mapping. For example, the mapping
NAND2=[AND2] replaces a gate of type NAND2 during the attack phase with an AND2. Here,
by inverting the boolean function, SYNFI is capable of modeling a transient fault effect.
To model a stuck-at 0 or 1 fault, the boolean function of the corresponding gate can be set
to a 0 or 1 in the fault mapping. By providing multiple entries in the fault mapping, e.g.,
NAND2=[AND2, 0], SYNFI can be used to analyze the circuit when influenced by transient
or stuck-at faults. Summarized, this mapping enables SYNFI to model transient, stuck-at,
or more advanced fault effects. For each subcircuit the user wants to analyze, a new fault
specification file needs to be provided and SYNFT needs to be started again.

SYNFI: With the unmodified netlist, the standard cell library, and the fault specification,
the tool starts the two-phase transformation and analysis process depicted in Figure 1.
In Phase 0, the framework transforms the netlist into a directed multigraph and converts
the cell library into a format the subsequent steps of the SYNFI framework support. In
Phase 1, the subcircuit to analyze, i.e., the target graph, is @ extracted from the circuit
according to the fault specification file. Afterwards, for each fault location and fault
mapping combination, a separate process is started. In these processes, two copies of the
target graph are created, i.e., the faulty and non-faulty target graph. SYNFI induces
@ faults according to the fault mapping (number of simultaneous faults, location, and
mapping) into the faulty target graph by replacing the boolean functions of the target
gates according to the mapping. By combining the faulty and non-faulty target and adding
an input and output layer responsible for analyzing the effects of the induced faults, the
differential graph @ is created. This differential graph is used by SYNFI to evaluate if a
fault is effective, i.e., the fault manipulates the outputs of the faulty target graph and is not
detected by the countermeasures. Although the detection of faults by the countermeasures
is implementation specific, these countermeasures typically raise an error signal, which
SYNFT uses to evaluate whether the fault was detected or not. Finally, the differential
graph is converted to a boolean formula @ and a SAT solver utilizes this mathematical
model representing the circuit to reason ® about the effectiveness of the induced faults.
In the end, the framework provides a detailed report ® summarizing the outcome of the
fault analysis.

3.2 Phase 0 - Cell Library & Netlist Converter

The first step the framework conducts is the transformation of the (i) standard cell library
and the (7)) gate-level netlist. The goal of this transformation step is to support arbitrary
netlists generated with different hardware design flows and standard cell libraries.

First (i), SYNFT converts the provided standard cell library from the liberty format to
a Python library. For this conversion, SYNFT opens the provided standard cell library and
extracts the name, the boolean function, and the input and output pins of the cells, as
shown in Listing 2. SYNFT supports all cells with a boolean function, including compound
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1 "Cell Library": {

2 "ADI21 X2": {

3 "input_pins": ["A1", "B1", "B2"],

4 "output_pins": "ZN",

5 "boolean_function": "ZN = !'(Al & (B1 | B2))
6 }

7

Listing 2: Cell library entry for an A0I21_X2 cell.

gates, such as AOI cells. Cells that are used due to their electrical rather than for their
logical behavior, e.g., filler cells, are not handled by SYNFI as they are not used in the
gate-level netlist.

Afterwards (i7), SYNFI transforms the unmodified netlist into a directed multigraph
using a Python library [HSSCO08].

1 "Nodes": {

2 "Ui: { "type": "NAND2" 1},

3 "g2n: { "type": "AOI21" }

4 3},

5 "Edges": {

6 lll": {

7 "out": { "node": "UL", "port": "ZN" },
8 "in": { "node": "U2", "port": "Al" }
9 }

10

Listing 3: Graph representation of the netlist.

In this graph, nodes represent ports, cells, and submodules and each of these nodes consists
of a name and a type. The type, e.g., a NAND2 gate or a port, defines the behavior of the
node and the corresponding boolean function is provided by the cell library. Similar to
gates and ports, submodules are also represented as nodes and the corresponding boolean
function needs to be provided by the user. These nodes are connected using edges, which
store information about the input and output port. Listing 3 shows an example graph
where the output port ZN of the gate U1 is connected with the input port Al of the gate U2.

3.3 Phase 1 - Target Graph Extraction

The target graph extraction @ step consists of the (i) extraction and (%) preprocessing
phase.

3.3.1 Extraction

The goal of the target graph extraction (%) is to simplify the subsequent analysis phase by
extracting the subcircuit the user wants to analyze with SYNFI from the overall circuit.
The definition of the target graph is provided in the fault specification file. Here, the user
needs to define input and output nodes and the corresponding input and expected output
values in the fault specification file. These nodes can be any cell, port, or submodule in
the circuit.

With this information, the SYNFI framework starts the automatic target graph extrac-
tion process. Here, the tool finds all paths, consisting of combinational and sequential logic,
between the defined inputs and outputs. Due to this extraction step, some nodes, e.g.,
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FF_Ug in=1 £F_U3 out=2

(a) Example circuit with assigned input (blue) (b) Extracted and preprocessed target graph.
and output (green) values.

Figure 2: Target graph extraction.

gates, are missing one or multiple inputs as the corresponding connecting gates are not
part of the extracted circuit. For all of these missing inputs, SYNFTI introduces auxiliary
input nodes.

3.3.2 Preprocessing

The goal of the preprocessing phase (i) is to remove any time-dependencies in the
extracted target graph. This is necessary as the graph is converted into a time-independent
mathematical model, i.e., a boolean equation, in the last step described in Section 3.6.
In SYNFI, we automatically break time-dependencies by (a) replacing registers used
in pipeline stages with pass-through elements and (b) by removing loops and replacing
registers in iterative designs and state machines. These pass-through elements are time-
independent, i.e., do not have a clock port, and map the input to the (negated) output.
SYNFI automatically distinguishes between the two register types by checking whether
the register is the start and end of a cycle, i.e., a register used in an iterative design. This
preprocessing phase enables SYNFT to handle circuits that were not manually unrolled by
the hardware designer. However, when aiming to analyze multiple loop iterations, e.g.,
multiple rounds in an iterative AES implementation, SYNFI needs to evaluate each round
individually.

3.3.3 Preprocessing and Extraction Example

We illustrate the extraction (i) and preprocessing (%) phase in the example circuit in
Figure 2. Figure 2a depicts a circuit consisting of three input ports (Ins...Insz), one output
port (Outy), two registers (Us, Ug), and a set of combinational gates. For the target graph
extraction step @, the user needs to provide input and output nodes and a corresponding
circuit state, i.e., values for these nodes. In this example, we set the register Us = 1 (blue)
as the input and the register Us = 2 and Out; = 2 (green) as the output in the fault
specification file.

As the circuit contains a register used in a pipeline stage (Ug) and a register used in a
sequential loop (Usz), SYNFT removes these time-dependencies in the graph. The registers
are, as shown in Figure 2b, replaced @) with pass-through elements and the loop between
Us and U; is removed (®). Then, SYNFI finds all paths between the input node (Us) and
the output nodes (Us, Outy), i.e., all nodes except Us, Ing, Ing, and Ins. To avoid that
certain gates have unconnected inputs, i.e., Uy, the frameworks adds auxiliary input nodes
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(© and connects them with the corresponding nodes. Finally, the framework adds input
and output nodes @ for the user-defined input and output values.

3.4 Phase 1 - Fault Injection

After transforming the netlist into a graph and extracting the target graph, the injection
@ phase starts. For each fault combination, i.e., number of simultaneous faults, fault
locations, and fault mappings, defined in the fault model, SYNFT starts a new process.
Inside these processes, SYNFI creates two copies of the extracted target graph - the faulty
and non-faulty target graph. While the non-faulty target graph is used as a reference
circuit in the subsequent steps, SYNFI induces faults into the faulty target graph. Here,
the framework replaces the boolean function at a fault location according to the fault
mapping.

To limit the configuration effort, SYNFI already provides a default fault mapping for a
large set of gates. Furthermore, as the fault location is an optional parameter allowing the
security engineer to attack specific gates, SYNFI supports an exhaustive injection approach
automatically targeting all available gates in the target graph. Hence, at a minimum, the
user only needs to specify the number of simultaneous faults injected into the gate-level
netlist in the fault model.

3.5 Phase 1 - Differential Graph Creation

For each fault combination process, SYNFT creates a differential graph ® consisting of a
faulty and non-faulty target graph. These differential graphs are responsible for evaluating
the impact of faults on the circuit. As depicted in Figure 3, the differential graph consists

|

Faulty Target
Graph

Input Layer

Input Layer
Output Layer

Target Graph

Figure 3: Differential graph.

of the faulty and non-faulty target graph. To this differential graph, we add an input layer
and an output layer. In the input layer, we assign the input nodes added in the extraction
phase @ the values provided by the user in the fault specification. As the user does not
need to provide all possible input values of the analyzed circuit, SYNFI automatically
connects the non-defined inputs of the faulty target graph with the non-defined inputs of
the non-faulty target graph. The SAT solver, which is used in the evaluation step and
described in Section 3.6, then automatically assigns values to these non-defined inputs.
The output layer is used to analyze the effect of a fault. This layer consists of a logic
comparing the output values produced by the faulty and non-faulty target graph with the
output values provided by the user in the fault specification. Depending on the attack
objectives and the implemented countermeasures, SYNFT allows the hardware designer to
define two different types of effective faults, which are defined by the impact of the fault
to the output. The detection of these two different effective fault types is implemented in
the output layer.
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3.5.1 Unspecific Fault Effects

This type of effective fault enables SYNFT to generically reveal whether a fault influences
the input-output relation of a circuit. For circuits without countermeasures, SYNFI defines
a fault to be effective, iff this fault manipulates one or multiple output bits of the
analyzed subcircuit, i.e., the non-faulty and faulty target graph produce different output
values.

OutputLogic = (Onp==0pg) A (Op!=0p) (1)

Equation 1 depicts the logic in the output layer used to detect this type of fault effect.
The first part of the equation ensures that the output Oy of the non-faulty (NF') graph
produces the expected output value Og defined in the fault specification. More specifically,
this part of the equation ensures that the SAT solver only assigns values to the non-defined
inputs (cf. Section 3.5) of the differential graph which generate the expected output circuit
state Og. The second part of the equation is responsible for ensuring that the output Op
of the faulty (F') circuit does not match the expected output value. If the output logic
produces a logical 1, an effective fault is found.

OutputLogic = ((OA\:FZZOE) A (ONFA::O)) AN ((OF':OF) N (OF;—'\::(])) (2)

For circuits with dedicated fault countermeasures, SYNFI considers a fault to be effective,
iff this fault manipulates one or multiple output bits of the analyzed subcircuit and the
alert signal of the countermeasure was not triggered. If the alert signal was triggered,
the countermeasure works as intended and the fault is considered to be ineffective. The
output logic in Equation 2 models this behavior by ensuring that the alert signal Op4 was
not triggered in both parts of the formula.

3.5.2 Specific Fault Effects

This type of fault effect allows SYNFI to check whether a fault enables the adversary
to enter a specific circuit state. Here, SYNFI considers a fault to be effective, iff the
output of the faulty target graph matches the expected output value defined in the fault
specification.

OutputLogic = (()\pi:OL> AN (OF::O[;[:) (3)

Equation 3 shows the logic in the output layer capable of detecting this fault effect type.
Here, the first part of the equation ensures that the outputs Onp produced by the non-
faulty target graph match the expected output values Og provided in the fault specification.
The second part of the equation ensures that the outputs of the faulty graph match the
expected fault output value Ogp specified in the fault specification.

OutputLogic = (Onr==0g) A (Onra==0Ea)) A ((Or==0gFr) N (Opa==0E4))
(4)

For circuits consisting of a fault countermeasure designed to detect a fault, the alert signal
Og 4 is also incorporated in the output logic, as shown in Equation 4. Here, the output
layer ensures that the non-faulty circuit produces the expected output values (Onp==0pg,)
and that the alert was not triggered in the reference circuit, i.e., (Onypa==0Og4). For the
faulty target graph, the equation ensures that the output value matches the expected fault
output value (Op==0Ogr), and the alert was not triggered.
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3.6 Phase 1 - Transformation & Evaluation

After creating the differential graph, the SYNFT framework converts this graph @ into a
mathematical model. As each node is assigned a boolean function, the tool uses the Tseitin
transformation [Tse83] to automatically transform the differential graph into a boolean
formula in conjunctive normal form (CNF). The extracted boolean formula then is handed
over to a SAT solver for the evaluation ®. As shown in the differential graph in Figure 3,
the inputs of the boolean formula are either set in the input layer to values provided by
the user in the fault specification or are left unconnected. For these unconnected input
values, which are shared by the faulty and non-fault target graph, the SAT solver can set
these values freely as long as the reference circuit produces the expected output values.
This is ensured by the output layer of the differential graph (cf. Section 3.5). If the logic
in the output layer produces a logical 1, an effective fault is found. For the report ®, the
framework collects the number of effective faults, their location, and fault mapping.

3.6.1 Selection of the SAT Solver

For our Python-based tool, we use the PySAT [IMM18] framework as an interface to the
SAT solver. To determine the fastest solver for our purpose, we executed several fault
injection verification experiments with the provided solvers [BFFH20, ES03, Biel7, AS18,
LM21, L"18] as a custom benchmark and decided to use MiniSAT22 [ES03] in the end.

3.7 SYNFI Guarantees

SYNFI provides hard security guarantees for a specific fault experiment conducted on the
analyzed circuit. This fault experiment is defined by the security engineer analyzing the
circuit in the fault specification and is in line with the threat model of the design. The
fault specification consists of the (7) definition of the fault model and the (%) description
of the target circuit.

In the fault model (i), the SYNFT user defines the fault capabilities of the attacker,
which are specified in the threat model of the analyzed circuit. This definition comprises
the number of faults the attacker can simultaneously inject into the circuit, the effects,
and the locations of the faults. For the fault locations, the security engineer can either
target specific gates or instrument SYNFI to exhaustively inject faults into all gates of the
circuit. SYNFT injects a fault into these targeted gates by replacing the boolean function
of the gate according to the fault mapping specified in the fault model. Here, SYNFI
supports transient or permanent fault effects.

The target circuit (77) is the subpart of the overall circuit containing the security-critical
logic and the corresponding fault countermeasure the security engineer aims to analyze
with SYNFI. This circuit is defined in the fault specification by providing the names of
input and output ports of a module or certain gates. SYNFI then automatically extracts
the target circuit between these inputs and outputs. In addition to the names of these
ports or gates, the SYNFI user needs to specify a specific circuit state, i.e., values for the
inputs and outputs.

Depending on the configuration, SYNFI can reveal whether a fault has (a) an unspecific
(cf. Section 3.5.1) or (b) a specific (cf. Section 3.5.2) effect. More concretely, SYNFI can
formally verify (a) whether or not any fault specified in the fault model can change the
input-output relation of the target circuit without triggering the fault countermeasures.
Additionally, SYNFT can formally show (b) whether or not it is possible to enter a specific
circuit state from a given circuit state without triggering the countermeasures using a
fault.

Note that SYNFT is designed to detect faults manipulating the input-output relation
of the analyzed circuit. Hence, classes of fault attacks not impacting this relation, e.g.,
safe error [YJO00] or ineffective attacks [DEK™ 18], are not in the scope of SYNFT.
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When the input circuit state space is small, e.g., a counter logic, multiple fault
experiments for each possible circuit state can be conducted. Then, SYNFI provides
comprehensive security guarantees for the analyzed circuit. For larger circuit state spaces,
the security engineer needs to focus on verifying specific states which are particularly
security-sensitive or are a representative of the possible states.

False-positive Results. SYNFI can produce false-positive results when the target circuit
is too loosely specified. As described in Section 3.5, the SYNFT user does not need to
provide the enire input circuit state in the fault specification. The non-defined inputs
provide more freedom to the SAT solver and the solver can freely set these inputs as long
as the non-faulty target graph produces the specified output circuit state.

However, in some circuits, the SAT solver could find a circuit state which cannot occur
during normal operation. Then, a false-positive result is returned, requiring a manual
inspection of unexpected effective faults.

Note that the approach of SYNFI is to consider states that occur during normal
operation and analyze how a fault changes the behavior. Using a faulty starting state
means analyzing how a fault can change a faulty starting state. This is a fault that is
beyond the defined fault model and actually corresponds to a stronger fault model. When
a false-positive like this occurs, the security engineer can simply manually exclude it or
constrain SYNFI more tightly to avoid the need for manual inspection. In some cases,
the false positive may also provide a hint to the security engineer about faults that can
occur with stronger fault models and this can be an input for an extended analysis with a
stronger fault model.

Overall, in our analysis, fault positives have not turned out to be a severe limitation
as effective faults have occurred rarely in fault-hardened circuits and it was possible to
handle them by constraining SYNFI more tightly to specific circuit states.

False-negative Results. SYNFT cannot produce false-negative results within the bounds
of the fault specification. The security engineer only needs to ensure that the fault
specification matches the threat model of the analyzed circuit. For example, when the
threat model considers an attacker capable of injecting faults with permanent or transient
effects, the fault model also needs to model these faults in the fault mappings.

4 Analysis of OpenTitan

The OpenTitan chip will be deployed in hostile environments allowing an adversary to gain
physical access and attempt to inject faults into the device to break its security. Therefore,
in this chapter, we utilize SYNFI to actively contribute to the security of the OpenTitan
chip before the tape-out by performing a pre-silicon fault analysis. As analyzing the entire
chip consisting of a wide variety of IP blocks is far beyond the scope of this paper and
not all modules actually need to provide fault-resiliency, we selected, together with the
OpenTitan project team, the most security-critical modules for our analysis. In particular,
we focused on analyzing (i) the unprotected AES module and (%) the protected life cycle
controller, the lockstep mode of the CPU, and generic, fault-hardened building blocks. We
utilized SYNFI to (FE) reveal the faults’ effect to an unprotected module, to (FD) check
whether faults can be detected by the countermeasures, and to (FS) verify that faults
cannot enable an adversary to enter a specific state without triggering the countermeasures.
For all experiments, we injected up to a certain number of simultaneous faults specified
in the threat model of each module into the circuit. Our analysis is conducted on the
unmodified netlist synthesized with the internal OpenTitan hardware design flow consisting
of the Synopsys DC synthesis tool and a proprietary standard cell library.

Results. With SYNFI, we revealed that the (i) AES module is susceptible to single faults
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Table 1: Verification results for the AES round counter performed on a 16-core machine.

Target Setting Simult. Effective Total Execution Circuit

Faults [%] [#] [s] [GE]
@ Unprotected Round Counter FE 1 55.56 18 4.4 20.25
@ Unprotected Round Counter FS 2 2.65 302 4.47 20.25
® Protected Round Counter FD 2 0.13 34,652  366.81 156

enabling an adversary to perform attacks on a round-reduced AES, extract temporary
encryption results over the software interface, or hijack the execution-flow of the AES
FSM. For the other analyzed modules (7i), our analysis showed that they provide adequate
protection, 7.e., all modules can withstand or detect at least single fault attacks.

4.1 AES

The AES module of OpenTitan is a hardware accelerator providing a secure encryption
and decryption mechanism for protocols used by the chip. As this IP block is one of the
most crucial elements of the RoT element, we analyze in detail the behavior of the most
security-critical parts of the module when influenced by faults. In comparison to related
work (cf. Section 5), we focus on assessing generic hardware primitives, such as state
machines and counters, instead of performing specific cryptographic data-flow attacks,
such as SIFA [DEK 18] or DFA [PQ03].

Results. Our analysis revealed several fault attack vectors for the unprotected AES
module. In particular, SYNFI showed that single faults into the AES round counter,
handshake signals, and certain FSMs could enable an adversary to break the security of
the module. Based on these verification results, we developed several fault hardening
techniques, reassessed their security, and contributed them to the OpenTitan project.

4.1.1 AES Round Counter

The AES [DR99] block cipher performs, depending on the mode of operation, a certain
number of encryption rounds. This round counter, which is generated in an FSM, is
security-critical, as a fault hijacking the counter value could weaken the cryptographic
strength of the AES [Bir04].

Unprotected round counter. To analyze the resilience of the round counter against
faults, we first @ utilize SYNFT to reveal if the round counter circuit is generally susceptible
to faults, i.e., it is possible to arbitrarily manipulate the counter value. Then @, we
determine how many simultaneous faults are required to manipulate the counter to a
specific value.

1 "Fault Specification":

2 "Target Circuit":

3 "inputs": ["rnd_ctr_q": "4’b0001"],

4 "outputs": ["rnd_ctr_d": "4’b0010"]

5 "Fault Model":

6 "Sim. Faults": 1 or 2, "Fault Locations": ["x"]

Listing 4: Fault specification for the round counter.

To conduct this analysis, we describe the circuit of interest and the fault model in the fault
specification file as shown in Listing 4. We configure SYNFT to analyze the logic in between
the rnd_ctr register responsible for incrementing the value and set the input value of the
counter circuit to 1 and the expected output value to 2. For the fault model, we instrument
SYNFTI to exhaustively induce one or two simultaneous faults into all available gates of the
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circuit. We provide and describe the used fault model configuration to verify the round
counter in more detail in Appendix A.1.

Table 1 shows the evaluation report generated by SYNFI. The setting column in the
table specifies how SYNFI considers a fault to be effective. In the (FE) mode, any fault
having an arbitrary effect to the input-output relation of the circuit is considered to be
an effective fault. In (FD), an effective fault is a fault manipulating the circuit’s output
and the fault countermeasures did not detect, i.e., did not trigger the alert signal, this
fault. Finally, (FS) refers to a fault changing the output of the circuit to a specific state
without triggering the countermeasures. Moreover, the table shows the total number of
injected faults and the percentage of the effective faults. The effective fault percentage
number indicates how many of the total number of injected faults SYNFI considers to be
effective. Finally, the table highlights the execution time of SYNFI and the circuit size in
gate equivalent (GE). Note that the circuit size refers to the fault affected target circuit
extracted by the SYNFI framework, which is a subcircuit of the whole circuit.

As shown in the first row @, a single fault into the circuit enables a fault attacker

to manipulate the round counter value. To manipulate the round counter to a specific
value, SYNFI reveals in the second row @ that an adversary needs to induce at least two
simultaneous faults.
Hardened round counter. To enhance the resilience of the counter against faults, we
extend the FSM to generate an up counting (the round counter) and a redundant down
counting counter value. We redundantly instantiate this FSM, combine the generated
counters, and add an error logic capable of detecting an ongoing fault attack.

1

2 for (genvar i = 0; i < 3; i++) begin : gen_fsm

3 aes_cipher_control_fsm u_aes_cipher_control_fsm_i (
4 .rnd_ctr_q_i ( rnd_ctr_q ),

5 .rnd_ctr_d_o ( mr_rnd_ctr_d[i] ),

6 .rnd_ctr_rem_q_i ( rnd_ctr_rem_gq ),

7 .rnd_ctr_rem_d_o ( mr_rnd_ctr_rem_d[i] ),

8 L)

9 end

=
=}

=
[

always_comb begin : combine_counter_signals
for (int i = 0; i < 3; i++) begin

=
N

13 rnd_ctr_d |= mr_rnd_ctr_d[il;
14 rnd_ctr_rem_d |= mr_rnd_ctr_rem_d[i];
15 end

end

==
Y

=
[

assign rnd_ctr_sum = rnd_ctr_q + rnd_ctr_rem_q;
assign rnd_ctr_err = (rnd_ctr_sum != num_rounds_q) 7 1’bl : 1°b0;

=
©

Listing 5: Round counter protection in the aes_cipher_control module.

To ensure that the synthesis tool does not weaken the redundancy-based protection
mechanism shown in Listing 5, we reassess its security using SYNFI. In particular, we
utilize the framework to evaluate whether the circuit is capable of detecting a single fault
arbitrarily manipulating the counter value (FD).

SYNFI could formally verify that, in a specific circuit state, a single fault cannot
manipulate the counter value without triggering the alert signal. This specific circuit
state comprises a fixed counter input value of 1 and a counter output value of 2, all
other non-defined inputs of the circuit are automatically set by the SAT solver SYNFI
internally uses. We argue that testing a single circuit state, i.e., an input-output pair, is
sufficient to verify that the tooling of the design flow does not remove the redundancy-based
countermeasures. For two simultaneous faults, SYNFT reveals in Row @ in Table 1, that
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Table 2: Verification results for the AES handshake signal on a 16-core machine.

Simult. Effective Total Execution Circuit

Target Setting Faults %] [#] Is] [GE]
@ Unprotected Handshake Signal ~FS 1 83.83 31 4.49 32
® Protected Handshake Signal FS 3 15.32 8436 270.68 38

at least one fault into the error logic and one fault into the input or output shared round
counter register are required to tamper the counter value without raising the alert.

4.1.2 AES Handshake Signals

Internally, the AES IP consists of a variety of handshake signals responsible for influencing
the data- and control-flow of the encryption. As manipulating the out_valid_o signal
would allow an adversary to leak temporary encryption data to the software interface of
the AES, we exemplarily focus on analyzing this signal. More specifically, we instrument
SYNFT to show whether it is possible to manipulate this signal to a specific value (FS),
i.e., from a logical 0 to a logical 1. Here, we configure SYNFI to inject a single fault into
the FSM circuit responsible for driving this signal. The verification result in Row @ in
Table 2 shows that already a single fault induced into the circuit enables an adversary to
tamper the handshake signal.

module aes_cipher_control_fsm (
output logic out_valid_o,
input logic [3:0] rnd_ctr_q_1i,

assign num_rounds_regular = num_rounds_q_i - 4’dil;
unique case (aes_cipher_ctrl_cs)
ROUND: begin
advance = (dec_key_gen_q_i | sub_bytes_out_req_i) & key_expand_out_req_i;
10 if (advance) begin

1
2
3
4
5 )3
6
7
8
9

11

12 if (rnd_ctr_q_i == num_rounds_regular) begin
13 if (dec_key_gen_q_i) begin
14 out_valid_o = 1’bl;

15

Listing 6: out_valid_o signal generation in the aes_cipher_control_fsm module.

The detailed verification summary reporting the fault-affected cells shows that the adversary
can induce faults either (i) directly into the out_valid_o signal (Line 14 in Listing 6),
the (%) comparisons in the output logic (Line 12 in Listing 6), or the (%) control signals
(Line 13 in Listing 6) of the FSM. Hence, to comprehensively protect the handshake signal,
we must consider all three attack vectors.

Multi-bit encoding. To protect critical handshake signals (i), we extend the AES IP to
adopt the multi-bit encoding the OpenTitan project uses in other hardware modules.

1 typedef enum logic [2:0] { SP2V_HIGH = 3’b011, SP2V_LOW = 3’b100 } sp2v_e;

Listing 7: Encoded multi-bit signals.

In the multi-bit encoding approach shown in Listing 7, a 1-bit signal is encoded into a
3-bit signal resulting in a Hamming distance of three. Here, the first two bits represent
the logical value and the third bit is the inverse of the value to encode.

To verify that the synthesis step does not weaken the security guarantees of multi-bit
signals by simplifying the encoding in the optimization phase, we use the SYNFT framework
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to inject faults into the encoded out_valid_o signal. In particular, we use SYNFI to
reveal if it is possible to manipulate the encoded signal to a specific value (FS), i.e., from
SP2V_LOW to SP2V_HIGH. The verification result in Row @ in Table 2 confirms the expected
security bound of three, i.e., SYNFT could not find an effective fault when inducing one or
two simultaneous faults.

Multi-rail FSM. As a single fault into the output logic (ii) of the FSM, e.g., the
comparison in Line 12 in Listing 6, is enough to tamper the out valid signal, we design
and deploy a redundant multi-rail FSM scheme.

FSMpy
‘ | FsM ‘
FSMp,
multi-bit - multi-bit
plair31 1 . FSM 1
FSMno % [?nlain
N FSM g err
m > m 8 1

Figure 4: Multi-rail FSM approach.

The multi-rail scheme, as shown in Figure 4, instantiates the unmodified F.SM in a
triple modular redundancy mode. Unencoded m-bit signals are independently processed
by the three state machines and an output logic is responsible for combining and checking
the resulting signals. On a comparison mismatch, an alert signal is triggered. For multi-bit
encoded signals (cf. Listing 7), the first two bits are processed by the positive F'SMpy and
FSMpy rail. The inverted third bit is processed by the negative F'SMy¢ rail. Combining
these signals at the output again produces an encoded multi-bit signal. If a fault in one or
two FSMs modifies the signal, an invalid code word is produced, which is detectable by a
checker unit.

Listing 8 shows the multi-rail FSM approach integrated into the AES module. In this ap-
proach, three redundant FSMs are instantiated where the two aes_cipher_control_fsm_p
FSMs produce a positive output and the aes_cipher_control_fsm_n FSM a negated
output. Combined, they form a multi-bit signal with a Hamming distance of three. As
the multi-rail approach requires to instantiate FSMs redundantly, the area increases
from 211.15GE for the aes_cipher_control_fsm_p FSM to 908.81 GFE for the whole
aes_cipher_control module including the redundant FSMs, the combination logic, as well
as other countermeasures, such as the counter error logic introduced in Section 4.1.1.
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1 assign sp_dec_key_gen_q = {dec_key_gen_qg}

2

3 for (genvar i = 0; i < 3; i++) begin : gen_fsm

4 if (SP2V_LOGIC_HIGH[i] == 1’bl) begin : gen_fsm_p
5 aes_cipher_control_fsm_p u_aes_cipher_control_fsm_i (
6 .rnd_ctr_q_i ( rnd_ctr_q ),

7 .num_rounds_q_i ( num_rounds_q ),

8 .dec_key_gen_q_i ( sp_dec_key_gen_qlil ),

9 .out_valid_o ( sp_out_valid[il ),

10 e

11 )

12 end else begin: gen_fsm_n

13 aes_cipher_control_fsm_n u_aes_cipher_control_fsm_i (
14 .rnd_ctr_q_i ( rnd_ctr_q ),

15 .num_rounds_q_i ( num_rounds_q ),

16 .dec_key_gen_q_i ( sp_dec_key_gen_ql[i] ),

17 .out_valid_o ( sp_out_valid[il ),

18 e

19 )

20 end

21 end

22

23 assign out_valid_o = sp2v_e’ (sp_out_valid);

Listing 8: Fault resistant multi-rail FSM in the

aes_cipher_control module.

1 "Fault Specification":

2 "Target Circuit":

3 "inputs": ["rnd_ctr": "2"],

4 "outputs": ["out_valid_o": "SP2V_L
5 "expected fault outputs": ["out_va
6

"alerts": ["rnd_ctr_err": "0"]

ow"],
lid_o": "SP2V_HIGH"],

Listing 9: Fault specification for the multi-rail FSM.

Table 3: Verification results for the AES multi-rail FSM on a 16- or 72-core* machine.

. Simult. Effective Total . Circuit
Target Setting Faults %] [#] Execution [GE]
@ Multi-Rail FSM- g 1 2.46 122 8.2 96.5
loose config
@ Mult-Rall FSM - po 1 0 573 266.87s  355.75
tight config
@ Multi-Rail FSM- pg 2 0 170,082  1.0lh  355.75
tight config
@ Multi-Rail FSM - g 3 0.02 35222293 38.27Th  355.75

tight config

To verify that the synthesis tool does not remove the redundant FSMs, we utilize
SYNFT to analyze the resilience of the multi-rail approach against faults. In particular,

we instrument the framework to reveal whether there

exists a fault enabling an adversary

to manipulate the out_valid_o signal to a specific value (FS), i.e., from SP2V_LOW to
SP2V_HIGH, without triggering the fault countermeasure. Using the fault specification file
shown in Listing 9, SYNFI automatically extracts the circuit between the round counter
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register and the out valid signal, 7.e., the multi-rail FSM including the input, output,
and error logic. By setting the counter value to 2, we force the circuit in a state where
the out valid signal is set to a logical 0 in the fault-free setting. As shown in Row @ in
Table 3, in this SYNFI configuration, already a single fault can be sufficient to produce
an effective fault, i.e., the out valid signal is set to a logical 1 and the error was not
triggered. The framework reports that all of these four effective faults occur when faulting
the num_rounds register value. Since the value of this register is used for the comparison
in Line 12 in Listing 6 in all redundant FSMs, the out valid signal is set to a logical 1.
Nevertheless, this verification result can only provide a limited statement about the security
of the multi-rail approach as the SYNFI framework was minimally constrained. By only
defining the input value of the round counter register, the SAT solver is loosely constrained
(cf. Section 3.7) and automatically sets the dec_key_gen_q_i and advance signals in the
boolean formula of the differential graph to a logical 1. Setting these variables is possible,
as in the non-faulty reference circuit the out_valid_o always stays at SP2V_LOW when the
round counter value is 2. Hence, as all redundant FSMs set the out_valid_o to the same
value, the error signal is not set.

To avoid these false-positive results, we more tightly configure SYNFI by further

defining the inputs dec_key_ gen_q_ i =0 and key_ expand_out_req i = 0 in the fault
specification file. In this configuration, the extracted circuit SYNFT analyzes increases from
96.5 GE to 355.75 GE, as the tool finds more paths from the defined inputs to the outputs.
Now, as expected and depicted in Row @ and ® in Table 3, one or two simultaneous
faults cannot manipulate the out valid signal. Starting with three simultaneous faults
into the circuit, we observe effective faults (cf. Row @ in Table 3). These effective faults
manipulating the out valid signal are caused by inducing bit-flips into variables used by the
redundant FSMs. To demonstrate the possibility of scaling SYNFTI to the cloud and as the
number of possible fault combinations for three simultaneous faults, i.e., fault location and
fault mapping, explodes, we conducted this experiment on a 72-core server. We measured
a total run time of 38.27 h and a maximum memory consumption of less than 8 GB for
injecting 35,222,292 faults into the circuit of a size of 355.75 GE.
Shadow registers. As discussed in the initial experiment in Section 4.1.2, handshake
signals also can be tampered by faulting (4i) control signals used by the FSM. To protect
security-critical control signals, which are provided by the software over a register interface,
the AES modules stores them in dedicated shadow registers. These registers constantly
compare the two values and on a comparison mismatch caused by, for example a fault, an
alert is raised forcing the AES module in a terminal state.

4.1.3 Sparsely Encoded State Machines

Finite-state machines are, as seen in Section 4.1.2, security-critical hardware elements as
they are responsible for setting control signals used by the data path.

1 typedef enum logic [3:0] { IDLE, INIT, ROUND, ..., ERROR } aes_cipher_ctrl_e;
2 always_comb begin : aes_cipher_ctrl_fsm
3 unique case (aes_cipher_ctrl_cs)

4 IDLE: begin

5 if <condition>:

6 aes_cipher_ctrl_ns = INIT;
7 end

8 end

9 INIT: begin

Listing 10: Finite-state machine with a state encoding vulnerable to faults.
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1 typedef enum logic [5:0] {

2 IDLE = 6’b001001, INIT = 6’b100011, ROUND = 6’b111101,
3 FINISH = 6’b010000, PRNG_RESEED = 6’b100100, CLEAR_S = 6’b111010,
4 CLEAR_KD = 6’b001110, ERROR = 6°b010111

5 } aes_cipher_ctrl_e;

Listing 11: Sparsely encoded FSM state.

Table 4: Verification results for the AES FSM state encoding on a 16-core machine.
Simult. Effective Total Execution Circuit
Faults [%] [#] [s] [GE]
Encoded FSM states FS 3 15 29 16.09 90.5

Target Setting

In a state machine, the next-state logic derives the next state from the current state and
a set of inputs. As seen in Listing 10, the state variable stored in the state register is
typically represented as a simple enum. However, as the minimum Hamming distance
between two states is 1, a single fault into the state registers would allow an adversary to
hijack the control-flow of the FSM, i.e., skip or enter a normally non-reachable state.

In order to mitigate this threat, we deploy the sparse FSM state encoding technique
used by different OpenTitan modules into the AES. The encoding, which is shown in
Listing 11, assures a minimum Hamming distance between the states of 3, increasing the
resistance against faults. Additionally, we introduce a default error state, which is entered
when the state value does not match the aes_cipher_ctrl_e enum. Now, if a fault flips
bits in the state variable, with a high probability, the terminal error state is entered.

To verify that an aggressive synthesis setting does not reduce the security by altering

the state encoding, we utilize SYNFI to analyze the aes_cipher_control_fsm FSM. In
particular, we determine, how many faults are required to hijack the control-flow of the
FSM by skipping a certain state and directly enter a normally not reachable state, i.e.,
(FS). For this experiment, we instrument SYNFI to analyze the next-state logic and to
inject faults directly into the state registers. SYNFI shows that one or two simultaneous
bit-flips into the state registers triggers the alert signal, i.e., the FSM enters the error
state. When inducing three simultaneous faults, as shown in Table 4, the attacker is able
to redirect the control-flow of the FSM.
FSM optimizations. Several synthesis tools also apply optimization passes to state
machines. Yosys, for example, removes unused control signals, merges states, and recodes
the FSM state variables stored in the state registers [Wol]. To analyze the impact of
these optimization on the security of the sparsely encoded states, we synthesize the
aes_cipher_control_fsm module with Yosys using an aggressive optimization strategy.
Similar to the previous experiment, we configure SYNFI to skip a state and directly enter
a typically non-reachable state. Our result shows that, in comparison to the verification
in Table 4, now 2 instead of 3 simultaneous faults are already sufficient to skip the FSM
state, i.e., the FSM optimization weakens the encoding. To prevent these optimizations,
Yosys can be parameterized with the nofsm flag. In summary, this experiment shows that
synthesis optimizations configured by different stakeholders, e.g., trying to minimize the
area of the design, could have fatal security implications.

4.2 Life Cycle Controller

OpenTitan can be transferred into different operational states depending on where the
device is deployed, i.e., at the customer or the manufacturer. The state switching mecha-
nism is implemented in hardware in the life cycle controller module. As certain states, e.g.,
the return material authorization (RMA) state, enable security-sensitive features, such as
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Table 5: Verification results for entering the RMA state on a 16-core machine.
Simult. Effective Total Execution Circuit

Faults [%] [#] [s] [GE]

Target Setting

Token comparison

@ in TokenHashSt Fs 1 0 313 32.56 215
Token comparison

® i1 TokenCheckOSt FS 1 0 349 35.87 24825
Token comparison

® in TokenCheck1St FS 1 0 310 28.26 204.75

@ Skip token check states FS 7 100 7 17.44 214.5

access to the debug port, the life cycle controller is hardened against fault attacks.
Results. SYNFI verified that the analyzed fault-hardened primitives of the life cycle con-
troller provide adequate protection. Specifically, we could confirm that the countermeasures
prevent the exploitation of single or double faults for all critical attack vectors.

4.2.1 Entering the RMA State

The core mechanism of the life cycle controller IP is an FSM responsible for determining the
life cycle state of OpenTitan. To hinder an adversary from entering the security-sensitive
RMA state, which is used to debug the RoT chip when returned to the manufacturer,
this state transition is only permitted when possessing a 128-bit unlock token. Internally,
the state machine checks the validity of the token in three different FSM states. This
redundancy-based mechanism and the state encoding technique guaranteeing a minimum
Hamming distance of 7 between the state symbols form the fault protection strategy of
the controller. Based on this description of the fault-hardening mechanisms, we identified
two major attack vectors for a fault attacker: (i) glitch the token comparisons three times
or (i) hijack the execution of the FSM by glitching the state symbols.

Glitching the comparisons. Glitching the three token checks requires a strong adversary
capable of injecting three faults in three clock cycles. We utilize SYNFT to test whether
these three comparisons are susceptible to a single fault each. For this verification, we
configure SYNFI to analyze if it is possible to induce a fault into the next-state logic of the
FSM changing the next valid state (FS). In the fault specification file, we instrument the
tool to exhaustively induce a single fault into all gates of the next-state logic for each of
the three fault experiments. Row @-® in Table 5 shows that SYNFI could not find a single
fault allowing the attacker to enter the next state (from TokenHashSt to TokenCheckOSt,
.-+ ) without possessing the required token.

Skip the token check states. In order to verify that the synthesis step does not weaken
the 16-bit FSM state encoding, we utilize SYNFT to check whether it is possible to induce
faults into the state register allowing the attacker to directly enter the RMA state (FS).
Here, we configure SYNFT to analyze the FSM and to inject 1 to 7 simultaneous faults
into the state register. As shown in Row @ in Table 5, at least 7 simultaneous faults are
required to enter the target state. This matches the security expectation, i.e., a Hamming
distance of 7 for the state symbol encoding.

4.2.2 Flash Erase Mechanism

Before entering RMA, the life cycle controller erases the flash to hinder an adversary from
accessing previously created data. Although entering RMA only is possible when knowing
a secret, device dependent token, this hardware-backed flash erasing mechanism is meant
to be a second line of defense. Internally, the flash erasing command is directly triggered
in the FSM of the life cycle controller. To ensure that the flash was erased before entering
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Table 6: Verification results for glitching the locking mechanism performed on a 16- or
72-core* machine.

Target Setting S}::llll]lg Eﬁ'[et;)t]lve rIF;:éTI Execution C[lé%l]lt
® Prevent counter incr. FS 1 17.81 853 261.76 s 1170
@ Reset counter value*  FS 3 0 1,000,000 7h 1170
® Skip CntProgSt FS 7 100 7 17.53s 228.75

RMA, the acknowledgment sent by the flash controller is checked three times in the FSM.
If one of the acknowledgements was not received, e.g., due to a fault, the FSM remains in
the current state.

Glitching the Encoded Flash Handshake Signal. An attacker with access to a valid
RMA token aiming to bypass the flash erasing mechanisms needs to suppress the flash
erasing command as well as the acknowledgement signal or the corresponding check three
times. However, as the initiate and acknowledgement signal is encoded with a Hamming
distance of 4, the adversary theoretically needs to flip 4-bits four times. To confirm this
behavior, i.e., the synthesis tool did not tamper the encoding, we exemplary analyze the
resilience of the flash erase initiate signal. In particular, we instrument SYNFT to reveal
whether it is possible to induce faults manipulating this signal to a specific value (FS),
i.e., from an encoded On = 4’b1001 to an encoded Of f = 4’b0110. This analysis showed
that already two simultaneous faults injected into the encoded signal allow an adversary
to hijack the initiate signal. Since bit 0 and 3 as well as 1 and 2 in the encoding are
always the same, the synthesis tool decided to merge these signals and only instantiate two
instead of four registers driving the bits of the signal. Hence, the security of the encoding
is reduced to a Hamming distance of 2.

In order to prevent that the four registers instantiated in the HDL code are merged in
the synthesized netlist, we augmented the design flow with the set_dont_touch parameter.
Now, as shown in Row @ in Table 5, the encoding works as expected and an attacker
needs at least four simultaneous faults to tamper the encoded signal.

4.2.3 Locking Mechanism

OpenTitan limits the number of state transitions and transition attempts to 24. Once
this number is reached, the life cycle controller rejects further attempts, effectively lock-
ing the device into its current state. In the life cycle hardware IP block, the counter
increment is conducted in the 1c_ctrl_state_transition module and the counter value
is programmed into the one time programmable (OTP) memory of OpenTitan in the
lc_ctrl_fsm FSM. Hence, an adversary aiming to increase the number of state transitions
attempts either needs to fault the counter increment (i) or the programming (i) of the
value into the OTP.
Skip the Counter Increment. Inside the lc_ctrl_state_transition module, an
FSM is responsible for updating the counter value. As illustrated in Listing 12, this
FSM uses a strong state encoding technique to mitigate fault attacks. Fach state of type
lc_cnt_e consists of 384-bit with a Hamming distance of 269 between LcCnt0 and LcCnt24
and a Hamming of 3 between LcCnt23 and LcCnt24. To verify that the synthesis flow does
not weaken the encoding, we utilize SYNFI to verify that a fault cannot manipulate the
next_lc_cnt_o variable to a specific value (FS). More concretely, we aim to bypass the
counter increment from LcCnt23 to LeCnit24. In this scenario, the attacker aims to avoid
that the counter increments to the final LeCnit24 value and locks the life cycle controller.
As shown in Row @ in Table 6, already a single fault allows the adversary to avoid
that the counter is incremented. Supported by the generated analysis results, we were able
to track back the single point of failure responsible for enabling an attacker flipping the
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module lc_ctrl_state_transition (
input lc_cnt_e lc_cnt_1i,
output lc_cnt_e next_lc_cnt_o,

unique case (lc_cnt_i)
LcCntO: next_lc_cnt_o = LcCntl;
LcCntl: next_lc_cnt_o = LcCnt2;

1
2
3
4
5 )3
6
7
8
9

10 LcCnt23: mnext_lc_cnt_o = LcCnt24;
11 endcase

Listing 12: Life cycle controller counter increment FSM.

three bits, i.e., the Hamming distance between LcCnt23 and LcCnt24, with a single fault.
Since the three gates driving the three targeted bits of the next_lc_cnt_o output port
are driven by a single gate, attacking this gate or drivers of this gate allow an adversary to
manipulate the output counter value. However, as the counter increment is only prevented
once, an attacker only could initiate one additional state transition, making this attack
impractical in reality.

Since resetting the counter value to LcCntO enables the attacker to initiate more

additional state transitions, the encoding is also stronger, i.e., a Hamming distance of 269
between LcCnt23 and LceCnt0. To ensure that this strong encoding between these two
counter values is correct after the synthesis, we test with SYNFI whether it is possible to
switch to the gpecific LeCntO0 value from LeCnt23 with faults (F'S). Similar to the previous
experiment, we configure the framework to exhaustively inject 1, 2, and 3 simultaneous
faults into the circuit responsible for incrementing the counter value. Since the possible
fault combinations explode, we limited the number of injected faults to 1 M and performed
the experiment on a 72-core server in the cloud. Within this fault threat model, SYNFI
could not find a single, effective fault, as shown in Row @ in Table 6.
Prevent the Programming of the Counter. The programming of the counter value
into OTP is initiated in the CntProgSt state in the life cycle controller FSM. We utilize
SYNFI to validate that an adversary cannot bypass this state and directly switch to the
next state (F'S). As shown in Row @ in Table 6, at least 7 faults, i.e., the Hamming
distance the encoding guarantees, are required to skip the state.

4.2.4 Life Cycle Escalation Signal

When the life cycle controller detects an ongoing attack, the 4-bit encoded 1c_escalate_en
signal is triggered. This signal is consumed by other hardware modules, e.g., the AES IP,
and transfers them into an non-escapable error state. To validate that the optimization
passes in the synthesis does not weaken the encoding of the signal, we inject faults
into the escalation signal driven in the lc_ctrl_signal_decode module. In the fault
model used by SYNFI, we set the input value to lc_escalate_en = On = 4’1001, the
expected output value to lc_escalate _en o = On = 4’61001, and the fault output to
le_escalate_en_o=Off = 4’60110 (FS). Without constraining the synthesis flow with
the set_dont_touch parameter (cf. Section 4.2.2), the security of the encoding is reduced
to a Hamming distance of 2, as Synopsys removes the redundant flip-flops. When applying
this constraint to the lc_escalate_en flip-flop, at least four simultaneous faults are
required to suppress the escalation signal.
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Table 7: Verification results for the Ibex processor on a 16-core machine.

Simult. Effective Total Execution Circuit

Target Setting

Faults [%] [GE]
@ Glitch the PC FE 1 78.1 557 185.07s 488
@ Glitch the PC  FS 2 0.02 309,500 0.72h 488
® Lockstep mode FS 1 6.31 111 10.22s 165.34

4.2.5 Privilege Escalation in the PROD State

When OpenTitan is shipped to the customer, the device is put into the PROD state. In
this state, certain features are activated, such as the CPU, and security-critical features,
such as debug functionalities, are disabled. Instead of directly hijacking the life cycle
state of OpenTitan, an adversary also could aim to switch on such features in the PROD
state. All features are activated in the lc_ctrl_signal_decode module by setting the
corresponding signal from 0ff to On. This signal then is transmitted to the corresponding
hardware module responsible for activating or deactivating the feature. Similar to the
escalation signal described in Section 4.2.4, the OpenTitan project uses a 4-bit encoding
technique with a Hamming distance of 4 between 0ff and On. For the fault verification
of the encoded signal, we configure the input to lc_hw_debug_en = Of f = 4’60110, the
expected output value to lc_hw_debug_en_o = Off = 4b0110, and the fault output
to le_hw_debug _en_o = On = 4'b1001 (FS). Similar to the previous experiments, the
set_dont_touch constraint needs to be applied to the registers responsible for driving
the 1c_hw_debug_en signal to maintain a Hamming distance of 4. Then, at least four
simultaneous faults are required to enable the debug mode. While a transient fault only
can active the debug functionality for a brief moment, a permanent stuck-at fault could
allow an adversary to enable this feature permanently.

4.3 Ibex

The RISC-V Ibex processor is the core element of the OpenTitan chip. In this section, we
utilize SYNFI to analyze the behavior of the CPU when injecting faults. To demonstrate
the ability of SYNFT to handle different netlists, we, contrary to the previous verification
setups, analyze the netlist synthesized with the open-source Yosys synthesis tool and the
open Nangated5 cell library.

Results. Our analysis showed that the error logic of the Ibex lockstep mode is capable of
detecting a fault into the program counter.

4.3.1 Glitching the Program Counter

A fault into the program counter (PC) allows an attacker to arbitrarily redirect the
control-flow of the program executed on the processor [TSW16]. We utilize SYNFI to @
analyze whether the instruction fetch stage of the Ibex is generally susceptible to a fault
arbitrarily changing the PC (FE). Row @ in Table 7 shows that a single fault already is
sufficient to manipulate the PC and to redirect the control-flow. Although targeting a NOP
slide does not require an adversary to accurately manipulate the PC, randomly glitching
the PC makes it hard for the attacker to exploit the induced fault. Therefore, we analyze
@ if it is possible to change the program counter to a specific PC, i.e., from the boot
address to 32’h40400, using a fault (FS). The analysis of SYNFI in Row @ in Table 7
shows that, with two simultaneously induced faults, glitching the PC to a specific value is
hard. More specifically, for this fault specification, SYNFI shows that only 62 (0.02 %) out
of 309, 500 injected faults manipulate the program counter to the specified value.



24 SYNFI: Pre-Silicon Fault Analysis of an Open-Source Secure Element

4.3.2 Lockstep Mode

To protect the execution of software on Ibex from faults, OpenTitan instantiates the CPU
redundantly in a dual-core lockstep mode. In this approach, the input used for the main
core is delayed, provided to the redundant core, and the delayed output is compared to
the output of the main core. On a mismatch, a hardware monitor raises an alert. Similar
to the verification setup in Section 4.3.1, we consider an adversary aiming to redirect the
control-flow by glitching the program counter. For the verification, we assume that the
attacker already managed to flip a bit in the instruction address generated by the main
core but not in the shadow core. As the error detection logic should raise an error due to
the mismatch, a fault attacker needs to additionally inject a fault into this error detection
circuit. SYNFT reveals that (i) the error detection logic actually raises an error, i.e., the
synthesis tool did not remove the redundant logic, and that (i) one fault could enable an
attacker to suppress the error flag (FS), as shown in Row @ in Table 7.

4.4 Generic Primitives

The OpenTitan project provides a set of generic hardware building blocks which are
reused in several hardware modules. In this section, we analyze the fault protected generic
primitives, i.e., the counter and the LFSR, using SYNFT.

Results. Our analysis with SYNFT confirms that the inspected primitives provide the
expected security, i.e., a single fault into the protected counter or the LFSR triggers the
alert signal of the countermeasures.

4.4.1 Counter

The prim_count module provides a fault protected generic counter primitive which is used
by different modules. This module offers a flexible parameterization interface allowing
the hardware designer to define the mode, the start value, and the bit width of the
counter. In order to mitigate faults manipulating the counter value, the prim_count
module implements the double count or cross count protection mode. While in the double
count mode two redundant counters are compared, in the cross count mode the values of
the up counting counter and the down counting counter are added and compared to a
constant. On a comparison mismatch, a fault is detected and an error is triggered.

To ensure that the synthesis does not remove the redundant counter, we use the SYNFI
framework to test the resilience of the module against faults. In particular, we check
whether the countermeasure can detect a fault arbitrarily changing the output of the
counter value (FD). For this, we configure SYNFTI to inject faults into the counter logic, the
counter registers, and the comparison logic. With this description, SYNFI automatically
extracts the target circuit (29.75 GE) from the overall counter circuit (32.75 GE).

When injecting one fault into the netlist, SYNFI finds two effective faults manipulating
the output counter value without triggering the error logic. These effective faults occur
when faulting the counter increment signal or the counter clear signal, which are used by
both counter instances. Since this behavior is documented in the description of the module,
we further analyze the effect of two faults into the counter. In this setting, our tool shows

Table 8: Verification results for the prim_double_lfsr and prim_count modules.

. Simult. Effective Execution Circuit

Target Setting Faults (%] Total [s] [GE]

@ prim_count FD 2 10.82 1552 37.46 29.75
@ prim_double_lfsr FD 2 0.05 7827 74.44 116.75

® prim_double_lfsr FD 3 0.09 340,692 2114.69 116.75
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in Row @ in Table 8, that 10.82 % of all injected faults are effective, i.e., manipulate the
output counter value to an arbitrary value but do not trigger the error signal.

4.4.2 Double LFSR

As the linear-feedback shift registers (LSFRs) are used in OpenTitan as the primary
source of randomness, they require a strong protection against fault attacks. The
prim_double_lfsr module, which is used by several hardware IP blocks in the project,
instantiates an LF'SR twice and triggers an exception if the comparison of the two generated
values mismatches.

In order to verify that a potentially aggressive synthesis setup does not remove the
redundancy used as a fault protection, we use SYNFT to induce faults into the netlist and
observe the behavior of the circuit. Here, we are interested if the error detection logic is
capable of detecting a fault arbitrarily manipulating the output of the LFSR (FD). SYNFI
confirms that a fault into the circuit manipulating the LFSR value is detected by the error
logic. When inducing two simultaneous faults into the netlist, SYNFI finds, as shown in
Row @ in Table 8, 4 effective faults either suppressing the error signal and changing the
output LSFR value or manipulating the LFSR value in both LFSR modules. Increasing
the number of simultaneous faults to three increases the number of faults injected into the
circuit of a size of 116.75 GE to 340,692, which takes 35min on a 16-core setup. Based
on these results, forging the LFSR output to an attacker controllable value with three or
less simultaneous faults is hard to achieve.

5 Related Work

Fault injection verification frameworks can be categorized into simulation- or verification-
based approaches operating either on the RTL model or on the gate-level netlist. As
indicated in Section 1, frameworks [Gei20, JART95] working on the HDL description
of a module only can provide security assumptions for this level of abstraction. In
particular, the transformation of the RTL model into the gate-level netlist, i.e., the
synthesis, can be responsible for inducing flaws into redundancy-based fault counter-
measures by applying optimization passes. To also detect flaws potentially introduced
in this design phase, various frameworks conduct their fault experiments at the netlist
level [BGET17, AWMN20, RBSS™21, BDN08, SKK13]. The disadvantage of simulation-
based frameworks [BDN08, AWMN20, SKK13] is that they require an input stimuli covering
all inputs of the circuit. Verification-based frameworks, such as SYNFI, FIVER [RBSS™21],
and AutoFault [BGET17], can achieve higher fault coverage as a SAT solver is respon-
sible for probing all the undefined inputs. Similar to SYNFI, AutoFault and FIVER
transform the gate-level netlist into a different representation and extract the equation
of the circuit. FIVER first transforms the circuit into a DAG and then converts this
graph into a binary decision diagram to perform the symbolic fault injection. As fault
attacks originally focused on breaking cryptographic primitives, most fault injection frame-
works [BGET17, AWMN20, BDN08], including FIVER, concentrate on analyzing such
schemes. However, when using these frameworks to analyze more generic circuits, such as
a silicon design of a root-of-trust element including a broad range of fault countermeasures,
there are some limitations to overcome. First, some tools only provide support for a subset
of VHDL descriptions [BGE'17] and others limit the number of supported gates [RBSS*21]
to a small set. Especially for industry-grade designs using long-established digital design
flows, this constraint is severe as it is unlikely to adapt these hardware design flows.
SYNFT overcomes these limitations by automatically processing and including arbitrary
standard cell libraries into the framework and by translating the Verilog netlist into a
unified model, i.e., a directed multigraph. This approach allows the framework to also
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support submodules when the boolean formula is provided. Second, FIVER requires that
the given netlist does not include any cycles, i.e., the hardware designer needs to manually
unroll the design before the evaluation. As described in Section 3.3, SYNFT is able to also
handle such designs and automatically unfolds cycles found in the graph. To overcome
computational limitations for larger circuits, the architecture of SYNFI makes heavy usage
of multiprocessing, allowing the distribution of large workloads into the cloud. Finally,
and in contrast to other frameworks [BGET17, Gei20, JART95], we release an open-source
version of SYNFTI to encourage the verification of other security-critical designs.

Similar to related work [RBSS™21], SYNFTI can also be used to analyze the resilience
of cryptographic primitives against fault attacks. For example, when analyzing a round
of the LED block cipher [GPPR11] protected by a detection-based countermeasure, the
SYNFT user needs to provide a plaintext-ciphertext pair in the fault configuration file.
Then, depending on the configuration, SYNFI can detect (i) whether it is possible to
induce a fault with any effect on the ciphertext without triggering the countermeasure
or (#i) whether it is possible to flip certain bits in the ciphertext without triggering the
countermeasure.

6 Limitations and Future Work

This section summarizes current limitations of SYNFI and highlights potential future work.

Fault Specification. In the current prototype implementation of SYNFI, the user needs
to manually specify input and expected output values in the fault model configuration. A
possible future work could be to automate this process by parsing these values from traces
generated by the simulation tools. This parser fetches the values of the circuit of interest
for a specific amount of clock cycles and automatically writes these values into a separate
fault model for each clock cycle. As SYNFI is already capable of successively analyzing
multiple fault models (cf. Appendix A.1), no additional changes in the existing framework
would be required.

To assist the security engineer to specify the target circuit in the fault specification
file, the SYNFI repository? contains an experimental feature automatically creating this
file. When using this feature, the SYNFI user directly can specify the input and output
nodes and their values of the target circuit in the HDL code using code annotation.
The experimental tool then extracts this annotated information from the netlist and
automatically describes the target circuit in the fault specification file, i.e., the tool defines
the inputs and outputs and the state of the circuit.

Preprocessing. SYNFI automatically extracts a time-independent mathematical model
of the circuit to analyze in the preprocessing phase. This time-independent model is
created by replacing registers used in pipeline stages with pass-through elements and by
removing cycles introduced by sequential logic. Hence, SYNFT is capable of analyzing
the effect of a fault in multiple clock cycles. In addition, by automatically processing
register stages and sequential loops, the framework can handle designs that the designer
did not manually unroll. However, when aiming to analyze multiple loop iterations, e.g.,
multiple rounds in an iterative AES implementation, SYNFI needs to be configured for
each round individually. Nonetheless, as SYNFT allows using multiple fault configurations
in a single fault model specification file executed in one verification run, this is only a
minor limitation. Nevertheless, a possible extension of the framework could automatically
unroll the circuit instead of removing the loop.

2https://github.com/lowRISC/synfi
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Fault Effects & Layout. SYNFI and related frameworks [BGE™17, AWMN?20, BDN0S]
model a fault at the logical and not at the electrical level. Consequently, these frameworks
cannot analyze transient faults occurring within a clock cycle and they also cannot consider
the propagation delay between gates. Additionally, these tools, including SYNFI, operate
on the gate-level netlist after the synthesis step and not on the layout after place and route.
As some backend tools provide the possibility to simplify and optimize the netlist before
the actual place and route step, SYNFI needs to be reapplied to this netlist to confirm the
evaluation results. A future work could extend SYNFI to operate on the layout to also
take the position of the gates into account for the analysis.

Performance. One of the main performance impact factors is the extraction and pre-
processing phase (cf. Section 3.3). In this phase, SYNFI extracts (7) the target graph by
finding all paths from the input and output nodes specified in the fault specification and
handles (i) registers used in iterative designs by finding cycles including a register. These
operations on the graph could be improved by switching to a faster Python graph library
or by porting SYNFI to C or C++.

Another performance limitation is the number of fault combinations, i.e., fault locations
and fault effects. For an exhaustive fault analysis over all gates and multiple simultaneous
injected faults, the number of fault combinations explodes. As SYNFI, for each fault
combination, needs to create the differential graph, convert this graph into a boolean
formula, and uses a SAT solver to evaluate the effectiveness of the faults, the number of
fault combinations primarily affects the runtime. To improve this evaluation performance,
the optimizations proposed by FIVER [RBSS*21] could be integrated. Here, FIVER uses
a fault propagation path analysis and a clustering technique to minimize the computational
overhead.

7 Conclusion

In this paper, we presented SYNFI, a pre-silicon framework capable of inducing faults
and analyzing their effects on the gate-level netlist. The framework enables hardware
designers and security engineers to analyze the resilience of designs against fault attacks. As
SYNFI conducts the security assessment directly on the unmodified netlist, the framework
assures that (i) the same netlist is used for the evaluation as for the next steps in the
digital hardware design flow with the final tape-out step and that (ii) potential security
weaknesses still can be fixed before the chip gets manufactured. For the evaluation, SYNFI
extracts the circuit of interest and injects fault into this circuit according to the fault
model. To evaluate the effect of induced faults, the framework constructs a differential
graph, transforms this graph into a mathematical model, and uses a SAT solver to study
the behavior of the circuit when affected by faults. SYNFTI is capable of (i) revealing
whether faults affect the input-output relation of a circuit and its countermeasures and
(#i) showing whether it is possible to enter a security-critical state using a fault without
triggering the countermeasures. We utilized the framework to assess the security of several
hardware modules of OpenTitan, a secure RoT chip. Our evaluation results presented
in Section 4 showed that the unprotected AES module is highly susceptible to single
faults, our proposed fault-hardening techniques increased the security, and that the other
protected hardware blocks provide a strong resilience against fault attacks.
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A Appendix
A.1 Round Counter Fault Model File

Listing 13 shows the fault specification used for the verification of the cipher control round
counter FSM discussed in Section 4.1.1. The simultaneous_faults parameter, which
also can be overwritten by a command line argument, defines the number of simultaneous
faults injected into the extracted circuit. To specify the extracted target circuit, the input
and output elements need to be defined using the stages parameter. These elements
can be any gate, register, or input and output port of the circuit. For the example in
Listing 13, the circuit between the rnd_ctr register with the input Q and the output
port D is defined as the circuit of interest. The SYNFT tool then uses this information to
automatically extract the target circuit by finding all paths between the defined input
and output element. This circuit can consist of combinational and sequential logic. If
multiple stages are provided, SYNFI automatically connects them. To constrain the SAT
solver, the user needs to provide input values with the input_values parameter. In order
to allow the output layer to evaluate the effect of a fault, the fault model also provides
information about the expected, expected fault output value, and the alert value. The
node_fault_mapping parameter defines the mapping function of a target gate. During the
fault injection process, the boolean function of the target gate is replaced according to this
mapping. The target gate can be defined using the fault_locations entry. If the fault
evaluator does not have an intuition about the critical gates which need to be analyzed,
the SYNFT tool is also capable of exhaustively targeting all gates in the extracted circuit.

1 {

2 "fimodels": {

3 "aes_cipher_control_fsm_rnd_cntr_target_value": {
4 "simultaneous_faults": 1,

5 "stages": {

6 "stage_cntr": {

7 "inputs": [

8 "rnd_ctr_q_1i"

9 1,

10 "outputs": [

11 "rnd_ctr_d_o"

12 1,

13 "type": "inout"

14 }

15 },

16 "input_values": {

17 "rond_ctr_q_i": {

18 mire {

19 "o": 1, "1": 0, "2": O, "3": O
20 }

21 }

22 },

23 "output_values": {

24 "rnd_ctr_d_o": {

25 "o": {

26 "o": o0, "1": 1, "2": 0, "3": O
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27 }

28 }

29 },

30 "output_fault_values": {
31 "rnd_ctr_d_o": {

32 "o": {

33 "o": o, "1": O, "2": 1, "3": O
34 }

35 }

36 },

37 "alert_values": { },

38 "node_fault_mapping": {
39 "NAND": [

40 "AND"

41 ]

42 },

43 "fault_locations": {

44 "Gate_189": ["stage_cntr"]
45 }

46 }

47 }

48 7}

Listing 13: Fault specification file for the aes_cipher_control_fsm round counter

experiment.
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