Implementation and Calibration of a Viscoelastic Bonded Particle Model: from the Micromechanics to the Flow Properties M. Mascara, C. Kloss, S. Radl, A. Mayrhofer

Source: T. Osswald & N. Rudolph, Polymer Rheology, 2014

- Experiments to measure rheological properties are not always enough to predict flow in a complex process
- Some materials are not "rheometer friendly"
- Experiments are limited in stress and applied frequency depending on the material

Introduction

Mesh-based methods (Eulerian)

- Complex tensor-modified Navier-Stokes equations
- Tricky to apply in processes with rotating parts
- Challenging when describing granular matter

New "hybrid" model approach with bonded particles Particle-based methods (Lagrangian)

- Strictly limited to granular or dispersed phases
- Particles size defined by ensemble to describe
- Need for calibration to match real physics

DCS Computing GmbH

Bond Initialization

- Particles are solid DEM spheres without overlap contact force
- Bond is formed at increased radii overlap
- Bond initialized with zero force
- At each bond, a visco-elastic constitutive equation is solved

Burgers model implementation

$$\sigma + \left[\frac{\mu_k}{k_k} + \mu_m \left(\frac{1}{k_k} + \frac{1}{k_m}\right)\right] \dot{\sigma} + \frac{\mu_k \mu_m}{k_k k_m} \ddot{\sigma} = \pm \mu_m \dot{\varepsilon} \pm \frac{\mu_k \mu_m}{k_k} \ddot{\varepsilon}$$

 $A,B,C,D = f(c_m,c_k,y_m,y_k,\Delta t)$

Test case and post-processing

Particles size effect

Constant volume oscillating compression test at decreasing particles size to check for solution convergence

Analytical: $\sigma = E\varepsilon$

Elastic Burgers:

- Divide constitutive relation by $\mu_m \mu_k$
- Let $\mu_m, \mu_k \to \infty$
- Integrate twice in time

 $\sigma = k_m \varepsilon$

type	N	d
coarse	172	0.946 <i>mm</i>
medium	666	0.614 <i>mm</i>
fine	1688	0.454 mm

Calibration strategy

- 1. Read experimental data from oscillatory rheometer test
- 2. Compute $G'_{0'}G''_{0}$ from: $J' = \frac{1}{L} + \frac{1}{L^2}$

$$J' = \frac{1}{k_m} + \frac{k_k}{k_k^2 + (\omega \mu_k)^2}$$
$$J'' = \frac{1}{\omega \mu_m} + \frac{\omega \mu_k}{k_k^2 + (\omega \mu_k)^2}$$
$$G'_0 = \frac{J'}{J'^2 + J''^2}, \quad G''_0 = \frac{J''}{J'^2 + J''^2}$$

3. Minimize cost function:

Burgers model analytical fitting

Burgers model not suited for large dataset

www.dcs-computing.com

Burgers model calibration limits

Limit 1:

Non constant parameters through the dataset

ω range $\left[\frac{rad}{s}\right]$	$\mu_m [Pas]$	μ_k [Pas]	$k_m [Pa]$	$k_k [Pa]$
0.6-1.9	$1.325 \cdot 10^5$	$1.55 \cdot 10^4$	$1.36 \cdot 10^4$	$3.24 \cdot 10^4$
2.7-8.1	$3.76 \cdot 10^{4}$	$0.31 \cdot 10^4$	$1.8 \cdot 10^{4}$	$2.62 \cdot 10^{4}$
11.5-34.1	$0.85 \cdot 10^4$	658.1	$3.22 \cdot 10^4$	$2.14 \cdot 10^{4}$
48.8-146.5	$0.16 \cdot 10^{4}$	220.2	$7.33 \cdot 10^4$	$2.56 \cdot 10^4$
209.3-632.4	$3.75 \cdot 10^{2}$	77.86	$5.03\cdot 10^5$	$3.98 \cdot 10^4$

Limit 2:

Jumps in simulated data due to sudden change in parameters

Generalized Maxwell calibration

$$G' = \sum_{i} \frac{k_i \omega^2 \tau_i^2}{1 + \omega^2 \tau_i^2} + k_e \quad G'' = \sum_{i} \frac{k_i \omega \tau_i}{1 + \omega^2 \tau_i^2}$$

Generalized Maxwell maintains accuracy through the whole dataset

material	μ_1 [Pas]	μ_2 [Pas]	μ_3 [Pas]	μ_4 [Pas]	$k_1 [Pa]$	$k_2[Pa]$	$k_3[Pa]$	$k_4 [Pa]$	$k_e[Pa]$
1	3711	108.7	63.1	373.4	3067	$1.389 \cdot 10^{4}$	$3.98 \cdot 10^{6}$	4065.6	7422.8

Generalized Maxwell calibration

No more jumps in the rheometer simulations (higher quality simulations

	material 1	material 2	material 3	material 4	
$RMSD_{G'}$	9.65 %	7.01 %	10.39 %	4.38 %	
RMSD _{G"}	9.82 %	6.36 %	9.43 %	9.94 %	

Error drastically reduced over a variety of materials

Extrusion simulation setup

Extrusion simulation material 1

Compression phase: dynamic viscosity

$$\mu' = \frac{G''}{\omega} = \sum_{i=1}^{4} \frac{\mu_i}{1 + (\omega \tau_i)^2}$$

For material 1 ($\mu'_1 \mid_{\omega=10} = 399 \ Pa \ s$

Extrusion simulation material 1

Relaxation phase: viscosity

$$\mu(\dot{\gamma}) |_{\dot{\gamma} \to 0} = \mu'(\omega) |_{\omega \to 0} = \sum_{i=1}^{4} \frac{\mu_i}{1 + (\omega\tau_i)^2}$$
$$= \sum_{i=1}^{4} \mu_i$$
For material 1 ($\mu_1 = 4256 \ Pa \ s$

Extrusion simulation material 4

Gravity driven flow material 2

DCS Computing GmbH

Obtained results:

- More robust Generalized Maxwell model to fit rheological properties
- Good agreement between simulation and rheometer experiment
- Material in process behaves according to predicted properties

To be improved:

- High compressibility of material
- Calibration for non-rheometer materials

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska Curie grant agreement No. 812638.

The end Questions? CALIPER DESIGN CREATE COMPUTING SIMULATE Graz