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source: https://www.mdpi.com/1996-1944/9/5/334 Source: T. Osswald & N. Rudolph, Polymer Rheology, 2014

• Experiments to measure rheological properties are not always enough to predict flowin a complex process
• Some materials are not “rheometer friendly”
• Experiments are limited in stress and applied frequency depending on the material

Introduction

https://www.mdpi.com/1996-1944/9/5/334
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Mesh-based methods (Eulerian) Particle-based methods (Lagrangian)

• Complex tensor-modified Navier-Stokes equations
• Tricky to apply in processes withrotating parts
• Challenging when describinggranular matter

• Strictly limited to granular ordispersed phases
• Particles size defined by ensembleto describe
• Need for calibration to match realphysics

New “hybrid”model approachwith bondedparticles

Introduction
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• Particles are solid DEM spheres without overlap contact force
• Bond is formed at increased radii overlap
• Bond initialized with zero force
• At each bond, a visco-elastic constitutive equation is solved

Source:https://www.sciencedirect.com/science/article/pii/S0032591013004683?via%3Dihub

Bond Initialization

https://www.sciencedirect.com/science/article/pii/S0032591013004683?via%3Dihub
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Burgers model implementation
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Test case and post-processing
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Constant volume oscillating compressiontest at decreasing particles size to check forsolution convergence
Analytical: 𝜎 = 𝐸𝜀

Elastic Burgers:
• Divide constitutive relation by 𝜇𝑚𝜇𝑘

• Let 𝜇𝑚,𝜇𝑘 →∞

• Integrate twice in time
𝜎 = 𝑘𝑚𝜀

Particles size effect
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1. Read experimental data from oscillatoryrheometer test
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Calibration strategy
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Burgers model not suited for large dataset

Full frequency range fitting Sub-set frequency fitting
Burgers model analytical fitting
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Limit 1:
Non constant parameters through the dataset

Limit 2:
Jumps in simulated data due to suddenchange in parameters

Burgers model calibration limits
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Generalized Maxwell maintainsaccuracy through the whole dataset
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Generalized Maxwell calibration
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No more jumps in the rheometersimulations  higher quality simulations

Error drastically reduced over avariety of materials

Generalized Maxwell calibration
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Compression phase: dynamic viscosity

For material 1  𝜇′1  𝜔=10 = 399 𝑃𝑎 𝑠

Extrusion simulation material 1



DCS Computing GmbH www.dcs-computing.com 16

𝜇 �̇�  �̇�→0 = 𝜇′ 𝜔  𝜔→0 =
4

𝑖=1

𝜇𝑖
1 + 𝜔𝜏𝑖 2

=
4

𝑖
𝜇𝑖

For material 1  𝜇1 = 4256 𝑃𝑎 𝑠

Extrusion simulation material 1

Relaxation phase: viscosity
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𝜇4 = 2144 𝑃𝑎 𝑠𝜇′4  𝜔=10 = 1606 𝑃𝑎 𝑠

Extrusion simulation material 4
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𝜔  𝑟𝑎𝑑/𝑠
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Gravity driven flow material 2
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Obtained results:
• More robust Generalized Maxwell model to fit rheological properties
• Good agreement between simulation and rheometer experiment
• Material in process behaves according to predicted properties
To be improved:
• High compressibility of material
• Calibration for non-rheometer materials

Summary and future work
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The end
Questions?
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