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Abstract 
A human is a thing that moves in space. Like all things that move in space, we can in principle use 

differential equations to describe their motion as a set of functions that maps time to position (and 

velocity, acceleration, and so on). With inanimate objects, we can reliably predict their trajectories 

by using differential equations that account for up to the second-order time derivative of their 

position, as is commonly done in analytical mechanics. With animate objects, though, and with 

humans, in particular, we do not know the cardinality of the set of equations that define their 

trajectory. We may be tempted to think, for example, that by reason of their complexity in cognition 

or behaviour as compared to, say, a rock, then the motion of humans requires a more complex 

description than the one generally used to describe the motion of physical systems. In this paper,  

we examine a real-world dataset on human mobility and consider the information that is added by 

each (computed, but denoised) additional time derivative, and find the maximum order of 

derivatives of the position that, for that particular dataset, cannot be expressed as a linear 

transformation of the previous. In this manner, we identify the dimensionality of a minimal model 

that correctly describes the observed trajectories. We find that every higher-order derivative after 

the acceleration is linearly dependent upon one of the previous time-derivatives. This measure is 

robust against noise and the choice for differentiation techniques that we use to compute the time-

derivatives numerically as a function of the measured position. This result imposes empirical 

constraints on the possible sets of differential equations that can be used to describe the kinematics 

of a moving human. 
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1. Introduction 
If a kinematic system is a physical system that possesses some conserved quantities such as 

momentum or energy, it is then possible to derive its equations of motion analytically by using the 

Hamiltonian or Lagrangian formalism of classical mechanics. If the same system does not possess 

conserved quantities, then neither can be applied to describe the kinematic of the system (but see 

Sandler (2014) for extensions of the Lagrangian approaches to include dissipative systems such as 

living systems). And yet, some systems without conserved quantities present regularities in their 

trajectories; that is to say, the objects that comprise them may not move randomly and can thus not 

be described as simply undertaking Brownian motion. Humans that move in space are some such 

objects: because their motion and the selection of paths appears teleologically oriented to reaching 

some destinations (Golledge, 1995), and because the study of human mobility identified several 

factors that explain it (Golledge, 2003), it appears intuitively that it should be possible to describe 

such motion in terms of the mathematical language that is commonly used to describe the a motion 

of kinematic systems: the language of differential equations, by means of which the trajectory of a 

moving object can be modelled. Because we cannot however rely on the theoretical formalisms 

that are used to describe the motion of an inanimate system, we cannot aprioristically impose 

constraints on the shape that the equations of motion that describe a moving human should possess. 

In the Lagrangian formalism, for example, the equations of motion are derived by first setting up 

the Lagrangian of a system in terms of its potential and kinetic energy, and by then partial 

differentiating it with respect to the generalised coordinates and velocity, and by finally applying 

the Euler-Lagrange to extract the equations of motion. This, however, implies prior knowledge of 

the shape that the Lagrangian has, as a time-varying difference between the kinetic and potential 

energy of the system. In Hamiltonian formalism, similar reasoning is based upon the principle of 

conservation of energy, such that the total kinetic and potential energy of a system remains 

unvaried. And yet, these two approaches cannot possibly work out-of-the-box to describe human 

motion: humans, in fact, are not necessarily systems with conserved quantities; and even though 

their motion appears characterised by regularities, these regularities may not satisfy any of the 

symmetries that are commonly associated with the motion of physical systems with conserved 

quantities. 

We would however appreciate it greatly if some Aristotle or some Newton came with a set of 

equations that describe the motion of a human as a function of time: this would let us, among other 

things, help solve the problem of modelling the trajectory of a human given the time series 



containing its position, without having to rely on deep learning as is instead done today (Chen, Li, 

Lu, & Zhou, 2021; Rossi, Paolanti, Pierdicca, & Frontoni, 2021). A legitimate question thus arises, 

in an attempt to find these equations of motion: how many these equations should be, and what 

would they look like? If we had this number, we could begin searching for them by means of 

regression over the observed or measured trajectories of the humans that roam around. 

In this paper, we answer this question on the basis of the empirical trajectories measured about 

some humans, as retrieved from an openly-accessible dataset of human trajectories. In doing so, 

we explain that the dimensionality of a set of equations of motion for a moving human is finite and, 

for the particular dataset that we use as the empirical component of the research, we describe a 

method for identifying how many these equations are. 

2. The Kinematic Modelling in Mechanics 
The development of a measuring apparatus that observes the position of humans with high 

frequency and with high resolution call for research on the kinematics of human mobility. Some 

apparatus, such as the GPS contained in cheap smartphones, allow sampling of the position of a 

static object with an accuracy comprised within 1 to 4 centimetres of the ground truth (Uradziński 

& Bakuła, 2020). For a smartphone that measures position via a dual frequency GPS/Galileo 

system, the accuracy in kinematic motion is instead in the order of a metre (Elmezayen & El-

Rabbany, 2019). Technologies alternative to the GNSS that allow tracking the position of a moving 

human also exist, and include the ultra-wide band ground radar (Chang, Wolf, & Burdick, 2010) 

or multimodal sensors that make use of lidar-radar fusion (Kwon, Hyun, Lee, Lee, & Son, 2017). 

Motion sensors attached to the human body can also be used for this purpose.  

Knowledge of the instantaneous position of a human, knowledge of the instantaneous velocity and 

of some unknown additional number of time-derivatives of the position, determine the position of 

that same human at the next instant. In the real world, where the continuous sampling of a variable 

is not possible, it is sufficient to perform a frequent enough measurement so as to minimise the 

incidence that partial observation of the system has on the reliability of the statistical 

generalisations that are drawn from the measured samples (Abeliuk, Huang, Ferrara, & Lerman, 

2020). As measuring apparatuses become increasingly more accurate, and sample at an 

increasingly higher resolution, this assumption will become increasingly more appropriate. In the 

simulated worlds, even today, this assumption is valid as it stands: if one had a set of equations that 

describe the time-evolution of the position of a human, and its associated time-derivatives, one 



could then integrate them numerically by using any arbitrarily small time interval and thus derive 

simulated trajectories that correspond to the ones described by the equations of motion. 

However, we do not have these equations, no matter how much we would like them. Luckily, for 

inanimate objects, there came Newton who stated that the second order time derivative of the 

position of an object is proportional to some force that is applied on that object, such that: 

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

(𝑡𝑡) = 𝑘𝑘𝑘𝑘(𝑡𝑡) 

It can then be observed that by measuring the extent of the force with independent apparatus (e.g., 

a spring), and by measuring the weight of an object with another independent apparatus (e.g., a 

scale), this relationship is empirically observable if and only if the proportionality constant 𝑘𝑘  

corresponds to the constant ratio between some fixed number 𝑔𝑔, common for all objects and 

independent of size or weight or speed, and the number 𝑊𝑊 corresponding to the weight of that 

object as measured on a graded scale. Under this condition, the proportionality constant 

corresponds to 𝑘𝑘 = 𝑔𝑔
𝑊𝑊

= 1
𝑚𝑚

, and the previous equation thus becomes the familiar: 

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

(𝑡𝑡) =
𝑘𝑘(𝑡𝑡)
𝑚𝑚

 

If an analytical expression for 𝑘𝑘(𝑡𝑡) can be provided, such as “the force does not change with time 

and is thus constant”, then 𝑘𝑘(𝑡𝑡) = Constant and the equation describes the motion of an object 

with uniform acceleration (e.g., in free fall). By then integrating twice with respect to time, and by 

solving for two independent boundary conditions (in this case, the position and the velocity), the 

two constants of integration can be determined. Then, this twice-integrated differential equation 

with the two constants of integration that correspond to the boundary conditions yields the equation 

that maps time to the position of an object, and allows to predict it infinitely in the future and in 

the past, insofar as the underlying dynamic of its motion remains unchanged. 

3. The Kinematic Modelling of Human Motion 
We don’t however have a Newton who can explain to us what are the rules that the equations 

describing a moving human should follow; therefore, we are allowed to start reasoning from the 

empirical measurements concerning human trajectories first and then try to generalise them into 

some kind of expressions that would work regardless of the particular human or the particular 

trajectories that one observes. We would very much like to be able to do something similar to what 

is done in classical and analytical mechanics for human motion, in the sense that we would like to 

be able to express the trajectories followed by moving humans in terms of equations that associate 



time to position and its time derivatives. Certainly, there are empirical constraints that correspond 

to the shape that these equations can have: for example, we know that the speed of a human moving 

on foot is in the range [0,11] 𝑚𝑚𝑠𝑠−1 , where the upper bound is slightly above the average speed of 

Usain Bolt during the competition that won him the Olympic medal (Eriksen, Kristiansen, 

Langangen, & Wehus, 2009). This implies that the module of the first-order time derivative of the 

position is always contained within that range, and this imposes constraints on the possible 

functions that can describe it; for example, the time derivative of the position cannot be a strictly 

increasing linear function of time. We also know that a human that is subject to acceleration or jerk 

higher than a certain threshold that varies according to their angle with that human’s orientation, 

can cease to be a human very rapidly (Eiband, 1959). While this latter statement does not 

necessarily apply to the motion of humans on foot, it is nonetheless important to think that the 

system we study has some physical constraints that make its motion strongly non-random, even 

without considering the constraints that derive from the behavioural analysis conducted within 

social sciences, such as the observation that each human is found predominantly within one of two 

and only two locations at any given time, which we commonly refer to as “home” and “work” (or 

school, or equivalent) (Bagrow & Lin, 2012). But also, there are constraints on the equations that 

derive from the sake of our convenience: for example, we would like to have a system of equations 

that is as small as it possibly can (but not any smaller!), both in terms of the number of equations 

and its symbolic representation. 

If, for example, we are describing the motion of a stationary human who is always found at position 

𝑥𝑥(𝑡𝑡) = 𝑥𝑥0, then it would be sufficient to express the (degenerate) equation of motion for that human 

as its corresponding differential equation 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 with the given boundary condition that 𝑥𝑥(𝑡𝑡0) =

𝑥𝑥0, and not for example as the system: 
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 0  

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

= 0 

The second equation, while true, does not provide any additional information that is not already 

contained in the first. This consideration may seem trivial, but as we approach the problem of 

identification of the equations of motion for a human, we should keep in mind this particular 

example: the reason why a differential equation involving the second-order time derivative of the 

position does not matter, in this particular example, is that it can be expressed as a linear function 



of the first-order time derivative: 𝑑𝑑
2𝑑𝑑
𝑑𝑑𝑑𝑑2

 =  𝑎𝑎 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 +  𝑏𝑏, with 𝑎𝑎 = 1 and 𝑏𝑏 = 0. It will become apparent 

later why this particular method for expressing the relationship between acceleration and velocity 

is chosen. The acceleration thus contributes nothing, in this particular example, in terms of 

predictive power over the future position of that human, and should thus not be included in the set 

of equations that describe their motion. 

If, however, the human was moving at a constant velocity 𝑣𝑣0, it would then make sense to express 

its position as 𝑥𝑥(𝑡𝑡) = 𝑥𝑥0 + 𝑣𝑣0𝑡𝑡 and its corresponding differential equation as: 
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 𝑣𝑣0 

Or, equivalently, to treat 𝑥𝑥0 and v0 as boundary conditions and express the system instead as: 

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

= 0 

These last two expressions are equivalent. It would not make sense to include the third-order time 

derivative of the position, since it is unchanged and, notably, because it can be expressed as a linear 

function of the acceleration. 

In other words, we would like to find a set of equations of motion that is the smallest possible set 

that provides enough predictive power into the trajectory of a moving human: if two such sets exist, 

we choose the one that, after appropriate substitutions of the various variables contained in it, can 

be maximally simplified and can thus contain the smallest number of differential equations. The 

question that we address in the next sections is: what is this number, in relation to a set of real-

world human trajectories? And more generally, how can we find this number in absence of a theory 

of human motion that is analogous to the kinematic theories that are used for studying inanimate 

objects? 

4. Data and methods 
The source of empirical data that we use to answer this question is MobilityModels (Rhee et al., 

2009), a dataset of 225 GPS trajectories that correspond to the motion of as many distinct 

individuals who volunteered for the purpose of recording their trajectories. The trajectories relate 

to five different locations: the university campuses of NCSU and KAIST, plus the urban area of 

New York, Disney World in Orlando, and the state fair in North Carolina. This dataset found 

previous usage in Chon, Shin, Talipov, and Cha (2012), where it was used to validate the 

applicability of Markov models; and also to validate the NextLocation models previously 

developed by Scellato, Musolesi, Mascolo, Latora, and Campbell (2011). In our case, however, 



consistent with the theoretical reasoning initiated in the previous section, we want to use this dataset 

in order to find constraints on the characteristics that the equations of motion describing the 

trajectories of all observed humans can have. The approach that we follow is grounded upon the 

bottom-up identification of rules for the dynamic evolution of non-linear systems, initially 

developed by Brunton, Proctor, and Kutz (2016), or the weaker version of SINDy, developed for 

the purpose of classifying individuals in a population (Messenger, Wheeler, Liu, & Bortz, 2022). 

Here we follow their underlying insight, that the identification of sparse and most simple rules can 

be done from measurements and from measurements alone if theories on the underlying dynamics 

are absent, but the specific implementation of the approach that we propose here is part of the 

innovative contribution of this research. 

In each trajectory, the position of the humans is sampled with respect to a frame of reference that 

is stationary with respect to Earth. The position is measured along two orthogonal bases, and we 

do not have information as to the orientation of the frame of reference with respect to the geodetics 

of Earth, nor do we have information as to whether the same frame of reference is used in all 

trajectories that belong to the same region. 

 
Image 1: representation of the position and displacement of one of the trajectories contained in the dataset. 

 

The trajectories contained in this dataset are sampled at Δ𝑡𝑡 =  30 𝑠𝑠, which is not particularly 

frequent; but for the purpose of this discussion, they will suffice. We are relying on a dataset 

collected by others and assume that the measurement of the position of humans at higher 



frequencies is possible: for this paper, we are not interested in the specific form for the equations 

of motion that we identify; but rather, in finding constraints that these equations must have in order 

to facilitate their identification and make them learnable. We then compute the velocities and the 

higher-order time derivatives by the smoothed finite-difference method (Farjadpour et al., 2006), 

which has the advantage over the finite-difference approximation of being more resistant to noise 

in the measurements. We assume that some system of differential equations such as the one shown 

below, corresponding to unknown functions of the position and its various time derivatives, 

represent the kinematic of this system: 

 

 
If the problem is posed in this manner, and if the possible functions that correspond to the various 

functions of time and state variables are sparse in the domain of possible functions, then there are 

known techniques to learn these functions automatically on the basis of some sufficiently fine sets 

of measurements (Brunton et al., 2016). The applicability of the latter, however, depends upon the 

knowledge of the size of the set of equations that define the system; in this case, upon the prior 

knowledge of 𝑛𝑛, the order of the highest order time derivative that figures explicitly in the set of 

equations of motion. 

We are particularly interested in identifying linear differential equations that allow expressing some 

higher-order time derivatives in terms of the lower-order ones; if they exist, and if they can 

consistently be found for all time derivatives higher than a certain order 𝑛𝑛, then this imposes 𝑛𝑛 as 

the dimensionality of the set of equations of motion that define the system. In other words, if it can 

be found that, for every 𝑚𝑚 ≥ 𝑛𝑛, there exists some 𝑘𝑘 ∈ N0 such that 𝑑𝑑
𝑚𝑚+𝑘𝑘𝑑𝑑
𝑑𝑑𝑑𝑑𝑚𝑚+𝑘𝑘 = 𝑎𝑎 𝑑𝑑𝑚𝑚𝑑𝑑

𝑑𝑑𝑑𝑑𝑚𝑚
+ 𝑏𝑏, then each 

higher order derivatives of 𝑥𝑥 above the 𝑛𝑛-th can be expressed in terms of a lower one, and then the 

dimensionality of the minimal set of equations of motion that describe the system is 𝑛𝑛. The 

existence of such a relationship can be determined by means of pair-wise linear regression over the 

various time derivatives, which would result in identifying a coefficient 𝑎𝑎 in the equation above, 

close to |𝑎𝑎| = 1, for higher-order derivatives that are linear in terms of some lower-order ones. 



The hypothesis appears plausible via preliminary data analysis: 

  
Image 2: plot of the two components of the position and their time derivatives of the first trajectory in the dataset. 

We test this hypothesis and see if some value of 𝑛𝑛 can be identified for the dataset that we analyse. 

We study two versions of the trajectories and the associated time derivatives: a raw version, 

corresponding to the measurements contained therein, and a noise-filtered version that makes use 

of Kalman filtering, as commonly done when processing GPS signals (Moreno & Pigazo, 2009). 

This type of filtering assumes that the noise is Gaussian-distributed, which is a reasonable 

hypothesis in absence of evidence against it. The code by which the figures in the next section were 

generated is available on GitHub for the purpose of facilitating replication of the results.1 

5. Results 
The pair-wise Pearson correlation between the components of the position and each of its time 

derivatives was computed up to the 9-th time derivative. For the first trajectory, the correlation 

matrix shows a strong linear relationship between each time derivative and its corresponding 

acceleration (twice-differentiation): 

 
1 https://github.com/G-DL/Traces/blob/main/Traces3.ipynb 



  
Image 3: Correlation matrix between the position and its time derivatives for the first, non-Kalman filtered trajectory 

in the dataset. 
 

We computed the average correlation matrix for all the trajectories in the dataset, and extracted one 

for the unfiltered and one for the Kalman-filtered version of the trajectories. The figure below 

shows the two correlation matrices per component of the position: 

Component 𝒙𝒙(𝒕𝒕) 𝒚𝒚(𝒕𝒕) 

Unfiltered 

  
Filtered 

  



Image 4: average correlation matrices between each component of the position and its corresponding 

time-derivatives, as computed over the unfiltered and the Kalman-filtered trajectories of the dataset. 

 

6. Discussion 
For both the unfiltered and the filtered version of the trajectories, there is a strong linear relationship 

between some 𝑛𝑛-th order time derivative and its corresponding twice-derivative, which remains 

true for all tested derivatives from that order onward. For the unfiltered version of the dataset, this 

relationship is already identifiable starting from 𝑑𝑑
4𝑑𝑑
𝑑𝑑𝑑𝑑4

= 𝑎𝑎 𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2

+ 𝑏𝑏 onward; while for the filtered 

version of the dataset this relationship emerges between 𝑑𝑑
2𝑑𝑑
𝑑𝑑𝑑𝑑2

= 𝑎𝑎 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑏𝑏, between the velocity and 

the acceleration. Then, it follows the same pattern as for the unfiltered dataset and has the structure 

of 𝑑𝑑
𝑚𝑚+2𝑑𝑑
𝑑𝑑𝑑𝑑𝑚𝑚+2 = 𝑎𝑎 𝑑𝑑𝑚𝑚𝑑𝑑

𝑑𝑑𝑑𝑑𝑚𝑚
+ 𝑏𝑏 for 𝑚𝑚 >= 3. This is an argument in favour of the existence of an unknown 

set of equations that describe the motion of humans in this trajectory, and in particular of the 

existence of one such set whose dimensionality is 3. This implies that, even though a human is not 

a deterministic system because its motion does not necessarily satisfy the conservation principles 

that describe them, there still are some unknown equations of motion that can describe the 

movement of humans as a function of time, and which result in the empirical trajectories being 

observed. The continuation of this study will consist of the expansion of the methodological 

approach proposed here to larger datasets comprising more trajectories and higher frequency 

sampling, and also in the concrete identification of the components of the equations of motion 

described here; for example, with the application of techniques for the sparse identification of non-

linear functions that describe the evolution of a dynamical system. 

 

References 
Abeliuk, A., Huang, Z., Ferrara, E., & Lerman, K. (2020). Predictability limit of partially observed 

systems. Scientific reports, 10(1), 1-10.  
Bagrow, J. P., & Lin, Y.-R. (2012). Mesoscopic structure and social aspects of human mobility. 

PLoS One, 7(5), e37676.  
Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Discovering governing equations from data by 

sparse identification of nonlinear dynamical systems. Proceedings of the National Academy 
of Sciences, 113(15), 3932-3937.  

Chang, S., Wolf, M., & Burdick, J. W. (2010). Human detection and tracking via ultra-wideband 
(UWB) radar. Paper presented at the 2010 IEEE International Conference on Robotics and 
Automation. 



Chen, G., Li, J., Lu, J., & Zhou, J. (2021). Human trajectory prediction via counterfactual analysis. 
Paper presented at the Proceedings of the IEEE/CVF International Conference on Computer 
Vision. 

Chon, Y., Shin, H., Talipov, E., & Cha, H. (2012). Evaluating mobility models for temporal 
prediction with high-granularity mobility data. Paper presented at the 2012 IEEE 
International Conference on Pervasive Computing and Communications. 

Eiband, A. M. (1959). Human tolerance to rapidly applied accelerations: a summary of the 
literature. (19980228043). Cleveland, OH United States: NASA Lewis Research Center 
Retrieved from 
https://ntrs.nasa.gov/api/citations/19980228043/downloads/19980228043.pdf 

Elmezayen, A., & El-Rabbany, A. (2019). Precise point positioning using world’s first dual-
frequency GPS/GALILEO smartphone. Sensors, 19(11), 2593.  

Eriksen, H. K., Kristiansen, J., Langangen, Ø., & Wehus, I. (2009). How fast could Usain Bolt have 
run? A dynamical study. American Journal of Physics, 77(3), 224-228.  

Farjadpour, A., Roundy, D., Rodriguez, A., Ibanescu, M., Bermel, P., Joannopoulos, J. D., . . . Burr, 
G. W. (2006). Improving accuracy by subpixel smoothing in the finite-difference time 
domain. Optics letters, 31(20), 2972-2974.  

Golledge, R. G. (1995). Path selection and route preference in human navigation: A progress 
report. Paper presented at the International conference on spatial information theory. 

Golledge, R. G. (2003). Human wayfinding and cognitive maps. In The Colonization of Unfamiliar 
Landscapes (pp. 49-54): Routledge. 

Kwon, S. K., Hyun, E., Lee, J.-H., Lee, J., & Son, S. H. (2017). Detection scheme for a partially 
occluded pedestrian based on occluded depth in lidar–radar sensor fusion. Optical 
Engineering, 56(11), 113112.  

Messenger, D. A., Wheeler, G. E., Liu, X., & Bortz, D. M. (2022). Learning Anisotropic Interaction 
Rules from Individual Trajectories in a Heterogeneous Cellular Population. arXiv preprint 
arXiv:2204.14141.  

Moreno, V. M., & Pigazo, A. (2009). Kalman filter: recent advances and applications.  
Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S., & Chong, S. (2009). CRAWDAD data set 

ncsu/mobilitymodels (v. 2009-07-23). Retrieved from: 
https://crawdad.org/ncsu/mobilitymodels/20090723 

Rossi, L., Paolanti, M., Pierdicca, R., & Frontoni, E. (2021). Human trajectory prediction and 
generation using LSTM models and GANs. Pattern Recognition, 120, 108136.  

Sandler, U. (2014). Generalized Lagrangian dynamics of physical and non-physical systems. 
Physica A: Statistical Mechanics and its Applications, 416, 1-20.  

Scellato, S., Musolesi, M., Mascolo, C., Latora, V., & Campbell, A. T. (2011). Nextplace: a spatio-
temporal prediction framework for pervasive systems. Paper presented at the International 
conference on pervasive computing. 

Uradziński, M., & Bakuła, M. (2020). Assessment of static positioning accuracy using low-cost 
smartphone GPS devices for geodetic survey points’ determination and monitoring. Applied 
Sciences, 10(15), 5308.  

 

https://ntrs.nasa.gov/api/citations/19980228043/downloads/19980228043.pdf
https://crawdad.org/ncsu/mobilitymodels/20090723

	How Many Equations of Motion Describe a Moving Human?
	Abstract
	1. Introduction
	2. The Kinematic Modelling in Mechanics
	3. The Kinematic Modelling of Human Motion
	4. Data and methods
	5. Results
	6. Discussion
	References


