ADAPTIVE SMART PRODUCTION 2

Setting the ISO standards for fuel cell stacking process -Development of modular cleanroom based on ISO 14644

Muaaz Abdul Hadi¹, Rigon Gashi¹, Konrad Bahle², Elisei Ember¹, Markus Brillinger¹, Franz Haas², Martin Weinzerl³

Pro2Future GmbH¹, TUG-IFT (Institute for Production Engineering)², AVL List GmbH¹

- ¹ Pro²Future GmbH, Inffeldgasse 25F, 8010 Graz
- ² Graz University of Technology, Kopernikusgasse 24/I, 8010 Graz
- ³ AVL List GmbH, Hans-List-Platz 1, 8020 Graz

MOTIVATION & GOAL

The focus towards the Sustainable Development Goals and Circular Production is addressed by the ASP2 Project. At ASP2, the goal is to develop a resilient adaptive system of the fuel cell stacking process that must be integrated with the existing battery stacking process. The concept of **ISO standard cleanroom** for stacking process is also **prototyped** at the institute. In ASP2, we focus on:

- Development of flexible handling technology for gripping of BPP and MEA layers
- Analysing the **necessity** of a clean environment, i.e., cleanroom for the stacking operation
- Development of a modular cleanroom with ISO standards
- A **GUI** (Graphical User Interface) of **real-time monitoring** of cleanroom which also indicates the control environment of the filtering and high-efficiency blower system

Project Name ASP 2 Project ID MFP II 4.2.3 Duration 24 Months

Project FactBox

Area 4.2 **Cognitive Production Systems**

Project Lead DI Dr. Markus Brillinger

APPROACH of STUDY

The basic approach is to **utilize** the data generated from the **sensory system** to enhance the stacking process via the developed user model.

- 3 sensory capsules with 6 sensors in each capsule record the data and displays it on a GUI with real-time monitoring and control
- Temp ${}^{\circ}C$, humidity ${}^{\prime}M$, pressure ${}^{\prime}Pa$, velocity of airflow - m/s, light intensity - lux, and particulate matter – μm are monitored.
- Through the GUI, **airflow** m^3/hr is controlled.

Via sensors Data Wireless transmission Identification **Information** Labelling **Data Structuring** Knowledge • GUI Data Visualizatio Indication of anomalies ISO 6-8 standard system maintenance (ISO 14644) **Process Control** Fig 2: Process flowchart,

Fig 1: Unit Cell Components

source: AVL List GmbH

CONTRIBUTION

Scientific contribution

resource-efficient The provision of cleanroom technology (to ensure the longevity of fuel cells) and the adaptation of current handling technology (to ensure the greatest possible flexibility for new product designs).

Economic contribution

Cleanrooms are energy consuming spaces. Developing station-specific cleanroom could save over 70% of the energy costs.

SYSTEM ARCHITECTURE & PROTOTYPE DEVELOPMENT

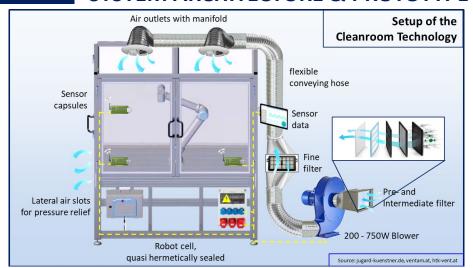


Fig 3: Cleanroom environment model, source: Bahle, Abdul Hadi

Fig 4: GUI and visualization environment, source: Abdul Hadi, Gashi

Contact: DI Muaaz Abdul Hadi, Pro2Future GmbH, muaaz.abdulhadi@pro2future.at, +43 316 873-9166 Acknowledgement: This work was supported by Pro²Future (FFG, 881844) TU Graz, and AVL List GmbH.

