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Abstract
In an internal hybrid capacitor, at least one electrode displays
battery-like charge/discharge and the other electrode stores
charge reversibly at the electric double layer (EDL). Recently, a
plethora of hybrid cells in aqueous electrolytes have been
proposed by coupling an EDL electrode with a battery elec-
trode, the latter made from a variety of redox-active/redox-
mediator species either dissolved in the electrolyte or adsor-
bed/immobilized in nanoporous electrodes. This review pre-
sents current opinions, discusses challenges, and supplies
recommendation about the hybrid cells with aqueous electro-
lytes and carbon electrodes.
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Introduction
Electrical energy storage systems are essential support
in modern devices to ensure reliability and uninter-
rupted energy supply [1e3]. Electrochemical capacitors
are adapted for systems where bursts of energy are
stored and delivered in short periods of time, and the
process is repeated for thousands of cycles [4e6]. The
capacitance of an electrical double-layer capacitors

(EDLCs) is dependent on the electrode/electrolyte
interface represented by surface area ‘S’ in equation
C = 3S/d. Therefore, carbon with high surface area (up
to w3500 m2 g�1) is the preferred electrode material to
achieve high values. Obviously, the cell capacitance of an
www.sciencedirect.com
EDLC represents a low value which is half of the indi-
vidual electrode capacitance (1/CEDLC = 1/C- þ 1/Cþ
and considering Cþ z C-; CEDLC z 1/2 C-/þ). To
compensate for low capacitance, commercial capacitors
implement organic electrolytes which enable reaching
high voltage and improve the energy performance.
Nevertheless, use of organic electrolytes raises envi-
ronmental concerns regarding toxicity of solvents and

cost issues due to the extensive drying of carbon
electrodes.

In this regard, aqueous electrolytesebased capacitors
offer great opportunity owing to low assembling cost,
eco-friendliness and reasonably large potential window
[7e11]. Thanks to the universal property of water for
dissolving salts, redox-active species can be easily mixed
to prepare electrolytes with high ionic conductivity
which favors fast redox reactions. Figure 1a shows the
difference between the charge/discharge curves of an

EDLC and a hybrid capacitor. In accordance with E= 1/2
CU2, energy density of electrochemical capacitors in
aqueous electrolytes can be enhanced by increasing
capacitance or/and voltage, and an effective way to
enhance capacitance is hybridization of battery-like
electrodes with an EDL one [12,13]. Owing to almost
constant potential of battery-like electrodes, the po-
tential window of the EDL electrode during charge/
discharge of the hybrid capacitor is approximately twice
longer than in a symmetric EDLC, leading to approxi-
mately twice higher discharge capacity (Qhybrid):

Qhybrid ¼ ChybridUy2 QEDLC ¼ C�=þU

Historically, hybrid capacitors are comprised of metal
oxideebased redox electrodes coupled with nanoporous
carbonebased EDL electrodes [14e17]. Razumov et al.
[16] and Pell and Conway et al. [14] proposed hybrid
capacitors using activated carbon as an EDL electrode
with NiOOH/Ni(OH)2 (alkaline media) or PbO2/
PbSO4 (acidic media) as the battery-like electrode, and
the key aspect in these devices has been the linear
charge/discharge curves on a voltageetime scale. In the
last decade, a number of hybrid capacitors have been
proposed in acidic or basic media by dissolving redox

species in the electrolyte or covalently bonding them at
the carbon material to transform charging to a battery-
Current Opinion in Electrochemistry xxxx, xxx:xxx
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Figure 1

(a Q9) Schematic illustration of charge/discharge curves (dashed black lines) of a hybrid electrochemical capacitor and an electrical double-layer capacitor
(EDLC) and charge/discharge curves of individual positive electrodes (red region) and negative electrodes (blue region). Green shaded area is the cell
discharge region used for energy/capacitance estimation; simplified charging mechanisms (b) at battery electrode of hybrid electrochemical cell (iodide
redox species), (c) negative electrode, and (d) positive electrode of an EDLC in a redox nonactive electrolyte.
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like electrode [18e26]. Hybrid capacitors have also
been proposed in aqueous solutions of neutral pH as
supporting electrolytes for redox-active halides to

achieve extended cell voltage [27e31], among which
iodide-based hybrid capacitors are of particular interest
owing to redox potential being close to the cell equi-
librium potential (potential at discharged state) and the
charge transfer between iodides and nanoporous carbon
electrode (Figure 1b).
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EDL electrode charging mechanisms and
enhanced cell voltage
Because the capacitance of a hybrid capacitor is
controlled by the EDL electrode, understanding its
charging mechanisms is important. Nanoporous car-
bons adsorb the partially desolvated ions electrostati-
cally [32,33]. In situ electrochemical quartz crystal
microbalance and in situ nuclear magnetic resonance
applied for neat EMI-TFSI and EMI-TFSI in aceto-

nitrile- and carbide-derived carbons with precise pore
sizes [34e37] have shown linear relationship between
charge and weight difference at negative polarization
of carbon electrode, indicating a permselective (only
cations) adsorption/desorption mechanism (Figure 1c).
In addition, a larger slope than the theoretical one
Current Opinion in Electrochemistry xxxx, xxx:xxx
proves adsorption of additional molecules at negative
polarity, proportional to the charge of the electrode
(3.7 solvent molecules per cation). Electrochemical

dilatometry has also confirmed that cations carry
additional solvent molecules into the carbon pores
during negative charging with the relative strain in-
crease from 3.4% to 4.2% after adding acetonitrile to
the ionic liquid [38]. Charging mechanism at the
positive polarization is mainly ion exchange, confirmed
by in situ nuclear magnetic resonance with PEt4eBF4

ionic liquid [37]. Under positive polarization, a loss of
mass due to the exchange of the heavier cations
(147.2 g/mol) with the lighter anions (86.8 g/mol)
confirms that the weight change depends on the mo-

lecular weight difference per charge of the cation and
the anion. Ion exchange at positive polarity goes on
until the depletion of cations, which is then domi-
nated by adsorption of anions (Figure 1d). Prehal et al.
have demonstrated with small-angle X-ray scattering
the change of ion concentration inside carbon pores
due to the local ion rearrangements in aqueous media
[39,40], and the charging mechanisms are found to be
dependent on the experimental condition, e.g., elec-
trolyte concentration, charging rate, and cell design
[41].
www.sciencedirect.com
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Besides EDL charging, additional redox reactions at the
negative electrode in aqueous electrolyte take place,
e.g., reversible hydrogen adsorption/desorption. The
simplified Nernst equation EH = �0.059 pH suggests
that reduction potential of aqueous electrolyte is
determined by the pH of the electrolyte [9], and water
reduction causes nascent hydrogen generation which
chemisorbs within carbon pores [42]. In addition, the

OH� anions accumulate within carbon pores resulting in
local pH shift [43]. The pH shift is significant for
neutral electrolytes, while for acidic solutions, pH does
not change during charging, as confirmed by comparing
1 mol L�1 Li2SO4 (pH = 6.5) and 1 mol L�1 BeSO4

(pH = 2.1), where the reduction potential (EH) differs
significantly (�0.383 V vs SHE for Li2SO4 and -0.124 V
vs SHE for BeSO4) [9]. The dihydrogen evolution in
Li2SO4 starts at ca. �0.8 V vs SHE, meaning an over-
potential of ca. �0.42 V vs SHE is achievable, while for
BeSO4, it starts at ca. �0.3 V vs SHE very close to the

EH, with less overpotential. The advantageous effects of
aqueous electrolyte pH have been harnessed in
bifunctional electrolytes either to enhance capacitance
or to access large voltage for hybrid capacitors. Clearly,
hydroquinone-based, methylene blueebased, and
iodide-based hybrid cells have exhibited enhanced
capacitance when assembled with acidic media H2SO4

[20,21,44], iodides with MnSO4 (pH = 3.0) [45], or p-
phenylenediamine (PPD) in aqueous KOH [26]. On the
other hand, hybrid capacitors using bifunctional elec-
trolytes with neutral solution acting as supporting

electrolyte (pH= 6.5e7.0) exhibit enhanced voltage up
to 1.5e1.6 V [29,46e48], and with concentrated
20 mol kg�1 NaTFSIþ 0.8 mol kg�1 KI up to 1.8 V [49].
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Equilibrium potential and hybrid cell
performance
The battery-like electrode in a hybrid cell works in
narrow potential range, e.g., in bromine system, around
the redox potential of Br�/Br3- , which is E0 = 0.89 V vs.
Ag/AgCl [50]. However, the large potential window of
positive electrodes to reach bromide redox potential
implies the equilibrium potential or potential of zero
charge must be lifted such that the positive electrode

works in a small potential range and the negative elec-
trode can go through a large potential window. Yamazaki
et al. used 1% bromine water to preimpregnate the
positive carbon electrode which worked in narrow po-
tential window and the hybrid capacitor was discharged
down to 0.5 V with improved capacitance and coulomb
efficiency. Indeed, the adsorption of species on carbon
decreases the redox potential by w0.1 V [24]. Yoo et al.
and Evanko et al. used phase change inside the pores to
keep the redox species at the electrodes by imple-
menting tertiary aminesecomplexing agents such as 1-
ethyl-1-methylpyrrolidiniumbromide (MEPBr) produc-

ing second liquid phase [51,52]. TBABr (n-Bu4NBr)
[51] and HVBr2 (1,10-diheptyl-[4,40-bipyridine]-
www.sciencedirect.com
dibromide) were also used [52] to produce solid-phase
TBABr3 which is retained in the pores of carbon upon
charging because of strong interaction of Br3

- , improving
cycling stability and slowing self-discharge.

In contrast to bromides, equilibrium potential of hybrid
cell in aqueous iodides is close to the redox-active po-
tential region (Figure 2a,d), which makes the cell an

almost-perfect hybrid capacitor with linear charge/
discharge curves [18,29]. Although hybrid capacitor with
0.08 M KI þ H2SO4 exhibited twice higher capacitance
than a symmetric one with H2SO4 [21], the issue of low
voltage in these systems was only resolved by using
bifunctional aqueous KI þ Li2SO4 which worked at
1.6 V and exhibited capacitance comparable with the
organic electrolyteebased EDLC charged up to 2.5 V
[29]. Carbon electrodes in hybrid capacitors with
asymmetric configuration improved long-term perfor-
mance owing to better iodide immobilization in meso-

porous positive electrodes and enhanced EDL
capacitance of microporous negative electrodes [47].
Lately, a hybrid capacitor showing high capacitance of
50 F g�1 at 1.5 V and �40 �C was realized with choline
cationebased electrolyte (choline nitrate þ choline
iodide) [53]. Similar to the strategy of Yamazaki et al.
with bromide system, shuttling of iodides was prevented
by electrochemically immobilizing them in the nano-
pores of carbon which was then used as a positive
battery-like electrode in neat NaNO3 aqueous electro-
lyte [54]. Such approach is well justified as iodides

adsorb deep in the nanopores [55], which is confirmed
also by the gas adsorption analysis on the floated/cycled
carbon electrode [45,56]. Redox potential of iodides
located close to equilibrium potential also requires
careful selection of operation parameters (Figure 2b,e &
2c,f) where a slight capacity imbalance of electrodes
may drive negative electrode to work in the iodide-redox
region, which could hamper the hybrid cell performance
[57]; this can be avoided with a voltage cut at appro-
priate values [58].

Hydroquinone dissolved in H2SO4 makes good redox-

active electrolyte for hybrid capacitors to achieve high
capacitance [20]; however, the self-discharge and the
loss of capacitance during cycling is quite high [19]. To
improve cycling characteristics, ion-exchange mem-
branes were used [22] or the carbon electrode grafted
with quinones was implemented [23]; the latter strat-
egy results in strong covalent bonding between qui-
nones and carbon which prevents shuttling. Composite
of anthraquinone with reduced graphene oxide and
carbons with quinone functionalities have demonstrated
enhanced capacitance as electrode materials [59e61].
Hybrid device based on LiMn2O4 as a positive electrode
and anthraquinone-modified carbon as a negative elec-
trode in 1 mol L�1 Li2SO4 is a good strategy to enhance
energy and power parameters [62], and determining
correct amount of anthraquinone loading on carbon
Current Opinion in Electrochemistry xxxx, xxx:xxx
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Figure 2

Shift of equilibrium potential (potential of electrodes at zero voltage) leading to changed electrochemical charge/discharge. Cyclic voltammograms in two-
electrode cell (upper panels) and two-electrode cell with reference electrode (lower panels) for hybrid capacitor (a,d) and two cases of a hybrid device
which is as a result of equilibrium potential shift away (b,e) or toward (c, f) the redox potential of active iodide species. An imbalance of relative capacities
of electrodes due to net charge difference during hybrid cell operation leads to equilibrium potential shift [58].

4 Energy Storage

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110

COELEC522_proof ■ 7 March 2020 ■ 4/8
appears to be key for achieving optimized performance
[63]. Redox activity of PPD in aqueous KOH greatly

enhances the delivered capacitance of the hybrid cell
[26], and high self-discharge in PPD-based cells could
be solved by its covalent bonding to carbon surface [64].
Polyoxomettalate-based redox species as part of elec-
trode or electrolyte gave high capacitance owing to redox
reactions which can be useful for improving hybrid
capacitance [65e68]. Ferricyanide/ferrocyanide redox
couple showed promising results in neutral aqueous
electrolyteebased hybrid capacitors up to 1.8 V, and the
diffusion of redox species was prevented with ion-
exchange membranes [28].
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Energy/capacitance metrics for hybrid
capacitors
Capacitance in hybrid electrochemical capacitors must
be calculated from total stored energy (area under

discharge curve) [69e71]. Energy efficiency can be
calculated from the ratio of charge and discharge surface.
Moreover, the mass of electrolyte should be taken into
account while performing calculations [31,72], and for
highly concentrated electrolytes (e.g., 20 mol kg�1

LiTFSI), the mass contribution of electrolyte could be
even higher. Figure 3 shows the percentage contribution
Current Opinion in Electrochemistry xxxx, xxx:xxx
of each component to the total mass of an electro-
chemical capacitor. Energy values obtained by constant

power test in Figure 3 are given for hybrid capacitor in
1 mol L�1 sodium iodide, normalized with mass of
various cell components. High mass contribution from a
current collector could be reduced by finding alterna-
tives with lower density than stainless steel, e.g., sur-
face-treated aluminum or aluminum alloys [73].
Temperature window for hybrid capacitors
with aqueous electrolytes
For neutral aqueous electrolytesebased capacitors,
freezing at ca. �10 �C and enhanced electrochemical
reactions due to water oxidation and reduction at high
temperature restrict their application spectrum. Addi-
tives such as methanol [74] and ethylene glycol [75]
improve the capacitor performance down to low tem-
peratures. However, the preferential adsorption of al-

cohols in carbon porosity [74] modifies the local
electrolyte composition in carbon nanopores resulting in
performance fade down to low temperature (Figure 4a
and b). Recently, capacitors using aqueous choline
chloride at 5 mol kg�1 demonstrated excellent perfor-
mance down to �40 �C [76] because of eutectic-like
character of the electrolyte (choline chloride
www.sciencedirect.com
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Figure 3

Mass percentage of electrochemical capacitor components and specific energy values calculated for a carbon/carbon hybrid capacitor with NaI
(1 mol L−1) by constant power test (1.4 V–0.7 V, 0.1 A g−1). Thickness of separator, 30 mm; thickness and density of current collector, 10 mm and
7.9 g cm−3, respectively; carbon specific pore volume, 1.01 cm3 g−1.

Figure 4

Low temperature (upper panel) and high temperature (lower panel) for carbon electrode– and aqueous electrolyte–based systems. (a) Freezing behavior
of the water-based electrolyte under confinement in nanoporous carbon, the presence of micropores favors the lowering of melting/freezing temperature
[77,78], while the water crystalizes at relatively high temperatures in mesopores. (b) Increasing the ratio of water-/methanol-based electrolyte volume to
carbon electrode pore volume decreases freezing temperature [74]. (c) Low concentration of the electrolyte provokes the electrochemical reduction of
water due to high fraction of free water molecules, while electrochemical water reduction in concentrated electrolytes is suppressed and the local pH is
almost constant, favoring both high cell voltage [79] and high temperature reach.
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tm = 302 �C, H2O tm = 0 �C, the resulting binary
mixture at 5 mol kg�1 tm = �60 �C).

The hybrid capacitor containing 5 mol kg�1 choline
nitrateþ0.5 mol kg�1 choline iodide in water was able to
operate down to �40 �C with excellent performance of
w50 F g�1 at �40 �C and reach the power performance
of organic electrolyteebased EDLC at low temperatures

[53]. For aqueous capacitors working at high tempera-
ture, concentrated electrolytes could be useful owing to
low amount of free water (Figure 4c). In concentrated
electrolytes, most of the water is used in solvation of
ionic species; less free water molecules mean less
electrochemical reduction of water and related
hydrogen gas production. In addition, increased local pH
inside the nanopores of carbon electrode favors high
overpotential [79].
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Conclusion and recommendations

1) Nanoporous carbonebased electrodes accommodate
well the solid phase that prevents diffusion of redox-
active species. As solid phase tends to dissolve in
acidic/alkaline media, neutral aqueous solutions are

recommended in the form of bifunctional electrolytes
for hybrid capacitors.

2) Equilibrium potential can be adjusted close to the
redox potential by appropriate balancing of elec-
trodes capacities, e.g., mass balancing; hence, better
cell engineering is key to design hybrid capacitors.

3) For better power handling, carbon materials with
high surface area and developed microstructure
should be used for efficient EDL electrodes.

4) True performance metrics can be presented by
taking into account the mass/volume of each cell
component and particularly the electrolyte.

5) Choline cation and nitrates/chloride anions greatly
differ in hydration strength; these electrolytes with
eutectic-like properties could be tuned further to
achieve wide temperature window for hybrid
capacitors.
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