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Boundary integral formulations for the forward

problem in magnetic induction tomography

S. Engleder, O. Steinbach

Institut für Numerische Mathematik, TU Graz
Steyrergasse 30, 8010 Graz, Austria

Abstract

In this paper we present two models for the forward problem of magnetic induc-
tion tomography. In particular, we describe the eddy current model, and a reduced
simplified model. The error between the reduced and the full model is analysed in
dependence of parameters such as the frequency and the conductivity. In the case of
a piecewise constant conductivity we derive a boundary integral formulation for the
reduced model. Finally we comment on numerical results for the forward problem
and give a comparison of both models.

1 Introduction

Magnetic induction tomography is a non–invasive and contactless imaging method to deter-
mine the conductivity and permittivity distribution inside a certain object, like the human
body, see, e.g., [6, 7, 9, 10, 16]. An array of coils is placed in a ring around the body
as depicted in Fig. 1. In each coil a time–harmonic current is induced, which generates
a time–harmonic magnetic field. This so–called primary magnetic field Bp induces eddy

Figure 1: Principle of magnetic induction tomography.

currents inside the body, which perturb the magnetic field. The reconstruction is then
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based on the measurement of the perturbed voltage in an array of receiver coils around the
body.

To describe the forward problem of magnetic induction tomography we use the time–
harmonic Maxwell equations for x ∈ R

3,

∇× E(x) = −iωB(x), ∇× H(x) = j(x) + iωD(x), ∇ · D(x) = 0, ∇ · B(x) = 0,

where we consider an isotropic and linear material, i.e.,

D(x) = ε(x)E(x), B(x) = µ(x)H(x), j(x) = ji(x) + σ(x)E(x).

When considering biologic tissues we may assume a constant permeability µ(x) = µ0. The
coil is modelled by prescribing a given impressed current ji, of which we assume that it
is not influenced by the magnetic reaction fields caused by the eddy currents inside the
conducting domain. Hence we conclude

∇×E(x) = −iωµ0H(x), ∇×H(x) = ji(x)+κ(x)E(x), ∇· [ε(x)E(x)] = 0, ∇·H(x) = 0,

where
κ(x) := σ(x) + iωε(x) (1.1)

is the complex conductivity. When eliminating the magnetic field H we finally obtain

∇× 1

µ0

∇× E(x) + iωκ(x)E(x) = −iωji(x), ∇ · [ε(x)E(x)] = 0 for x ∈ R
3. (1.2)

In particular when considering the inverse problem of magnetic induction tomography, for
example by using a standard parameter identification approach, the solution of the forward
problem depends on the boundary mesh only. Hence is seems to be a natural choice to
use a boundary integral equation approach for the approximate solution of the forward
problem [18, 19], for finite element methods, see, e.g., [11, 15, 23].

This paper is organised as follows: In Sect. 2 we describe the mathematical model of
the forward problem, i.e. the material parameters and the modelling of the excitation coils,
and we discuss the eddy current model and a reduced simplified model. Bounds for the
approximation error of certain quantities computed with the reduced and the eddy current
model are presented in Sect. 3. In Sect. 4, a boundary element formulation for the reduced
model is given, and some numerical results in Sect. 5 conclude the paper.

2 Eddy current model

In this section we formulate the forward problem of magnetic induction tomography (MIT)
by using the eddy current formulation. The use of the eddy current model is justified
since the wavelength for operating frequencies of MIT systems, which lie typically between
10 MHz and 100 MHz, is in the range of some micrometers, so the wavelength is small
compared to the size of the conductor.
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Let Ω ⊂ R
3 be a bounded domain, which represents the conducting object, and let

Ωc = R
3\Ω be the exterior domain, where we assume a non–conducting material, e.g., air.

For x ∈ Ωc we therefore assume σ(x) = 0. The eddy current model of magnetic induction
tomography is obtained by neglecting the displacement currents D in the non–conducting
material domain Ωc, i.e. we set ε(x) = 0 for x ∈ Ωc. Hence we can rewrite the partial
differential equation (1.2) as a system of two coupled equations,

∇× 1

µ0
∇× E(x) + iωκ(x)E(x) = −iωji(x), ∇ · [ε(x)E(x)] = 0 for x ∈ Ω, (2.1)

and

∇× 1

µ0
∇× E(x) = −iωji(x) for x ∈ Ωc, (2.2)

where we introduce the gauging condition

∇ · E(x) = 0 for x ∈ Ωc. (2.3)

In addition we assume radiation conditions at infinity, i.e.,

E(x) = O(|x|−1), ∇× E(x) = O(|x|−2) as |x| → ∞. (2.4)

Moreover, we have to include transmission boundary conditions for x ∈ Γ = ∂Ω,

[j(x) · nx]|x∈Γ = 0, [H(x) × nx]|x∈Γ = 0,

which can be rewritten as

[κ(x)E(x) · nx]|x∈Γ = 0,
1

iωµ0
[(∇× E(x)) × nx]|x∈Γ = 0. (2.5)

Note that the jump is given by

[v(x)]|x∈Γ = lim
Ωc∋ex→x∈Γ

v(x̃) − lim
Ω∋x→x∈Γ

v(x).

For the solution of the transmission problem (2.1)–(2.5) we introduce the decomposition

E(x) = Es(x) + Ep(x), (2.6)

where Ep denotes the primary field generated by the exciting coil C without the presence
of a conducting object. Correspondingly, Es is the secondary or reaction field caused by
the presence of some conducting material. In particular, the primary field Ep is a solution
of the partial differential equations

∇×∇× Ep(x) = −iωµ0ji(x), ∇ · Ep(x) = 0 for x ∈ R
3,

which can be written as

−∆Ep(x) = −iωµ0ji(x) for x ∈ R
3.

3



Hence we obtain a particular solution by the Newton potential

Ep(x) = −iωµ0
1

4π

∫

R3

ji(y)

|x− y| dy for x ∈ R
3. (2.7)

Hence, instead of (2.1) and (2.2) it remains to solve the following system of partial differ-
ential equations, i.e., for x ∈ Ω

∇× 1

µ0

∇×Es(x)+iωκ(x)Es(x) = −iωκ(x)Ep(x), ∇· [ε(x)(Es(x)+Ep(x))] = 0, (2.8)

and
∇×∇× Es(x) = 0, ∇ · Es(x) = 0 for x ∈ Ωc, (2.9)

and with the radiation conditions

Es(x) = O(|x|−1), ∇× Es(x) = O(|x|−2) as |x| → ∞. (2.10)

If we define
H(curl; R3) :=

{
U ∈ L2(R

3), ∇× U ∈ L2(R
3)

}
,

the variational formulation of the transmission problem (2.8), (2.9), and (2.10) reads to
find Es ∈ H(curl; R3) such that

1

µ0

∫

R3

(∇×Es(x)) ·(∇×F (x))dx+ iω

∫

Ω

κ(x)Es(x) ·F (x)dx = −iω
∫

Ω

κ(x)Ep(x) ·F (x)dx

(2.11)
is satisfied for all F ∈ H(curl; R3). The null space of the variational problem (2.11) can be
characterised by the function Eϕ(x) = 0 for x ∈ Ω and Eϕ(x) = ∇ϕ(x) for x ∈ Ωc, where
ϕ is the unique solution of the exterior Dirichlet boundary value problem

−∆ϕ(x) = 0 for x ∈ Ωc, ϕ(x) = 1 for x ∈ Γ, ϕ(x) = O(|x|−1) as |x| → ∞.

We assume that the boundary Γ = ∂Ω has only one connected component. The varia-
tional formulation (2.11) of the transmission problem (2.8)–(2.10) is therefore not uniquely
solvable. Hence we introduce the gauging condition

∫

Γ

E(x) · nx dsx = 0, (2.12)

which corresponds to the conservation of charge. We define

V =

{
E ∈ H(curl,R3) : divE(x) = 0 for x ∈ Ωc,

∫

Γ

E(x) · nxdsx = 0

}
.

The variational problem (2.11) then admits a unique solution Es ∈ V, see [1, 3].
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3 A reduced model

The solution of the forward problem using the eddy current model as described in the
previous section is computationally rather expensive. Since in most solution algorithms
for the inverse problem the forward problem has to be solved quite often, we are interested
in a simplified model which also allows a more efficient solution of the forward problem.
For this we write the transmission problem (2.8)–(2.10) in terms of the A–φ–formulation
[2]. Since B is divergence–free, we can represent the magnetic flux density B as the curl
of a magnetic vector potential A,

B(x) = µ0 H(x) = curlA(x) for x ∈ R
3.

From
curlE(x) = −iωµ0H(x) = −iω curlA(x)

we conclude the existence of a scalar potential φ satisfying

E(x) + iωA(x) = −∇φ(x) for x ∈ R
3,

where φ is uniquely determined by the Coulomb gauge

divA(x) = 0 for x ∈ R
3. (3.1)

By using the decomposition (2.6) we can write the primary field Ep as

Ep(x) = −iωAp(x) for x ∈ R
3,

while for the secondary field Es we obtain

Es(x) = −iωAs(x) −∇φ(x) for x ∈ R
3.

Note that

Ap(x) =
µ0

4π

∫

R3

ji(y)

|x− y|dy for x ∈ R
3

is a solution of the partial differential equations

∇× 1

µ0
∇× Ap(x) = ji(x), ∇ · Ap(x) = 0 for x ∈ R

3. (3.2)

Now we can rewrite the eddy current model (2.1)–(2.4) for x ∈ R
3 as

∇× 1

µ0
∇× As(x) + κ(x)[iωAs(x) + ∇φ(x)] = −iωκ(x)Ap(x), (3.3)

∇ · As(x) = 0. (3.4)

When applying the divergence operator to equation (3.3), this gives

−∇ · [κ(x)(iωAs(x) + ∇φ(x))] = iω∇ · [κ(x)Ap(x)] for x ∈ Ω. (3.5)
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In addition, we rewrite the transmission boundary condition (2.5) in terms of A and φ and
obtain

κ(x)[iω(As(x) + Ap(x)) + ∇φ(x)] · nx = 0 for x ∈ Γ. (3.6)

In the parameter range of magnetic induction tomography numerical examples [5] indicate
that As is very small compared to ∇φ. Therefore we neglect As in (3.5) and (3.6), i.e. we
finally conclude the Neumann boundary value problem

−∇ · [κ(x)∇φ̃(x)] = iω∇ · [κ(x)Ap(x)] for x ∈ Ω, (3.7)

κ(x)
∂

∂nx

φ̃(x) = −iωκ(x)Ap(x) · nx for x ∈ Γ, (3.8)

where φ̃ now denotes the potential in the reduced model. Since φ̃ is not uniquely determined
by the Neumann boundary value problem (3.7) and (3.8), we introduce the scaling condition

∫

Γ

φ̃(x) dsx = 0. (3.9)

Moreover, by neglecting As in (3.3) we obtain

∇× 1

µ0

∇× Ãs(x) = −κ(x)[iωAp(x) + ∇φ̃(x)], ∇ · Ãs(x) = 0 for x ∈ R
3,

i.e.
−∆Ãs(x) = −µ0κ(x)[iωAp(x) + ∇φ̃(x)] for x ∈ R

3.

Hence we conclude

Ãs(x) = −µ0

4π

∫

Ω

κ(y)
iωAp(y) + ∇φ̃(y)

|x− y| dy for x ∈ R
3. (3.10)

The electric field can finally be obtained by

Ẽs(x) = −iωÃs(x) −∇φ̃(x) for x ∈ R
3. (3.11)

This means that the solution of the full eddy current model reduces to the solution of
a Neumann boundary value problem for the Laplace equation, and the evaluation of a
Newton potential. Both models are summarised in Table 1.
It remains to estimate the error when considering the reduced model instead of the eddy
current model, see also [17]. In particular we have to consider the differences φ − φ̃ and

As − Ãs, respectively. For this, we first introduce the Newton potential operator

(N0u)(x) =
1

4π

∫

Ω

u(y)

|x− y| dy for x ∈ Ω.

In the case of a vector–valued function u we consider the Newton potentialN0u component–
wise.
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Reduced model

Ap(x) =
µ0

4π

∫

R3

ji(y)

|x − y|dsy for x ∈ R
3,

−∇ · [κ(x)∇φ̃(x)] = iω∇ · [κ(x)Ap(x)] for x ∈ Ω,

κ(x)
∂

∂nx
φ̃(x) = −iωκ(x)Ap(x) · nx for x ∈ Γ,

∫

Γ
φ̃(x)dsx = 0,

Ãs(x) = −µ0

4π

∫

Ω
κ(y)

iωAp(y) + ∇φ̃(y)

|x − y| dy for x ∈ R
3,

Ẽs(x) = −iωÃs(x) −∇φ̃(x) for x ∈ R
3

Eddy current model

Ep(x) = −iω
µ0

4π

∫

R3

ji(y)

|x − y|dy for x ∈ R
3,

∇× 1

µ0
∇× Es(x) + iωκ(x)Es(x) = −iωκ(x)Ep(x) for x ∈ Ω,

∇× 1

µ0
∇× Es(x) = 0 for x ∈ Ωc,

∇ · [ε(x)(Es(x) + Ep(x))] = 0 for x ∈ Ω,

∇ · Es(x) = 0 for x ∈ Ωc

Table 1: Comparison of the reduced model and the eddy current model.

Lemma 3.1 Assume Ω ⊂ Br(0). The Newton potential operator N0 : L2(Ω) → L2(Ω) is

bounded satisfying

‖N0‖ := sup
u∈L2(Ω)

‖N0u‖L2(Ω)

‖u‖L2(Ω)

≤ r2

√
3
.

Proof. By using the Hölder inequality we have

‖N0u‖2
L2(Ω) =

∫

Ω

∣∣∣∣
1

4π

∫

Ω

u(y)

|x− y| dy
∣∣∣∣
2

dx ≤ 1

(4π)2
‖u‖2

L2(Ω)

∫

Ω

∫

Ω

1

|x− y|2 dy dx.

The assertion then follows from Schmidt’s inequality, i.e.
∫

Ω

1

|x− y|2 dy ≤
∫

Br(0)

1

|x− y|2 dy ≤ 4πr for x ∈ R
3.
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In particular we have
∫

Ω

∫

Ω

1

|x− y|2 dy dx ≤
∫

Ω

4πr dx ≤
∫

Br(0)

4πrdx = (4π)2 r
4

3
,

which concludes the proof.

Let As be the solution of the eddy current model (3.3)–(3.4), in particular by using (3.4)
we can rewrite (3.3) as

−∆As(x) = −µ0κ(x)[iωAs(x) + iωAp(x) + ∇φ(x)] for x ∈ R
3 . (3.12)

Hence we can write As as the Newton potential

As(x) = −µ0N0(κ(iωAs + iωAp + ∇φ)). (3.13)

Correspondingly, we have

Ãs(x) = −µ0N0(κ(iωAp + ∇φ̃)) (3.14)

where ∇φ̃ is chosen such that

divÃs(x) = 0 for x ∈ R
3. (3.15)

We therefore conclude

As − Ãs = −µ0N0(κ(iωAs + ∇φδ)), φδ := φ− φ̃. (3.16)

Theorem 3.2 Let us define

κmin :=
√

inf
x∈Ω

ℜ(κ(x))2 + inf
x∈Ω

ℑ(κ(x))2, κmax := sup
x∈Ω

|κ(x)|

and

q := µ0 ω κmax

(
1 +

κmax

κmin

)
r2

√
3
.

Let φ, φ̃ ∈ H1(Ω) be the weak solutions of the Neumann type boundary value problems

(3.5)–(3.6) and (3.7)–(3.8), respectively. Then there holds the error estimate

‖∇φδ‖L2(Ω) ≤ κmax

κmin
ω ‖As‖L2(Ω) . (3.17)

If we assume q < 1, then there holds

‖As‖L2(Ω) ≤ q

1 − q
‖Ap‖L2(Ω), (3.18)

and

‖As − Ãs‖L2(Ω) ≤ q2

1 − q
‖Ap‖L2(Ω) . (3.19)
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Proof. From (3.5) and (3.7) we first conclude that φδ := φ− φ̃ is a solution of the partial
differential equation

−∇ · [κ(x)∇φδ(x)] = iω∇ · [κ(x)As(x)] for x ∈ Ω

with the Neumann boundary condition

κ(x)

[
∂

∂nx

φδ(x) + iωAs(x) · nx

]
= 0 for x ∈ Γ.

Hence, for ψ ∈ H1(Ω) the weak formulation of the above Neumann boundary value problem
reads∫

Ω

κ(x)∇φδ(x) · ∇ψ(x) dx = iω

∫

Ω

∇ · [κ(x)As(x)]ψ(x)dx+

∫

Γ

κ(x)
∂

∂nx
φδ(x)ψ(x)dsx

=

∫

Γ

κ(x)

[
iωAs(x) · nx +

∂

∂nx
φδ(x)

]
ψ(x)dsx − iω

∫

Ω

κ(x)As(x) · ∇ψ(x)dx

= −iω
∫

Ω

κ(x)As(x) · ∇ψ(x)dx .

For ψ = φδ we therefore have∫

Ω

κ(x)|∇φδ(x)|2dx = −iω
∫

Ω

κ(x)As(x) · ∇φδ(x)dx,

from which (3.17) follows, i.e.

‖∇φδ‖L2(ω) ≤ κmax

κmin

ω ‖As‖L2(Ω).

Moreover, with (3.13) and by using Lemma 3.1 we further have

‖As‖L2(Ω) = µ0‖N0(κ(iωAs + iωAp + ∇φ))‖L2(Ω)

≤ µ0 κmax
r2

√
3
‖iωAs + iωAp + ∇φ‖L2(Ω)

≤ µ0 κmax
r2

√
3

[
ω

(
‖As‖L2(Ω) + ‖Ap‖L2(Ω)

)
+ ‖∇φ‖L2(Ω)

]
. (3.20)

The variational formulation of the Robin type boundary value problem (3.5) and (3.6)
reads, for ψ ∈ H1(Ω),

∫

Ω

κ(x)∇φ(x) · ∇ψ(x)dx

= iω

∫

Ω

∇ · [κ(x)(Ap(x) + As(x))]ψ(x)dx+

∫

Γ

κ(x)
∂

∂nx

φ(x)ψ(x)dsx

=

∫

Γ

κ(x)

[
iω(Ap(x) + As(x)) · nx +

∂

∂nx
φ(x)

]
ψ(x)dsx

−iω
∫

Ω

κ(x)(Ap(x) + As(x))] · ∇ψ(x)dx

= −iω
∫

Ω

κ(x)(Ap(x) + As(x))] · ∇ψ(x)dx.
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For ψ = φ we therefore have

∫

Ω

κ(x)|∇φ(x)|2dx = −iω
∫

Ω

κ(x)(Ap(x) + As(x)) · ∇φ(x)dx,

from which the estimate

‖∇φ‖L2(Ω) ≤ κmax

κmin
ω ‖Ap + As‖L2(Ω)

follows. From (3.20) we therefore conclude

‖As‖L2(Ω) ≤ µ0 κmax
r2

√
3
ω

(
1 +

κmax

κmin

) (
‖As‖L2(Ω) + ‖Ap‖L2(Ω)

)
,

which immediately results in the estimate (3.18) when we assume q < 1.
Finally, by using (3.16) and Lemma 3.1 we have

‖As − Ãs‖L2(Ω) = µ0‖N0(κ(iωAs + ∇φδ))‖L2(Ω)

≤ µ0
r2

√
3
‖κ(iωAs + ∇φδ)‖L2(Ω)

≤ µ0 κmax
r2

√
3

(
ω‖As‖L2(Ω) + ‖∇φδ‖L2(Ω)

)

≤ µ0 κmax
r2

√
3
ω

(
1 +

κmax

κmin

)
‖As‖L2(Ω) = q ‖As‖L2(Ω)

due to (3.17). Now, (3.19) follows from (3.18).

Remark 3.1 As an example we may consider a test problem with the following parameters:

0.1 ≤ κ(x) ≤ 1 for x ∈ Ω, Ω ⊂ B0.1(0), ω = 105.

In this case, we have

q = 7.98 · 10−3,
q2

1 − q
= 6.42 · 10−5, ‖Ap‖L2(Ω) ≈ 3.609 · 10−6,

where the last result was obtained by using some finite element discretization.

Corollary 3.3 In addition we have an estimate for the error in an arbitrary point x ∈ R
3

|As(x) − Ãs(x)| ≤
q2

1 − q
‖Ap‖L2(Br(0)). (3.21)
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Proof. By using (3.16) we have, for x ∈ Ω,

|As(x) − Ãs(x)| =
µ0

4π

∣∣∣∣
∫

Ω

κ(x)
iωAs(y) + ∇φδ(y)

|x− y| dy

∣∣∣∣

≤ µ0

4π
‖κ(iωAs + ∇φδ)‖L2(Ω)

(∫

Ω

1

|x− y|2dy
)1/2

≤ µ0

4π
κmax

√
4πr

(
ω‖As‖L2(Ω) + ‖∇φδ‖L2(Ω)

)

≤ µ0

4π
κmax

√
4πrω

(
1 +

κmax

κmin

)
‖As‖L2(Ω) =

√
12πr

4πr2
q ‖As‖L2(Ω)

The quantity, which is measured in magnetic induction tomography is the voltage in the
receiver coil C, i.e.,

V :=

∫

C

Bs(x) · nx dsx.

Hence we need to evaluate

Bs(x) = ∇× As(x) =
µ0

4π

∫

Ω

κ(y)∇x
1

|x− y| × [iωAp(y) + ∇yφ(y)]dy for x ∈ C. (3.22)

By using integration by parts, and by using

∇x
1

|x− y| = −∇y
1

|x− y| ,

the volume integral in (3.22) can be reformulated as

Bs(x) =
µ0

4π

N∑

k=1

κk

(
iω

∫

Ωk

∇x
1

|x− y| × Ap(y)dy −
∫

Ωk

∇y
1

|x− y| × ∇yφ(y))dy

)

=
µ0

4π

N∑

k=1

κk

(
iω

∫

Ωk

∇x
1

|x− y| × Ap(y)dy −
∫

Γk

∇yφ(y) × ny

|x− y| dsy

)
,

where ∇yφ(y) × ny for y ∈ Γk denotes the surface curl of the function φ.

4 A boundary element method for the reduced model

In this section we derive a boundary element formulation for the reduced model as described
in the previous section. The variational formulation of the Neumann boundary value
problem (3.7), (3.8) and (3.9) is to find φ̃ ∈ H1(Ω) such that

∫

Ω

κ(x)∇φ̃(x) · ∇ψ(x) dx+

∫

Γ

φ̃(x)dsx

∫

Γ

ψ(x)dsx = iω

∫

Ω

κ(x)Ap(x) · ∇ψ(x) dx (4.1)
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for all ψ ∈ H1(Ω). For a piecewise constant conductivity κ(x) we consider a non–
overlapping domain decomposition

Ω =

p⋃

k=1

Ωk, Ωk ∩ Ωℓ = ∅ for k 6= ℓ, ΓS =

p⋃

k=1

Γk, Γk = ∂Ωk, κ(x) = κk for x ∈ Ωk.

Instead of the global Neumann boundary value problem (3.7) and (3.8) we now consider
the local boundary value problems, by using (3.2),

−κk∆φ̃|Ωk
= 0 for x ∈ Ωk, κk

∂

∂nk

φ̃(x) = −iωκkAp(x) · nx for x ∈ Γk ∩ Γ, (4.2)

together with the transmission boundary conditions, see (2.5),

κk
∂

∂nk
φ̃(x) + κℓ

∂

∂nℓ
φ̃(x) = −iωκkAp(x) · nk − iωκℓAp(x) · nℓ for x ∈ Γk ∩ Γℓ.

Thus we can rewrite the variational formulation (4.1) as

p∑

k=1

∫

Γk

κk
∂

∂nk

φ̃(x)ψ(x)dsx +

∫

Γ

φ̃(x)dsx

∫

Γ

ψ(x)dsx = −
p∑

k=1

iω

∫

Γk

κk[Ap(x) · nk]ψ(x) dsx .

For the solution of the local partial differential equation in (4.2) we use the local Dirichlet
to Neumann map

∂

∂nx

φ̃(x) = (Skφ̃)(x) for x ∈ Γk = ∂Ωk,

where Sk : H1/2(Γk) → H−1/2(Γk) is the associated Steklov–Poincaré operator [21]. Let
H1/2(ΓS) := H1(Ω)|ΓS

be the skeleton trace space of H1(Ω). We then have to solve a

variational problem to find φ̃ ∈ H1/2(ΓS) such that

p∑

k=1

κk

∫

Γk

(Skφ̃)(x)ψ(x)dsx +

∫

Γ

φ̃(x)dsx

∫

Γ

ψ(x)dsx = −
p∑

k=1

iω

∫

Γk

κk[Ap(x) · nk]ψ(x) dsx

(4.3)
is satisfied for all ψ ∈ H1/2(Γ). Since the bilinear form in the variational formulation
(4.3) is bounded and H1/2(ΓS)–elliptic, see, e.g. [12], unique solvability of the variational
formulation (4.3) follows.

To describe the application of the local Steklov–Poincaré operators which are involved
in the variational formulation (4.3) we use the symmetric boundary integral operator rep-
resentations

(Skφ̃|Γk
)(x) =

[
Dk + (

1

2
I +K ′

k)V
−1
k (

1

2
I +Kk)

]
φ̃|Γk

(x) for x ∈ Γ, (4.4)

where

(Vkw)(x) =
1

4π

∫

Γk

1

|x− y|w(y)dsy for x ∈ Γk
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is the single layer integral operator,

(Kkv)(x) =
1

4π

∫

Γk

∂

∂ny

1

|x− y|v(y)dsy for x ∈ Γk

is the double layer integral operator, and

(Dkv)(x) = − 1

4π

∂

∂nx

∫

Γk

∂

∂ny

1

|x− y|v(y)dsy for x ∈ Γk

is the so–called hypersingular boundary integral operator. The mapping properties of all
boundary integral operators and therefore of the local Steklov–Poincaré operators Sk are
well known, see, e.g. [4, 13, 14, 22].

For a symmetric boundary element discretization of the variational formulation (4.3)
we introduce a sequence of admissible boundary element meshes ΓS,h with a globally quasi
uniform mesh size h. Let S1

h(ΓS) be the associated boundary element space of piecewise lin-
ear continuous basis functions ϕi. By S1

h(Γk) = S1
h(ΓS)|Γk

we denote the localised boundary
element space of local basis functions ϕk,i, and by φ

k
= Akφ we describe the localisation

of the global degrees of freedom. The symmetric boundary element approximation of the
variational problem (4.3) results in the linear system, see, e.g. [21],

p∑

k=1

κkA
⊤
k Sk,hAkφ = −iω

p∑

k=1

κkA
⊤
k fk

, (4.5)

where

Sk,h = Dk,h + (
1

2
M⊤

k,h +K⊤
k,h)V

−1
k,h (

1

2
Mk,h +Kk,h)

are the discrete Steklov–Poincaré operators. Note that

Dk,h[j, i] = 〈Dkϕk,i, ϕk,j〉Γk
,

Vk,h[ℓ,m] = 〈Vkψk,m, ψk,ℓ〉Γk
,

Kk,h[ℓ, i] = 〈Kkϕk,i, ψk,ℓ〉Γk
,

Mk,h[ℓ, i] = 〈ϕk,i, ψk,ℓ〉Γk

are local boundary element matrices, and S0
h(Γk) are local boundary element spaces of,

e.g., piecewise constant basis functions ψk,ℓ. Moreover, the right hand side in (4.5) is given
locally as

fk,j =

∫

Γk

[Ak(x) · nk]ϕk,j(x)dsx.

The stability and error analysis of the symmetric boundary element discretization of the
variational problem (4.3) is well established, see, e.g. [21], and the references given therein.
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5 Numerical results

As conducting domain we first consider the cylinder

Ω = {x ∈ R
3, x2

1 + x2
2 < 0.1, 0 < x3 < 0.2},

where the transmitting coil is modelled as a current loop of radius 0.04 which is centred at
(−0.14, 0, 0.1)⊤, see Fig. 2. The vector normal to the current loop points into the direction
of the x1–axis, i.e., nx = (1, 0, 0)⊤. Inside the cylinder we place a ball with radius r = 0.02,
whose centre lies in the point (−0.06, 0, 0.1)⊤.

Cylinder mesh |n× (E|Γ × n)|]

Figure 2: Mesh of the cylinder and the magnitude of the tangential electric field on Γ.

The background conductivity of the cylinder is κ = 0.1, and the conductivity of the
inscribed ball is κinc. Fig. 2 shows the magnitude of the electric field |n × (E|Γ × n)| for
κinc = 0.1. In Fig. 3 we give a comparison of the reduced model with the full eddy current
model. For this we plot the real and imaginary part of the normal component of the
magnetic field B(x) · nx along a circle around the cylinder for the frequency f = 100kHz,
and for varying conductivities κinc ∈ {0.1, 1, 10}. For the reduced model B(x) · nx was
computed by using the boundary element approach as described in the previous section.
The solution of the full eddy current problem was computed by using the Finite Element
software packages Netgen [20] and NGSolve1.
For the reduced model we have ℜ(B(x) · nx) = 0, while for the full eddy current model
ℜ(B(x)·nx) is comparable small. For the imaginary part we obtain a very good coincidence
between the solution of the reduced and of the full model. Indeed, in Fig. 4 we give a plot
of the error and of the relative error in x = (−0.141,−0.141, 0.15)⊤ between the normal
magnetic field computed with the full eddy current model and the reduced model in the
case κinc = 0.1, and for a frequency range from 100kHz up to 1GHz.
Based on the above results we conclude that the reduced model describes an appropriate
approximation of the full eddy current model as used in magnetic induction tomography
models.

1http://www.hpfem.jku.at/ngsolve/
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Figure 3: Real (upper row) and imaginary (lower row) parts of B(x) · nx, f = 105.
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Figure 4: Absolute and relative point wise error for different frequencies.

In a second example we consider the model of a human thorax with two lungs, see Fig. 5.
The volume mesh consists of 83514 volume elements and 15641 volume nodes, while the
boundary element mesh consists of 13076 boundary elements and 7548 boundary nodes.
The background conductivity of the thorax was set to the conductivity of a muscle at
100kHz, i.e., κmuscle = 0.3618S/m, while the conductivity of the lungs is κlung = 0.2716S/m,
see [8]. The centre of the transmitting coil was placed in the point (0,−0.2, 0)⊤, the normal
vector of the coil is given by (0, 1, 0)⊤, and its radius is 0.05. In Fig. 5 we plot the magnitude
of the tangential trace of the electric field, i.e. |n×(E|Γ×n)|. The field lines of the primary
magnetic field Bp of the secondary magnetic field Bs are given in Fig. 6.
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Lung mesh |n× (E|Γ × n)|

Figure 5: Mesh of the thorax and lungs and the magnitude of the tangential electric field.

Primary field Bp Secondary field Bs

Figure 6: Field lines of the primary and secondary magnetic fields.

6 Conclusions and outlook

In this paper we derived two models which describe the forward problem of magnetic induc-
tion tomography, an eddy current problem and a reduced model. We proved estimates for
the error between the reduced and the eddy current model, and we formulated a boundary
element method for the reduced model. Numerical examples show that the reduced model
is a good approximation for the eddy current model in the parameter range of magnetic
induction tomography.

To be able to reconstruct the complex conductivity distribution inside the human body
with magnetic induction tomography, an inverse problem has to be solved. For the recon-
struction of the location and of the shape of organs, a shape reconstruction approach in
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combination with a level set method can be used. For such an approach, the application
of boundary element methods seems to be advantageous, since in every step of the level
set method only the boundary has to be remeshed. The solution of the inverse problem
demands a very fast solution of the forward problem on meshes with a high number of de-
grees of freedom. To establish a fast solver for the forward problem, fast boundary element
methods may be employed such as the fast multipole method or hierarchical matrices.
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