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Abstract: As an important trend in the automotive industry, electrification of propulsion systems
has potential to significantly reduce greenhouse-gas emissions of the transportation sector. Whereas
electric vehicles do not produce exhaust emissions during driving, the impact of electricity provision
for charging batteries, as well as the impact of vehicle production play an essential role in a holistic
consideration of the carbon footprint. The paper introduces a comprehensive evaluation of green-
house gas-emission-related factors of cars driven by different propulsion technologies, considering
the entire product life cycle. This comprises vehicle production, including battery system, electric
powertrain and other relevant components, the car’s use phase under consideration of different
electricity mixes and the end-of-life phase. The results of the study give insights of influencing factors
on life-cycle-related carbon-dioxide-equivalent emissions of cars driven by combustion engines,
hybrid powertrains and battery-electric propulsion systems. In addition, a comparison of actual
mass-production cars is made and the total life-cycle carbon footprints are discussed under different
boundary conditions of electric power supply. In this way, the article comprehensively introduces an
automotive life-cycle assessment and provides fundamental information, contributing to an objective
discussion of different propulsion technologies.

Keywords: greenhouse-gas emissions; life-cycle assessment; battery system; electric propulsion;
hybrid powertrain; combustion engine; production technology; technology evaluation

1. Introduction

A comprehensive evaluation of products, systems and technologies under considera-
tion of their entire life-cycle behavior is becoming increasingly important today. Especially
in the automotive industry, the electrification of propulsion systems has been intensively
discussed, and important decisions have to be made by governmental institutions, car man-
ufacturers and in the supplier industry. The methodology of life-cycle assessment (LCA)
provides a powerful tool for the holistic and objective evaluation of different technologies,
and consequently delivers relevant information for decision-making processes.

In this context, the present article investigates CO2-equivalent emissions as one rel-
evant representative of greenhouse-gas impacts of cars driven by different propulsion
technologies, including internal-combustion-engine vehicles (ICEV), hybrid vehicles (HEV)
and battery-electric vehicles (BEV). Targets of the investigations include an introduction
to standardized life-cycle-assessment processes in the automotive industry and a discus-
sion of influencing factors and boundary conditions. In addition, the influences of main
modules and materials on CO2 equivalents are elaborated and debated for cars driven by
the three different propulsion technologies. Finally, the methodology of LCA is applied
onto actual mass-production cars with different powertrain systems, and their carbon
footprints of both production and use phases are evaluated, compared and discussed. In
this way, the article summarizes the state of the art of automotive life-cycle assessment
and reflects the impacts of different propulsion technologies. Additionally, CO2-equivalent
emissions-related characteristics of selected mass-production cars are elaborated in detail
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and carbon-footprint-related factors of different powertrain technologies are highlighted
and discussed.

The article focusses on aspects that are relevant for LCA-based evaluation and dis-
cussion. In this context, nontargets of the publication include a detailed description of
propulsion- and vehicle technologies. In addition, the work focuses on technologies, which
are available in the market on relevant mass-production scale to date. In this way, hydrogen
fuel-cell electric vehicles (FCEV) and synthetic fuels are not considered. Biofuels, as they
are used in some countries, e.g., Brazil, are also not considered in the present work, because
of their limited relevance from the perspective of the worldwide market.

The applied research methodology is based on standardized LCA processes [1,2]
and makes use of existing databases and procedures [3–5]. The research design includes
literature study and representation of LCA-based impacts for the discussion of general
characteristics of cars driven by different propulsion technologies (Section 3), and the actual
application of LCA for the evaluation and discussion of selected mass-production cars with
different powertrain technologies (Section 4).

2. Life-Cycle Assessment in the Automotive Industry

Life-cycle assessment is a standardized procedure that can be applied to evaluate
products under consideration of their entire life cycle, including production, use phase and
end-of-life phase. A holistic application of LCA represents a complex task that requires
high effort and detailed investigations of the different sections in a life cycle. This includes
raw-material extraction, manufacturing and assembling processes as sequences of produc-
tion, aspects of the product’s usage and service efforts, as well as dismantling, recycling
and disposal in the final life-cycle phase. In the automotive industry, standardized LCA
processes are typically conducted according to the ISO 14040 and the ISO 14044 [1,2]. In
this way, the procedure of an LCA is classified into the following four main steps: Goal and
scope definition, Inventory analysis, Impact assessment and Interpretation. Figure 1 shows the
main phases of LCA and points to factors that are relevant for the assessment of automotive
product life cycles.
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Figure 1. General procedure of an automotive LCA.

For conducting LCA of complex products, as is the case in the automotive industry,
a comprehensive definition of boundary conditions, considered factors and limitations
plays an important role, because these aspects influence the outcomes significantly. In
addition, types and specifications of resulting parameters have to be defined carefully. Due
to the broad applicability of LCA, different kinds of environmental or economic impacts
can be represented, e.g., global warming potential, resource depletion, toxication potential,
energy consumption. Due to the high importance of global warming today, the impact
of greenhouse-gas emissions is often taken into consideration, e.g., in the form of carbon-
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dioxide (CO2)-equivalent emissions. In this case, a broad range of influencing parameters is
converted under consideration of their impact on global warming and represented in form
of the corresponding CO2 equivalents’ factors. This approach has become very popular
in the past years because it delivers one key performance indicator, which can be used
for evaluation and discussion of different technologies. As a weakness, the reduction in
data does not sufficiently allow consideration of all the different factors that might have an
impact on a holistic LCA. Therefore, it is important to clearly specify the system boundaries
as well as the assumptions and simplifications that have been made and to point out all
influences, which cannot be represented by the CO2 equivalents, e.g., land use, resource
demand, environmental pollution, energy storage and system efficiency.

In the present publication, the greenhouse-gas-emission impacts of cars driven by
different propulsion systems are evaluated and discussed based on comprehensive LCA,
including combustion engines, hybrid powertrains and battery-electric cars. The equivalent
CO2 emissions are taken under consideration as a key indicator, and other influencing
parameters are also considered to enable a holistic discussion of the technologies. Figure 2
shows an overview of the main phases of a car’s product life cycle: materials production,
vehicle manufacturing, car usage, end-of-life phase. In addition, the relevance of energy and
natural resources as well as a potential backflow of materials and energy from recycling and
recovering are indicated.
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2.1. Aspects of Energy Provision and Natural Resources

The provision of energy and natural resources has an important impact on life-cycle
behavior. This includes the electric and chemical energy that is required in all sections of
the life cycle, as well as air, water and of course resources for materials production and
vehicle manufacturing. In this way, impacts of raw-material sourcing and processing are
explicitly investigated and material-related aspects are also considered in the sections of
vehicle manufacturing, car usage and end of life. In the case of recycling, a certain share of
materials can be extracted and returned to the previous sections of the vehicle life cycle to
reduce the total carbon-equivalent impact.

Besides the consideration of natural resources, special attention has to be put on the
provision of energy, which influences all four sections of the life cycle. Specifically, the
provision of energy for material extraction and processing as well as vehicle manufacturing
has a considerable impact on the one-time cost factor of CO2-equivalent emissions. In
addition, the energy effort for conducting processes of the end-of-life section have to be
taken into account. In these industrial processes, energy is supplied in different ways,
e.g., in form of heat, fluidic and of course electric energy. Processing heat is important for
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materials production, e.g., steel, and is typically provided by a combination of chemical
energy carriers (e.g., natural gas) and electric energy.

Electric energy is required in a multifarious way throughout the sections of the product
life cycle. In this way, the CO2-equivalent impact of electricity provision is of high relevance
for LCA considerations. It has to be considered that the four main phases of the life cycle
of a car might be conducted with different boundary conditions of ecological impacts and
energy provision in different countries around the world. This includes the use of land
resources, environmental pollution and electricity supply. In this context, a comprehensive
LCA considers the different factors that are valid in the specific regions where the corre-
sponding processes take place. As an example, the resulting CO2 equivalent factors for the
production of steel might be different in selected Asian and European regions, because of
the significantly different carbon footprint of electricity provision.

Figure 3 shows average values of carbon footprints of selected technologies of elec-
tricity production. So-called “renewable technologies” have a significantly lower impact
because they do not use fossil-based resources. The large greenhouse-gas-emission output
of fossil-based technologies is based on the conversion of hydrocarbons that release CO2
emissions. A special case represents nuclear energy, because the CO2 emissions are very low.
However, there are other aspects to be considered, e.g., efforts for operation and nuclear-
waste management, as well as risks of nuclear contamination. The diagram represents a
holistic LCA-based view of the different technologies, including construction, service and
maintenance of power plants, as well as the impact of electricity production. This is the
reason why certain CO2-equivalent emissions are also indicated for the renewable sources.
For nuclear energy, the efforts for construction, service and maintenance are considered,
but not for nuclear-waste deposition and risks of potential nuclear accidents.
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Figure 4 shows the average life-cycle-based CO2-equivalent emissions of electricity
production in selected countries. The values consider the different shares of applied
technologies for the production of electric energy—the so-called “electricity mix”. A
separation of regions within the countries is not shown here, but should also be considered
in a detailed LCA. As an example, some manufacturers use dedicated energy sources
with low CO2 impact for vehicle manufacturing, e.g., [10], with the target of reducing the
manufacturing-related carbon footprint of their products. In any case, Figures 3 and 4
indicate the importance of electric-energy provision for an objective and comprehensive
LCA evaluation. This includes the production of cars, but also the use phase, especially in
case of battery-electric vehicles.
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2.2. Aspects of Materials Production and Vehicle Manufacturing

Vehicle production includes the sections of materials provision and vehicle manufac-
turing. The carbon footprint of car production is significantly influenced by vehicle type
and size, powertrain technology as well as the vehicle’s configuration and equipment. In
addition, technologies of material sourcing and vehicle manufacturing as well as related
processes of energy provision are to be considered. In this way, published results, e.g., by
car manufacturers, suppliers and scientific institutions, may show certain dissimilarities of
LCA-based results [14–18]. Due to the large number of influencing parameters and their
wide range of variation, the following diagrams represent averaged numbers including
ranges of extension of the corresponding factors. The diagrams are based on information
from above-mentioned literature sources, which are enhanced and combined with own
computations; see also Section 4.

In Figure 5, a comparison of relative CO2-equivalent emissions of vehicle production
is shown for ICEV, HEV and BEV. This diagram displays general mean characteristics
and does not relate to a specific car. In this way, it can be applied for comparison of
cars with different powertrain systems within similar vehicle characteristics, e.g., car
type and size, performance and equipment. The diagram shows that the production
of battery-electric cars has about a 50–100% higher carbon footprint than those of cars
driven by conventional powertrains, which is mainly based on the battery system. In this
representation, manufacturing efforts of charging units and thermal management systems
are assigned to the carbon impact of the battery. The electric powertrain, comprising
inverter, electric motor and transmission, shows a moderately lower carbon footprint than
the combustion-engine-based powertrain, including the cooling system and transmission.
Taking ICEV as a basis with 100%, the carbon footprint of BEV varies in a considerable
range, as indicated by the vertical double arrow. This is based on the range of technical
parameters and their influences on CO2 equivalents, e.g., battery size and manufacturing
technologies as well as the applied electricity mixes.

A general evaluation of hybrid cars is challenging because of their wide variation of
electrification, see Section 3.2. Nevertheless, the diagram indicates an averaged behavior un-
der consideration of the technology range. In typical hybrid cars, the combustion engine is
smaller than in conventionally driven cars of similar performance classes, which is indicated
in a moderately reduced CO2-equivalent emissions footprint of the ICE power train. On top
come the electric power train and the battery system, leading to an increase in the production-
related carbon footprint of hybrid cars in the range of nearly zero for mild hybrids, about
plus 25% for full hybrids and up to 50% plus for plug-in hybrid cars.

Considering comparable technologies of bodywork, chassis, exterior and interior mod-
ules, the CO2-equivalent-emission impacts of the compared vehicles without powertrains
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are similar, with a slightly lower impact of the BEV because of the integration of the battery
system into the bodywork.
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Figure 6 shows a detailed breakdown of the contributions to CO2-equivalent emissions
in vehicle production. The representation is based on Figure 5 but displays a more specific
view on the main modules’ impacts and a segmentation of the different materials. The
car’s main modules are defined according to the classification made in Section 3. It has to
be considered that for all three vehicle types, ICEV, HEV and BEV, the total size of each
column indicates 100%. In this way, the percentages of contributions of the individual
factors are shown for each vehicle powertrain technology separately.

World Electr. Veh. J. 2022, 13, x FOR PEER REVIEW 6 of 21 
 

powertrains are similar, with a slightly lower impact of the BEV because of the integration 
of the battery system into the bodywork. 

 
Figure 5. CO2-equivalent-emission impacts of vehicle production in comparison. 

Figure 6 shows a detailed breakdown of the contributions to CO2-equivalent emis-
sions in vehicle production. The representation is based on Figure 5 but displays a more 
specific view on the main modules’ impacts and a segmentation of the different materials. 
The car’s main modules are defined according to the classification made in Section 3. It 
has to be considered that for all three vehicle types, ICEV, HEV and BEV, the total size of 
each column indicates 100%. In this way, the percentages of contributions of the individ-
ual factors are shown for each vehicle powertrain technology separately. 

Considering the main modules, it is visible that battery-system production has the 
largest carbon footprint, but also shows the largest variation extension, based on different 
battery sizes and the applied production technologies. The variation of carbon footprint 
of the other main modules is driven by their technical characteristics, e.g., bodywork di-
mension and weight, engine performance, level of electronic equipment, as well as of the 
applied materials, e.g., steel, aluminum or polymers. For HEV, the powertrain is split up 
into the combustion-engine-based unit (ICE powertrain) and the electric-drive unit (e-
Powertrain), and the impact of the hybrid-system battery is shown separately.  

 
Figure 6. Contributions of main modules and different materials to CO2-equivalent emissions of 
vehicle production. 

Figure 6. Contributions of main modules and different materials to CO2-equivalent emissions of
vehicle production.

Considering the main modules, it is visible that battery-system production has the
largest carbon footprint, but also shows the largest variation extension, based on different
battery sizes and the applied production technologies. The variation of carbon footprint
of the other main modules is driven by their technical characteristics, e.g., bodywork
dimension and weight, engine performance, level of electronic equipment, as well as of
the applied materials, e.g., steel, aluminum or polymers. For HEV, the powertrain is
split up into the combustion-engine-based unit (ICE powertrain) and the electric-drive unit
(e-Powertrain), and the impact of the hybrid-system battery is shown separately.

Looking at the material-based effects on CO2-equivalent emissions of ICEV, the main
share is represented by the provision of steel and aluminum, and a considerable share
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by electrics and electronics. For BEV, battery-cell manufacturing as well as electric and
electronics components are the source of about 40–55% of the entire carbon footprint.
Preparation of steel and aluminum is still relevant for BEV but reduced in comparison
to components of energy storage and electric powertrains. For HEV, the material-related
impact on greenhouse-gas emissions is considerably defined by the actual powertrain
configuration. In case of mild hybrids, the characteristics are similar to those of ICEV.
In case of full hybrids and plug-in hybrids, the impacts of larger electric-drive units and
battery systems have to be considered accordingly.

2.3. Aspects of the Car’s Use Phase

Influencing factors on CO2-equivalent emissions during the use phase of a car include
the vehicle’s driving resistances, powertrain efficiency and the type of fuel (energy) used
for propulsion. In addition, user behavior and driving patterns, service and maintenance,
including spare- and wear parts, have to be considered. A significant share of greenhouse-
gas emissions that are generated during the use phase of a car are caused by the provision
of chemical energy, in the form of fuel in the case of cars driven by combustion engines, or
hydrogen in case of fuel-cell-electric vehicles. In case of battery-electric vehicles, electric
energy is provided. In ICEV, gasoline or diesel fuel is converted in the engine, producing
harmful emissions (such as hydrocarbons (HC), carbon-monoxide (CO), nitrogen oxides
(NOx), particulate emissions), and CO2. In case of FCEV, hydrogen is converted in fuel cells
to water (H2O) to produce electric energy for propelling the car. In BEV, there are no exhaust
emissions produced in the car, but upstream in the course of electric-energy generation.

In the following, the behaviors of ICEV and BEV are investigated, focusing on
CO2-equivalent emissions. FCEV are not considered further here, because this technology
is not on a large-scale production level yet, which hinders a reasonable comparison in view
of material production, vehicle manufacturing and the end-of-life phase.

Figure 7 shows the different sequences of energy provision and conversion for vehicle
propulsion as well as their influencing factors on CO2-equivalent emissions. The so-called
“well-to-tank” (WTT) emissions are generated in the course of energy-, respectively fuel
provision. For gasoline and diesel fuel, this includes production of crude oil, refinery pro-
cesses, transportation and distribution. For electricity, different technologies of electricity
production, transfer, transformation and distribution are to be considered. The so-called
“tank-to-wheel” (TTW) emissions stem from the conversion of energy in the vehicle. For
ICEV, this comprises the combustion process of fuel, resulting in exhaust emissions. BEV
do not produce exhaust emissions, leading to zero TTW emissions. The sum of WWT and
TTW emissions is defined as “well-to-wheel” (WTW) emissions and represents the actual
CO2-equivalent-emission impact when operating a car.
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For BEV, the electricity mix in the corresponding countries and regions has a significant
impact on greenhouse-gas-emission behavior (cf. Figures 3 and 4). In addition, losses of
energy transport and of charging the battery have to be considered. In a modern electricity
grid, the average transportation and transformation losses can be estimated in a range
of about 5% [19]. Charging losses of the battery are strongly influenced by the specific
charging power. In this way, low-power charging takes longer, but enables high efficiency
of the charging process of up to 95%. High-power charging—so-called “supercharging”—is
able to reduce the charging time considerably, but can lead to electrical losses of more
than 30%, which requires specific cooling of the charging system and battery [20,21]. In
conclusion, the resulting WTW emissions of BEV are defined by the technology of electricity
production, losses of electricity transfer and storage as well as the energy consumption of
the observed vehicle in the considered driving pattern.

For ICEV, there are several factors to be considered in the calculation process of WTT
emissions, including type and quality of crude oil, upstream technologies of fuel production,
transportation and distribution. In this way, WTT emissions are in the range of 10% to
20% of the TTW emissions for conventional fuel, with a lower impact for diesel and higher
impact for gasoline fuel [22]. In the combustion engine, hydrocarbons of fuel are burned
by use of aspirated air. Considering the average content of hydrogen and carbon and
assuming perfect combustion [23], the TTW emissions can be calculated directly from the
fuel consumption with linear factors:

fuel consumption in liters per 100 km * ψ = CO2 emissions in grams per km (1)

The factor ψ varies for gasoline and diesel because of their slightly different ratio of
hydrogen and carbon content, with ψ = 23.2 for gasoline and ψ = 26.2 for diesel fuel.

The specific user behaviors, including driving pattern and style, driven mileage,
and in case of BEV also the charging patterns, significantly influence the CO2-equivalent
emissions. User-related factors are very complex to consider and are the topic of different
investigations, e.g., [24]. In the present work, the standardized driving cycle WLTC (World
harmonized Light vehicles Test Cycle, [25]) and averaged user-behavior schemes are taken
under consideration.

In relation to the greenhouse-gas-emission impact of vehicle manufacturing and
propulsion, the effects of service, maintenance and spare parts are relatively low. In
general, ICEV have a higher demand of service and wear parts, e.g., filters, clutches,
oil changes and brakes. BEV have a higher mass due to the battery system and con-
sequently a slightly higher tire wear, but significantly lower effort for powertrain and
brake-system maintenance.

2.4. End-of-Life Phase

The end-of-life phase of a car includes vehicle dismantling, separation of materials and
recycling processes as well as thermal and energetic recovery. Due to the high relevance on
environmental pollution, different legislative boundary conditions regulate the handling of
old cars in this sequence, e.g., [26,27]. Focusing on the impact of the end-of-life phases on
the LCA-related carbon footprint, the relevance of recycling is relatively small. A certain
share of materials can be recycled and fed back to earlier sequences, which has potential
to reduce the total carbon footprint (see Figure 2, dotted arrows). On an actual industrial
scale, recycling is well-introduced for steel and aluminum, on a lower level for plastic
parts, and on a minor level for other materials [28]. A special case represents the battery
systems of electrified or electric vehicles, because of the very valuable materials, which
would make sense to apply recycling processes. Unfortunately, automotive lithium-ion
batteries are not designed for recycling and as of yet there are no effective dismantling
and recycling processes defined on an industrial scale [29–31]. In addition, there are plans
to use the (still valuable) cells of old batteries in so-called “second-life” applications in
stationary electric-storage systems. In the present work, effects of the end-of-life phase and
of recycling are considered for steel and aluminum, which reduces the carbon footprint of
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vehicle production, but due to the above-mentioned uncertainties, they are not considered
for the battery system.

3. Vehicle Inventory Analysis

As an important section of LCA, the inventory analysis includes a breakdown of
systems, modules and components of a car and the corresponding investigation of product
structure and related processes for materials preparation and vehicle manufacturing.

3.1. Main Modules of a Car

In many cases, the inventory analysis is conducted in form of a top-down breakdown,
which targets the definition of main modules. In subsequent steps, the main modules are
fragmented into various submodules and components, which for each the required data
for the LCA are generated. This includes a detailed analysis of materials and the chain
of manufacturing-related processes. Figure 8 shows an exemplary top-level structure of
a car, including the main modules. Depending on vehicle type and size, implemented
technologies, powertrain system and equipment, each module influences the results of an
LCA in different ways.
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The main module, bodywork, includes the vehicle body as well as doors and closures.
Different material combinations are applied in modern cars, mainly based on steel sheets
combined with aluminum and synthetic components. Aluminum bodies have a great
potential for weight reduction but require higher effort (and consequently produce higher
CO2-equivalent emissions) in the manufacturing phase. Carbon-fiber bodies have the
uppermost weight-reduction potential, but are rarely used in larger-scale mass production
due to the high manufacturing efforts [32].

Exterior components include plastic parts for bumpers, styling and outer components,
but also supplementary parts that complement the vehicle body. The exterior module
typically has a low carbon footprint in relation to the bodywork.

Interior includes seats, inner panels, dashboards, air-conditioning systems and comfort-
related equipment. As well as the seats, the comfort equipment has a large impact on both
manufacturing-related greenhouse gas emission balance and vehicle weight.

The electrics module includes electric standard components, wiring and the power
supply of electric and electronics systems on different voltage levels. This module differs
greatly for conventional, hybrid and battery-electric cars.

Chassis includes the lower vehicle structure, suspension, brakes and wheels. Electric
cars often have a changed vehicle architecture in comparison to conventionally powered
cars, which comprises a large, flat battery below the passenger cabin. In this case, chassis
and car body design differs from those of conventional cars, which has to be considered in
the course of the inventory analysis.
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3.2. Powertrain System

Of course, the powertrain system represents the most important module when it comes
to a comparison of ICEV, HEV and BEV. This is caused by the very different approach of
energy conversion for propelling the car, influencing the use phase. In addition, effects of
the different powertrain technologies have to be considered in course of the manufacturing-
related investigations of an LCA. There are several works that introduce the technologies
of automotive powertrain systems, e.g., [33–35]. In the present article, the focus is put on
aspects that are relevant in view of LCA and a corresponding evaluation of the carbon
footprints of the investigated propulsion technologies.

The powertrain structure of cars driven by internal-combustion engines is character-
ized by a considerable number of mechanical components of high complexity (Figure 9).
This comprises the combustion engine with pistons, valves, a number of shafts and bearings,
as well as cylinder heads, crankcases, housings and covers. Driving power is transferred to
the wheels via a manual or automated shiftable transmission system in combination with
one or several clutches, differential gears and drive shafts. The main materials applied in
the powertrain include different types of steel for shafts and moveable components, cast
iron for some shafts, cylinder liners and housings, as well as aluminum for housings and
covers. Fuel is supplied via a tank system including fuel pump and filters, and the exhaust
gases are concerned to after-treatment in the exhaust system by use of highly effective
catalytic converters and filters.
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The powertrain structure of electric cars is simpler considering the mechanical parts
but includes a higher share of electrical components and the complex high-voltage battery
system for electric-energy storage (Figure 10). This comprises an electric motor, holding
stator and rotor, power electronics as well as high-voltage charging system. Depending
on the applied electric-motor technology, magnetic materials might be used (e.g., in per-
manent magnet-synchronous motors), which requires high effort for the provision of the
corresponding resources [36]. In addition, copper and semiconductor-based components
are applied in various components, e.g., inverter, converter and battery.

The high-voltage system requires efforts for electric protection, and the thermal man-
agement of BEV has to be designed more complex than those of ICEV because of the
different operating-temperature levels of the inverter, electric motor and battery system.
The carbon footprint of mechanical components of an electric powertrain is considerably
lower than those of a conventional powertrain because there is a lower number of mechan-
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ical parts and the transmission system is much simpler. Most electric cars are equipped
with a nonshiftable gearbox without a clutch.

Hybrid propulsion systems are defined by a combination of combustion engine and
electric powertrain. There are different architectures of hybrid powertrains available, which
differ according to the arrangement of combustion engine and electric-drive unit, Figure 11.

In the serial hybrid configuration, the combustion engine is not mechanically connected
to the wheels, but drives an electric generator that supplies the electric-drive unit with
energy. In this way, serial hybrids have a similar electric-drivetrain configuration as
battery-electric cars, but with the extension of a combustion-engine-based power supply.
In another configuration (not shown here), fuel-cell-electric vehicles are also serial hy-
brids, whereby a hydrogen fuel-cell system provides electric power for driving the car. In
parallel hybrid configurations, both the combustion engine and electric motor are mechan-
ically connected with the wheels. Different configurations can be defined according to
the position of the electric motor in the powertrain system: P0 (electric motor/generator
connected to the crankshaft via a belt drive), P1 (electric motor/generator directly at the
crankshaft, typically at the flywheel), P2 (electric motor separated from the crankshaft by
an additional clutch), P3 (electric motor at the output shaft of the gearbox) and P4 (one axle
of the car is driven by the combustion engine, the other one is driven by an electric-axle
drive). Due to the high variability of the powertrain setup, parallel hybrids are applied in
very different configurations according to the actual requirements of a specific car model.
Combined hybrid configurations, also called “power-split” hybrids, are characterized by a
central transmission system, which combines the combustion engine and one or several
electric motor/generator units. In this way, the drive system can be controlled very flexibly
according to the actual driving situations.
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Besides their architecture, hybrid powertrains can be distinguished according to the
degree of electrification, which defines the electric-performance capability. In this way,
so-called mild hybrids are typically equipped with relatively small electric motors (less than
15 kilo Watts (kW) power) and small low-voltage battery systems (less than 1 kilo Watt
hour (kWh) energy capacity). The electric unit serves as a starter/generator and eventually
enables a certain share of brake-energy recuperation. Electric drive is not possible for
mild hybrids. Full hybrids are equipped with powerful electric motors (depending on the
vehicle class with more than 100 kW), but relatively small battery systems with a capacity
of typically up to 5 kWh. The propulsion system of full hybrids allows electric drive for short
distances and—depending on the drivetrain architecture—can provide effective brake-
energy recuperation. Finally, so-called plug-in hybrids are equipped with powerful electric
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motors with up to more than 100 kW power output, depending on the vehicle class, and
significantly larger battery systems (capacity between 8 and 30 kWh), which optionally
can be charged externally from the electric power grid. In this way, plug-in hybrids provide
electric-driving ranges from 30 to more than 60 km [37].

Concerning the life-cycle assessment of the different technologies, hybrid powertrain
systems are characterized by a wide range of carbon-footprint characteristics. This is related
to all sections of the life cycle. In the production phase, the degree of electrification plays an
important role, because it defines the types and quantities of materials and the technologies
of production. In this way, mild hybrids have a very similar production-related carbon
footprint as comparable to conventional cars. Depending on their architecture and degree
of electrification, full hybrids are characterized by a 5 to 10% higher production-related
carbon footprint. Due to the larger battery system, plug-in hybrids can have up to a 25%
higher carbon footprint than conventional cars of similar size and performance. Own
measurement series have shown that the reduction potential of fuel consumption is in
the range of 0–5% for typical mild hybrids and up to 15% for full hybrids. In the case of
plug-in hybrids, the evaluation of potential reduction of fuel consumption (respectively
carbon footprint) during the use-phase is much more complex, because it is significantly
influenced by the actual driving pattern and user behavior. If plug-in hybrid cars are
frequently charged from the grid, and the driving distances are below the maximum
electric range, the combustion engine is not in operation, leading to zero fuel consumption.
On the other hand, if the car is not charged from the grid, it is operated like a full hybrid,
and the potential benefits of external electric power supply are not taken.

Concerning the life-cycle assessment of the different technologies, hybrid powertrain
systems are characterized by a wide range of carbon-footprint characteristics. This is related
to all sections of the life cycle. In the production phase, the degree of electrification plays an
important role, because it defines the types and quantities of materials and the technologies
of production. In this way, mild hybrids have a very similar production-related carbon
footprint as comparable to conventional cars. Depending on their architecture and degree
of electrification, full hybrids are characterized by a 5 to 10% higher production-related
carbon footprint. Due to the larger battery system, plug-in hybrids can have up to a 25%
higher carbon footprint than conventional cars of similar size and performance. Own
measurement series have shown that the reduction potential of fuel consumption is in
the range of 0–5% for typical mild hybrids and up to 15% for full hybrids. In the case of
plug-in hybrids, the evaluation of potential reduction of fuel consumption (respectively
carbon footprint) during the use-phase is much more complex, because it is significantly
influenced by the actual driving pattern and user behavior. If plug-in hybrid cars are
frequently charged from the grid, and the driving distances are below the maximum
electric range, the combustion engine is not in operation, leading to zero fuel consumption.
On the other hand, if the car is not charged from the grid, it is operated like a full hybrid,
and the potential benefits of external electric power supply are not taken.

The battery system is composed of modules that include a number of cell elements,
which represent the basic units of electric-energy storage (Figure 12). Cells and modules are
electrically connected in serial and parallel order to provide a certain voltage and current
level via so-called “bus bars” and high-voltage connectors. A rigid housing including
stiffener elements protects the battery against mechanical deformation, e.g., in case of a
crash. Lithium-ion batteries are sensitive against high and low temperatures, which requires
accurate management of the temperature in the cells. This is provided by a complex thermal-
management system, including sensors and controllers. The battery-management system
comprises several cell-management controllers on module level as well as the general
battery management that controls the battery during charging, discharging as well as in
case of error and crash scenarios.
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In an inventory analysis of the battery system, the different materials used and the vari-
ous manufacturing processes have to be investigated and analyzed. In general, automotive-
battery manufacturing can be separated into the production of cells and the production
of the battery unit, including assembling of cells to modules, adding conductors, sensors
and controllers, as well as integration of the entire battery with a thermal system, battery
management and housing. In most cases, the cells are produced at cell-supplier factories in
China, South Korea or Japan and shipped to the battery-system-manufacturing plants lo-
cated near the car manufacturer’s vehicle-assembly lines. Some car manufacturers integrate
the entire battery-manufacturing chain in large, so-called “gigafactories”, e.g., [39].

Cell manufacturing is a very complex process that includes the preparation of active
materials for anodes and cathodes as well as separators and electrolytes, surfacing tech-
nologies for electrode production and foil slitting-, winding- and stacking processes. Due
to the high sensitivity of electrochemical reactions, initial charging processes, so-called
“formation”, has to be conducted with high accuracy and control effort. Finally, all cells
are checked before delivery and a certain share of potentially defective cells are sorted
out, which has a considerable impact on the LCA [40]. Typical materials for anodes are
graphite and silicon–graphite combinations. At the cathode, lithium-metal oxides come
to use, integrating e.g., lithium, cobalt, manganese, nickel, aluminum and iron phosphate.
The actual material mixtures are designed specifically and may vary between different car
manufacturer and vehicle types. The carrier foils of the electrodes are made of aluminum
and copper, and the separator is typically a polymer membrane.

The entire cell-manufacturing process is related to high demands on accuracy and
cleanliness. Extraction and processing of active materials in the cells, as well as manufac-
turing processes, require high effort, which significantly influences the life-cycle balance.
In an average consideration, about the half of production-induced CO2-equivalent emis-
sions of an automotive-battery system stem from cell production and the other half from
battery-system manufacturing and transportation. Figure 13 shows the distribution of
CO2-equivalent emissions of battery manufacturing. It is visible that the high electric-
energy demand represents the most important factor, followed by materials extraction,
processing and the production of electrodes [41]. The figure also shows that due to the high
energy impact of battery production, the application of low-carbon electricity sources plays
an important role to reduce the life-cycle carbon footprint of electric cars. In a comprehen-
sive LCA, the electricity mixes of both cell production and battery-system manufacturing
have to be considered. In this context, it makes a relevant difference if the battery is pro-
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duced in a country with high CO2-equivalent-emission impacts or in a country with a large
share of renewable energy sources (see also Figure 4).
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The end-of-life phase of lithium-ion batteries provides great potential in general
because of the valuable materials [42], but recycling processes are not introduced on a large
industrial scale yet. Reasons are the highly complex processes of battery disassembling
and materials extraction and the relatively low volume of available exhausted automotive
high-voltage batteries today. In addition, there are alternative business models coming up,
which could make use of old automotive batteries in so-called “second-life” applications in
stationary power-storage systems. Studies show that in case of recycling, a reduction in the
carbon footprint of battery manufacturing in the range of 5–10% is feasible [41,42].

Another issue to be considered in an LCA is the lifetime of lithium-ion batteries. In the
initial years of BEV, the battery system was concerned with relevant aging effects, which
often made replacement of the battery within the lifetime of a car necessary. However,
battery technology has improved significantly in view of energy-storage capability and
degradation behavior during the past years. In modern electric cars, the battery system is
designed for the entire lifetime of the car, which does not require replacements. Usually,
car manufacturers provide warranty of 8–10 years and a mileage of 150,000–200,000 km
for the battery, considering a reduction in energy storage capability of a maximum of
20–30% [43,44].

Due to the fact that a major share of the carbon footprint of BEV is caused by the
production of the battery system, the size and energy storage capability significantly
influences the total CO2-equivalent emissions characteristics. In today’s cars in the markets,
the storage capability varies widely, depending on vehicle type, class and variant. Small,
low-cost BEV are equipped with batteries of about 10 to 20 kWh energy-storage capacity;
compact and midsize cars with about 20 to 75 kWh; and large and premium-class cars
with about 60 to more than 100 kWh. Hybrid cars are equipped with smaller battery-
storage capacities, ranging from less than 1 kWh in mild hybrids to up to 30 kWh in
plug-in hybrids. Considering a direct influence of the energy-storage capacity on the
CO2-equivalent-emission impact, the actual battery size has to be included carefully in the
course of LCA-based evaluations and discussions.

4. Results and Discussion

The introduced procedure of LCA has been applied to evaluate the CO2-equivalent-
emission impact of electric cars in comparison with hybrid and conventionally driven
cars under consideration of the above-mentioned boundary conditions and influencing
factors. The following three sections represent results of the investigations, divided into
vehicle-manufacturing-related sequences, the phase of car usage and a consideration of the
behavior in the total life cycle. The underlying LCA has been conducted according to the
referred ISO standards [1,2] under consideration of large databases [3–5]. Table 1 shows
the main characteristics of the investigated cars with different propulsion technologies.
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Table 1. Main characteristics of investigated cars with different propulsion technologies.

ICEV HEV BEV

Car type: Compact car (C-class) Compact car (C-class) Compact car (C-class)

Vehicle mass: 1400 kg 1450 kg 1800 kg

Propulsion: Gasoline engine Comb. full hybrid, gasoline engine Permanent magnets synchr. Motor

Max. power 90 kW 90 kW 110 kW

Fuel/energy consumption: 6 liter/100 km 4.5 liter/100 km 20 kWh/100 km incl. charging losses

Battery capacity: - 1.3 kWh 60 kWh

Country of battery cell production: - China China

Country of vehicle manufacturing: Germany Japan Germany

Car body main material: Steel Steel Steel

Vehicle comfort equipment level: Standard Standard Standard

Total carbon footprint of production: 7.5 tonnes CO2 equivalents 9.0 tonnes CO2 equivalents 14.0 tonnes CO2 equivalents

In the present study, vehicle characteristics of the compact car class (C-segment) are
taken under consideration, because this vehicle class is very popular in the European
market. The investigated cars represent selected actual vehicles of comparable size and
performance, driven by different propulsion technologies including combustion-engine-
based powertrains (ICEV and HEV) as well as battery-electric propulsion systems. The fuel-
and electric-energy consumptions are based on the standardized WLTP-driving cycle. The
hybrid car (HEV) is a typical power-split full hybrid driven by a combination of gasoline
engine, automated transmission system and a configuration of two electric motors. For
the BEV, the electric-energy consumption considers 16 kWh per 100 km for propulsion in
the standardized driving cycle plus 10% energy demand for passenger-cabin climatization
and auxiliaries (e.g., for heating/cooling the car in winter/summer). In addition, charging
losses are included for an assumed charging behavior of 75% slow charging and 25%
high-power charging.

4.1. Vehicle Production

Figure 14 shows the LCA-based production-related CO2-equivalent-emission impacts
of the investigated cars. For cars with internal combustion engines, the main contributions
stem from the car bodywork, ICE powertrain, interior and electrics and electronics modules. With
9.0 tonnes of CO2 equivalents, the investigated hybrid car shows a 20% higher production-
related carbon footprint than the conventionally driven car. Whereas the car bodywork,
interior, chassis and exterior modules display the same masses of CO2 equivalents, the
impact of the ICE power-train is slightly lower for the hybrid car, which is caused by a
smaller (and moderately less-performant) combustion engine. Additional modules of the
hybrid car, relevant for the production-related carbon footprint, are the e-powertrain and the
battery. Together, they contribute to about 1.5 tonnes, respectively 17 % of CO2 equivalents.

The battery-electric car has a significantly higher production-related carbon footprint
with 14.0 tonnes. Here, the battery system acts as a main contributor with 7.0 tonnes. Due
to a high integration of the battery housing into the vehicle structure and a larger share
of plastic exterior parts, the car bodywork module shows a slightly lower CO2-equivalent
mass impact than those of the ICEV and the HEV. The considered BEV has relatively simple
comfort equipment in comparison to the two other cars, resulting in a slightly reduced
carbon footprint of the interior module. Relevant is the electric powertrain module with
10% of the total CO2-equivalent impact. The impact of the electrics and electronics module
considers only low-voltage components, as all high-voltage elements are included in the
CO2-equivalent balance of the battery system.

4.2. Use Phase

The LCA-based evaluation of the car’s use phase includes CO2-equivalent emissions
during driving, as well as the impacts of maintenance, service and wear parts. A relevant
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share of carbon footprint is caused by vehicle propulsion, which comprises well-to-tank
emissions (WTT) for preparation of electric energy, respectively fuel, and tank-to-wheel
emissions (TTW) caused by combustion of fuel. As mentioned in Section 2.3, BEV do not
produce TTW emissions. For cars with combustion engines, production and provision of
fuel (WTT) has to be considered.
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The diagram in Figure 15 shows the well-to-wheel (WTW) CO2 equivalent emissions
of the investigated compact cars with different propulsion systems and varied carbon
footprint of electricity production. It is visible that hybrid propulsion technology has
the potential to reduce the carbon footprint by about 25% in comparison to conventional
combustion engines. Considering the behavior of electric cars, the importance of low-
carbon electricity production is clearly demonstrated (c.f. Figures 3 and 4). In this way, a
modern hybrid car can have a lower use-phase-related greenhouse-gas-emission impact
than an electric car that is charged in a country or region with highly carbon-intensive
electric-power generation. It is interesting to see in Figure 15 that in most of the exemplarily
considered countries, the usage of BEV leads to a significantly lower carbon footprint
than those of ICEV and HEV. In countries with very low carbon-intensive electric-power
generation, the well-to-wheel CO2-equivalent-emission impact can be reduced to 7.5%
(France) or even 4% (Norway) in comparison to those of the ICEV.

4.3. Total Life Cycle

Combining the carbon footprints of production and those of the use phase, Figure 16
illustrates the life-cycle CO2-equivalent emissions of the investigated compact cars with
different propulsion systems and varied carbon footprints of electric-power generation. In
the present consideration, the vehicle production was assumed to be in Germany (ICEV and
BEV) and Japan (HEV), and the battery-cell production in China. In this way, the results
represent exemplary behavior that might be different in specific cases under dissimilar
boundary conditions. Anyway, the impact of electricity provision to the total carbon
footprint is clearly visible.

The high CO2-equivalent emissions of BEV production are compensated relatively
quickly in case that the cars are operated in countries with low-carbon electricity production,
e.g., Norway. Considering the average EU 28 electricity mix, the break-even point with
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ICEV is reached at about 65,000 km. In the case of high-carbon electricity production, e.g.,
in Poland, the break-even point will not be reached within the considered mileage range
of 200,000 km. HEV are characterized by about a 20% higher carbon footprint production
than ICEV, but have considerably lower CO2 emissions during operation, which leads to
significant advantages of the lifetime CO2-equivalent-emission behavior. However, the
potentials of BEV that are charged with low-carbon electricity can clearly not be reached
with combustion-engine-based technologies.
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5. Conclusions

A holistic evaluation and comparison of cars driven by different propulsion technolo-
gies requires the application of extensive life-cycle assessment. Due to the high complexity
of modern vehicles and the related manufacturing and supply-chain processes, comprehen-
sive investigations integrate energy provision, materials production, vehicle manufacturing,
car usage and end-of-life treatment.

The article introduces processes and influencing factors of life-cycle assessment in
the automotive sector and discusses modern propulsion technologies in view of their
CO2-equivalent-emission impacts. Based on a literature study, the ranges of CO2-equivalent-
emission impacts are shown for the main modules of modern cars driven by combustion
engines, hybrid cars and battery-electric cars. Subsequently, the standardized methodology
of life-cycle assessment is applied on actual mass-production cars of the C-segment and
the impacts of the investigated powertrain technologies are evaluated for the vehicle’s
production phase and the use phase. Focusing on the production phase including ma-
terials processing and recycling, battery-electric cars are characterized by a 50 to 100%
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higher carbon footprint than comparable cars driven by combustion engines. In the case
of hybrid cars, the wide range of powertrain architectures makes a clear definition re-
garding hybrid drive configuration and the degree of electrification necessary. In this
context, the production-related carbon footprint of hybrid cars can be up to 50% higher
than those of comparable conventionally driven cars. In the phase of usage, the technology
of electric-power generation significantly influences the carbon footprint of electric cars.
In the case of low-carbon electric-energy supply, battery-electric cars are characterized by
remarkably low carbon footprints. In the case of fossil-based electricity production, the
level of CO2-equivalent emissions is comparable with those of cars driven by combustion
engines. In total consideration, the higher carbon footprint of electric-car production can
be compensated by the lower carbon impact during the use phase, but only if there is
a low-carbon electric-power supply for charging available. Hybrid cars can reduce the
life-cycle-related CO2-equivalent-emission impacts considerably in comparison with con-
ventionally driven cars, and seem to be an attractive alternative to battery-electric cars in
the case that low-carbon electric energy is not available in a certain region.

Considering future trends of increasing implementation of electricity production
with low CO2-equivalent emissions and the introduction of low-carbon manufacturing
technologies, battery-electric cars have a large potential to contribute to a reduction in
greenhouse-gas emissions in the transportation sector.
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