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Abstract. Letting x = [a1(x), a2(x), . . .] denote the continued fraction expansion of an irrational
number x ∈ (0, 1), Khinchin proved that Sn(x) =

∑n
k=1 ak(x) ∼

1
log 2

n logn in measure, but not for

almost every x. Diamond and Vaaler showed that removing the largest term from Sn(x), the pre-
vious asymptotics will hold almost everywhere, showing the crucial influence of the extreme terms
of Sn(x) on the sum. In this paper we determine, for dn → ∞, dn/n → 0, the precise asymptotics
of the sum of the dn largest terms of Sn(x) and show that the sum of the remaining terms has an
asymptotically Gaussian distribution.

1. Introduction

For an irrational number x ∈ (0, 1) let

x =
1

a1 +
1

a2 +
1

. . .

be the continued fraction expansion of x. Clearly

a1(x) = [1/x], an+1(x) = a1(T
nx), n ≥ 1,

where the transformation T : (0, 1) → (0, 1) is defined by Tx = {1/x}; here [·] and {·} denote
integral resp. fractional part. Let

µ(E) =
1

log 2

∫
E

1

1 + x
dx

be the Gauss measure on the class B of Borel subsets of (0, 1). It is known (see e.g. [3]) that T is
an ergodic transformation preserving the Gauss measure and thus with respect to the probability
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space ((0, 1),B, µ), {an(x), n ≥ 1} is a stationary ergodic sequence. Clearly, the set {a1 = k} is the
interval (1/(k + 1), 1/k] and thus

µ{a1 = k} =
1

log 2

∫ 1/k

1/(k+1)

1

1 + x
dx =

1

log 2
log

{
1 +

1

k(k + 2)

}
∼ 1

log 2

1

k2
.

(We say that ak ∼ bk if limk→∞ ak/bk = 1.) Thus by the ergodic theorem we have for any function
F : N → R

(1.1) lim
N→∞

1

N

N∑
k=1

F (ak(x)) =
1

log 2

∞∑
j=1

F (j) log

{
1 +

1

j(j + 2)

}
a.e.

provided that the series on the right hand side converges absolutely.
The sequence {ak(x), k ≥ 1} has remarkable mixing properties. Gauss noted that the distribution

of Tnx = [an+1(x), an+2(x), . . .] with respect to the uniform measure in (0, 1) converges to µ and
asked for the speed of convergence. (For a discussion, see [3], pp. 49–50 or [17], p. 552.) Kusmin [19]

showed that the convergence speed is O(e−λ
√
k) and Lévy [21] improved this to O(e−λk). Lévy’s

result implies that the sequence {ak(x), k ≥ 1} is ψ-mixing with exponential rate, i.e. for all A ∈ Fk
1 ,

B ∈ F∞
k+n, k ≥ 1, n ≥ 1 we have

|µ(A ∩B)− µ(A)µ(B)| ≤ Ce−λnµ(A)µ(B)

with positive absolute constants C, λ, where Fs
r denotes the σ-field generated by the variables

{ak(x), r ≤ k ≤ s}.
Letting E denote expectation with respect to µ, we have Ea1 = ∞ and correspondingly for

F (x) = x the right hand side of (1.1) is +∞. Thus the partial sums
∑N

k=1 ak(x) grow faster
than N . Lévy [22] proved that

(1.2)
1

N

N∑
k=1

ak(x)−
logN

log 2

d−→ G,

where
d−→ means convergence in distribution in the probability space ((0, 1),B, µ), and G is a stable

distribution with characteristic function

(1.3) exp

(
− π|t|
2 log 2

− it log |t|
log 2

− iκt

log 2

)
,

where κ = 0.577 . . . is the Euler-Mascheroni constant. See also Theorem 2, pp. 159–160 of Heinrich
[14], where a remainder term estimate for the convergence in (1.2) is obtained. This implies that

(1.4) lim
N→∞

1

N logN

N∑
k=1

ak(x) =
1

log 2
in measure,

a result obtained earlier by Khinchin [18]. Khinchin also noted that (1.4) cannot hold almost
everywhere. Diamond and Vaaler [9] showed that the obstacle to a.e. convergence in (1.4) is the

occurrence of one single large term in the sum
∑N

k=1 ak(x) and established an a.e. analogue of (1.4)
by excluding the largest summand. They proved namely

(1.5) lim
N→∞

1

N logN
S
(1)
N (x) =

1

log 2
for almost all x
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where S
(d)
N (x) denotes the sum

∑N
k=1 ak(x) after discarding its d largest summands. The proof

shows that (1.5) remains valid if S
(1)
N is replaced by S

(d)
N for any fixed d ≥ 2 and discarding more

terms improves the rate of a.e. convergence in (1.5). An analogous result for the St. Petersburg
game was proved by Csörgő and Simons [7]. For further analogies between continued fraction digits
and the St. Petersburg game we refer to Vardi [32]. In view of these facts it is natural to ask what

happens if from the sum SN =
∑N

k=1 ak(x) we remove d = dN terms, where

(1.6) dN → ∞, dN/N → 0

so that the number of discarded terms is ’large’, but is still negligible compared with N . The
purpose of this paper is to answer this question. Let

(1.7) m(t) =
1

log 2

∑
1≤k≤t

k log

(
1 +

1

k(k + 2)

)
, t ≥ 1.

We will prove the following result.

Theorem 1.1. Let d = dN satisfy (1.6). Then we have

(1.8)
S
(d)
N −Nm(ηd,N )

N/
√
d

d−→ N
(
0, (log 2)−1

)
where ηd,N denotes the d-th largest of a1, . . . , aN and N(µ, σ2) denotes the normal distribution with
mean µ and variance σ2.

Theorem 1.1 reduces the asymptotic study of S
(d)
N to that of ηd,N , which is a much simpler

problem. We will show in (3.15) that ηd,N ∼ N/d in probability and since m(t) ∼ (log 2)−1 log t as
t→ ∞, Theorem 1.1 can be rewritten equivalently as

(1.9) S
(d)
N = Nm(ηd,N ) + (N/

√
d)ζN = (1 + oP (1))

1

log 2
N log(N/d) + (N/

√
d)ζN ,

where ζN
d−→ N(0, 1/ log 2). Here and in the sequel,

P−→ will denote convergence in probability
and oP (1) a quantity converging to 0 in probability. Relation (1.9) shows that Nm(ηd,N ) is the

main term in an asymptotic expansion of S
(d)
N . As a comparison, write Lévy’s limit theorem (1.2)

in the form

(1.10) SN =
1

log 2
N logN +Nζ∗N ,

where ζ∗N converges in distribution to the Cauchy variable with characteristic function (1.3). In
addition to the change of the order of magnitude of SN caused by removing the d largest terms, note
that the Cauchy fluctuations of SN around 1

log 2N logN described by (1.10) changed to Gaussian

fluctuations around Nm(ηd,N ) in (1.9). An immediate consequence of relation (1.9) is

S
(d)
N

N log(N/d)

P−→ 1

log 2

under (1.6). If d grows slower than any power of N , i.e. log d/ logN → 0, then the last relation
implies

1

N logN
S
(d)
N

P−→ 1

log 2
.
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Thus in this case the order of magnitude of S
(d)
N is the same as that of the complete sum SN , i.e. the

contribution of the d largest terms of SN is still negligible compared to the whole sum. If d ∼ Nγ

for some 0 < γ < 1, then
1

N logN
S
(d)
N

P−→ 1− γ

log 2
.

We thus see that the removal of of a small portion of extreme elements of SN changes the asymptotic
order of magnitude of the sum, hence the role of large elements in SN is very substantial.

In case of i.i.d. variables in the domain of attraction of a stable law with parameter 0 < α < 2,
the effect of the extremal terms on the partial sums is well known. For positive variables Darling
[8] showed (see also Arov and Bobrov [1]) that under some additional regularity assumptions the
ratio of the sum and its largest term has a non-degenerate limit distribution if 0 < α < 1 and this
holds also for 1 < α < 2 provided we center the partial sum by its mean. The case α = 1 is critical
and is not covered in [1], [8]. The sequence {ak(x), k ≥ 1} in the continued fraction expansion
corresponds to this case, except that the variables ak are weakly dependent. Theorem 1.1 and its
corollaries above show that the contribution of the d largest terms of SN is negligible (in probability)
compared with the total sum SN if and only if log d/ logN → 0. In particular this holds for d = 1,
i.e. in the case of the largest term. In the i.i.d. case, Csörgő, Horváth and Mason [6] also showed
that removing the d largest and d smallest elements from the partial sum, where (1.6) holds, the

remaining sum S
(d)
N becomes asymptotically normal. Our Theorem 1.1 is a dependent analogue of

this result for continued fractions. There is a large literature on the metric properties of continued
fractions and using the exponential ψ-mixing property of the transformation T above, many classical
limit theorems for partial sums of independent random variables have been extended to continued
fractions. We refer to Doeblin [10], Gordin and Reznik [13], Ibragimov [15], Iosifescu [16], [17],
Philipp [23], [25], Philipp and Stackelberg [26], Samur [27], [28], Stackelberg [29], Szewczak [30]
and the references therein. Using the extremal theory of dependent processes, (see e.g. Leadbetter
and Rootzen [20]), asymptotic properties of the (individual) extremes of (a1(x), . . . , an(x)) can be
established; limit theorems for the largest digit were obtained by Galambos [11], [12], Philipp [24].
Note that an analogue of Theorem 1.1 for a different, less natural trimming of the partial quotients
aj was obtained in Philipp [25].

In Section 2, we will prove Theorem 1.1 in a probabilistic form and we will change the notation
accordingly.

Theorem 1.2. Let {Xj , j ≥ 1} be a strictly stationary sequence of positive, integer valued random
variables with

(1.11) P (X1 = k) ∼ c0k
−2 as k → ∞

for some constant c0 > 0. Assume that {Xj , j ≥ 1} is ψ-mixing with rate ψ(n) = Ce−λn for some
C > 0, λ > 0. Let ηd,n denote the d-th largest of X1, . . . , Xn and assume that d = dn satisfies (1.6).
Let m(t) = EX1I{X1 ≤ t} and

(1.12) An =
√
c0 n/

√
d.

Then

(1.13)
1

An

[nt]∑
i=1

(XiI{Xi ≤ ηd,n} −m(ηd,n))
D[0,1]−→ W (t),
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where W is the Wiener process.

Remark 1.1. If (Xn) is a sequence of positive random variables such that with probability one

X1, X2, . . . are different, then the sum
∑[nt]

i=1XiI{Xi ≤ ηd,n} in (1.13) is obtained from
∑[nt]

i=1Xi

by removing the d − 1 largest terms and thus the conclusion of Theorem 1.2 for t = 1 reduces to
that of Theorem 1.1. However, for integer valued variables Xn, ηd,n can appear in the sequence

(X1, . . . , Xn) more than once and in this case the number of terms of the sum
∑[nt]

i=1Xi exceeding
ηn,d can be smaller than d− 1 and can actually be random. Thus, in a formal sense, Theorem 1.1
is not a special case of Theorem 1.2. However, using a simple perturbation argument Theorem 1.1
will be deduced from Theorem 1.2.

Let

Un(t, s) =

[nt]∑
i=1

(XiI{Xi ≤ s(n/d)} − EXiI{Xi ≤ s(n/d)}) (t ≥ 0, s ≥ 0).

We will derive Theorem 1.2 from the following two-dimensional limit theorem.

Theorem 1.3. Under the assumptions of Theorem 1.2 we have

(1.14)
1

An
Un(t, s) −→W (t, s) weakly in D ([0, 1]× [1/2, 3/2]) ,

where {W (t, s), t ≥ 0, s ≥ 0} is a two-parameter Wiener process.

As we already noted, under (1.6) we have

ηd,n
n/d

−→ 1 in probability.

Since the limit processW (t, s) in (1.14) has continuous trajectories a.s., Theorem 1.3 and Billingsley
[4], p. 144-145 imply that

1

An
Un(t, ηd,n/(n/d))

D[0,1]−→ W (t, 1)

which is exactly the functional central limit theorem (1.13).
In conclusion we note that Theorem 1.2 and Theorem 1.3 remain valid assuming a suitable

polynomial ψ-mixing rate instead of the exponential rate. However, as this requires extensive
changes in the arguments and we do not know of any practically interesting examples for ψ-mixing
sequences with polynomial rate, we omit the details.

2. Some lemmas

In the rest of the paper (Xk) denotes a sequence of random variables satisfying the conditions
of Theorem 1.2 and d = dn denotes a sequence of positive integers satisfying (1.6). Moreover, c0
denotes the constant in (1.11). Given a process Y (s, t) defined on a rectangle H = [a, b] × [a′, b′],
let Y (H) denote the increment of Y over H.
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Lemma 2.1. Let {Yn(t, s), n ≥ 1} be processes defined on a rectangle [a, b]× [a′, b′] ⊂ [0,∞)2 and
assume that for some γ > 0

(2.1) E|Yn(B)|γ |Yn(C)|γ ≤ µ(B)µ(C),

where µ denotes area and B and C are rectangles of the form [t1, t2]× [s1, s2] having one common
edge, but otherwise disjoint. Then the sequence {Yn(t, s), n ≥ 1} is tight. If every Xn(t, s) is
piecewise constant in t, i.e. there exists a finite set Hn ⊂ [a, b] such that Xn(t, s) is constant in the
left closed intervals determined by the elements of Hn ∪ {a} ∪ {b}, then it suffices to verify (2.1)
for rectangles [t1, t2]× [s1, s2] where t1, t2 ∈ Hn.

This is a special case of a general tightness condition in Bickel and Wichura [2].

Lemma 2.2. Let X,Y be integrable random variables such that X is measurable with respect
to σ(X1, . . . , Xk) and Y is measurable with respect to σ(Xk+n, Xk+n+1, . . .). Then XY is also
integrable and

|EXY − EXEY | ≤ ψ(n)E|X|E|Y |.

This follows from Theorem 3.10 in Bradley [5], p. 75.

Lemma 2.3. Let Gk denote the σ-field generated by Xk, let n1 < . . . < nr be positive integers and
let Y1, . . . , Yr be bounded r.v.’s such that Yj is Gnj measurable (j = 1, 2, . . . , r). Then

E|Y1 · · ·Yr| ≤ CrE|Y1| · · ·E|Yr|,

where Cr = (1 + ψ(1))r.

Proof. This is immediate by induction upon observing that by the previous lemma we have for
any 1 ≤ j ≤ r − 1

E|Y1 · · ·Yj+1| ≤ E|Y1 · · ·Yj |E|Yj+1|+ ψ(1)E|Y1 · · ·Yj |E|Yj+1| = (1 + ψ(1))E|Y1 · · ·Yj |E|Yj+1|.

Lemma 2.4. For any T ≥ 3 we have

(2.2) EX1I{X1 ≤ T} ≤ C1 log T, EX4
1I{X1 ≤ T} ≤ C1T

3.

Moreover, for any fixed 0 ≤ s1 < s2 we have

(2.3) EX2
1I{s1(n/d) < X1 ≤ s2(n/d)} ∼ c0(s2 − s1)(n/d) as n→ ∞

and for any fixed 0 < s1 < s2 and sufficiently large n

(2.4) EX1I{s1(n/d) < X1 ≤ s2(n/d)} ≤ C2(s2 − s1)/s1.

Here C1, C2 are positive constants depending only on the sequence (Xk).

This is immediate from (1.11).

Lemma 2.5. Let

X
(s1,s2)
k,n = XkI{s1(n/d) < Xk ≤ s2(n/d)} − EXkI{s1(n/d) < Xk ≤ s2(n/d)}.

6



Then for any fixed 0 ≤ t1 < t2 ≤ 1, 0 ≤ s1 < s2 <∞ we have

(2.5) E

 nt2∑
k=nt1+1

X
(s1,s2)
k,n

2

∼ c0(n
2/d)(t2 − t1)(s2 − s1) as n→ ∞

provided nt1, nt2 are integers. Moreover,

(2.6) E

(
nt2∑

i=nt1+1

X
(s1,s2)
i,n

) nt′2∑
j=nt′1+1

X
(s′1,s

′
2)

j,n

 = o(n2/d) as n→ ∞

provided 0 ≤ t1 < t2 ≤ 1, 0 ≤ t′1 < t′2 ≤ 1, 0 ≤ s1 < s2 < ∞, 0 ≤ s′1 < s′2 < ∞, nt1, nt2, nt
′
1, nt

′
2

are integers and the intervals (nt1, nt2) and (nt′1, nt
′
2) are identical or disjoint and the same holds

for the intervals (s1, s2) and (s′1, s
′
2), but identity cannot hold at both places.

Proof. We have

E

 nt2∑
k=nt1+1

X
(s1,s2)
k,n

2

= n(t2 − t1)E
(
X

(s1,s2)
1,n

)2
+R

where

R = 2

nt2−nt1∑
j=2

(nt2 − nt1 − j + 1)E
(
X

(s1,s2)
1,n X

(s1,s2)
j,n

)
.

Using Lemmas 2.2 and 2.4 we get, using n/d→ ∞,

E
(
X

(s1,s2)
1,n

)2
= E (X1I{s1(n/d) < X1 ≤ s2(n/d)})2 − E2 (X1I{s1(n/d) < X1 ≤ s2(n/d)})

= c0(1 + o(1))(n/d)(s2 − s1) +O(log2(n/d)) ∼ c0(n/d)(s2 − s1)

and

|R| ≤ 2n

nt2−nt1∑
j=2

ψ(j − 1)
(
E|X(s1,s2)

1,n |
)2

≤ C3n log
2(n/d)

∞∑
j=2

e−λj = o(n2/d),

proving (2.5).
To prove (2.6), consider a generic term

EX
(s1,s2)
i,n X

(s′1,s
′
2)

j,n

= EXiXjI{s1(n/d) < Xi ≤ s2(n/d)}I{s′1(n/d) < Xj ≤ s′2(n/d)}(2.7)

− EXiI{s1(n/d) < Xi ≤ s2(n/d)}EXjI{s′1(n/d) < Xj ≤ s′2(n/d)}
of the left hand side of (2.6). Fix r ≥ 0 and sum those covariances in (2.7) where j − i = r and
nt1+1 ≤ i ≤ nt2, nt

′
1+1 ≤ j ≤ nt′2. Clearly, the case r = 0 can occur only if (nt1, nt2) = (nt′1, nt

′
2),

but in this case by the assumptions of the lemma (s1, s2) and (s′1, s
′
2) must be disjoint and thus

the product of the two indicators in the second line of (2.7) is 0. Thus by the first statement of
Lemma 2.4 the product expectation in the first line of (2.7) is O(log2(n/d)) and since the number
of such terms in the expansion of (2.6) is at most n, the contribution of such terms in the sum in
(2.6) is at most O(n log2(n/d)) = o(n2/d) by n/d → ∞. For r ≥ 1 the covariance in (2.7) is at
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most ψ(r)O(log2(n/d)) by Lemma 2.2 and the first statement of Lemma 2.4 and since for fixed r
the number of pairs (i, j) is at most n, the contribution of all such terms for all r ≥ 1 is at most
Cn log2(n/d)

∑∞
r=1 ψ(r) = O(n log2(n/d)) = o(n2/d), proving (2.6).

The following central limit theorem for ϕ-mixing sequences is due to Utev [31].

Lemma 2.6. Let {xnk, 1 ≤ k ≤ n, n ≥ 1} be a triangular array of random variables with zero
mean and finite variances. Assume that the array is ϕ-mixing, i.e.

(2.8) ϕ(k) := sup
n∈N,n>k

max
1≤m≤n−k

sup
A∈F(n)

1,m,B∈F(n)
m+k,n,P (A)>0

|P (B|A)− P (B)| −→ 0 as k → ∞

where F (n)
a,b denotes the σ-algebra generated by the r.v.’s {xnk, a ≤ k ≤ b}. Assume further that

(2.9) lim
n→∞

E

(
n∑

k=1

xnk

)2

= σ2 <∞

and that the Lindeberg condition

(2.10) lim
n→∞

nE
[
x2n1I(|xn1| ≥ ε)

]
= 0 for all ε > 0

holds. Then
n∑

k=1

xnk
d−→ N(0, σ2) as n→ ∞.

3. Proof of Theorem 1.3

Put

Qn =
1

An

M∑
m=1

J∑
j=1

µm,jUn([tm−1, tm]× [sj−1, sj ])

and

Z =

M∑
m=1

J∑
j=1

µm,jW ([tm−1, tm]× [sj−1, sj ])

for all M ≥ 1, J ≥ 1, real coefficients µm,j , 0 = s0 < s1 < s2 < . . . < sJ < ∞, 0 = t0 < t1 < . . . <
tM = 1. Clearly, Z is a normal random variable with mean zero and

(3.1) EZ2 =
M∑

m=1

J∑
j=1

µ2m,j(tm − tm−1)(sj − sj−1).

We claim that

(3.2) Qn
d−→ Z for all considered values of M,J, µm,j , tm, sj .

Since the processes Un and W are equal to 0 on the boundary of the first quadrant, we have

Un(tm, sj) =

m∑
p=1

j∑
q=1

Un([tp−1, tp]× [sq−1, sq])
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and the same relation holds for W . Thus (3.2) implies

1

An

M∑
m=1

J∑
j=1

µ∗m,jUn(tm, sj)
d−→

M∑
m=1

J∑
j=1

µ∗m,jW (tm, sj)

for arbitrary real coefficients µ∗m,j and this, by the Cramér-Wold device, implies the convergence of
the finite-dimensional distributions in Theorem 1.3.

Clearly, Un([tm−1, tm]× [sj−1, sj ]) equals

[ntm]∑
k=[ntm−1]+1

XkI{sj−1(n/d) < Xk ≤ sj(n/d)} − EXkI{sj−1(n/d) < Xk ≤ sj(n/d)}

and thus relation (3.2) is equivalent to

(3.3)
1

An

n∑
k=1

(znk − Eznk)
d−→ N(0, EZ2),

where

(3.4) znk =

J∑
j=1

µm,jXkI{sj−1(n/d) < Xk ≤ sj(n/d)}, [ntm−1] + 1 ≤ k ≤ [ntm].

Since the terms of the sum in (3.4) are random variables with disjoint support, by relation (2.3) of
Lemma 2.4 we have

Ez2nk = (1 + on(1))c0(n/d)

J∑
j=1

µ2m,j(sj − sj−1), [ntm−1] + 1 ≤ k ≤ [ntm].

Consequently, letting

(3.5) Bm = c0

J∑
j=1

µ2m,j(sj − sj−1),

we get

Var znk ≤ (1 + on(1))(n/d)Bm, [ntm−1] + 1 ≤ k ≤ [ntm].(3.6)

Further, Lemma 2.5 implies for n→ ∞
EUn([tm−1, tm]× [sj−1, sj ])

2 = (1 + on(1))c0(tm − tm−1)(sj − sj−1)(n
2/d)

and
EUn([tm1−1, tm1 ]× [sj1−1, sj1 ])Un([tm2−1, tm2 ]× [sj2−1, sj2 ]) = on(n

2/d)

provided the pairs (m1, j1) and (m2, j2) are different. Thus

E

(
n∑

k=1

(znk − Eznk)

)2

= E

 M∑
m=1

J∑
j=1

µm,jUn([tm−1, tm]× [sj−1, sj ])

2

=

M∑
m1,m2=1

J∑
j1,j2=1

µm1,j1µm2,j2E [Un([tm1−1, tm1 ]× [sj1−1, sj1 ])Un([tm2−1, tm2 ]× [sj2−1, sj2 ])](3.7)
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∼ c0(n
2/d)

M∑
m=1

J∑
j=1

µ2m,j(tm − tm−1)(sj − sj−1) = c0(n
2/d)EZ2 = A2

n EZ
2.

Also, by (3.4) and the second relation of (2.2) we have

∥znk∥4 ≤
J∑

j=1

|µm,j |
(
EX4

kI{sj−1(n/d) < Xk ≤ sj(n/d)}
)1/4 ≤ C

1/4
1 (n/d)3/4

J∑
j=1

|µm,j |s3/4j

and consequently

(3.8) ∥znk − Eznk∥4 ≤ 2C
1/4
1 (n/d)3/4

J∑
j=1

|µm,j |s3/4j .

We apply now Lemma 2.6 for the triangular array

(3.9) xnk = (znk − Eznk)/An, 1 ≤ k ≤ n, n ≥ 1.

Since {Xj , j ≥ 1} is ψ-mixing with exponential rate, the array (3.9) satisfies the ϕ-mixing condition
(2.8). Relation (3.7) shows that (2.9) holds with σ2 = EZ2. Finally, (3.8), (1.12) and d = dn → ∞
show that the array (3.9) satisfies the Ljapunov condition

(3.10) lim
n→∞

nEx4n1 = 0

which implies the Lindeberg condition (2.10). Thus Lemma 2.6 applies and the central limit
theorem (3.3) follows.

Next we prove tightness in Theorem 1.3. Let

B11 = [t1, t]× [s1, s], B12 = [t1, t]× [s, s2], B21 = [t, t2]× [s1, s].

where 0 ≤ t1 < t < t2 ≤ 1, 1/2 ≤ s1 < s < s2 ≤ 3/2. In view of Lemma 2.1, it suffices to show that

(3.11) E

∣∣∣∣ 1

An
Un(B11)

∣∣∣∣2 ∣∣∣∣ 1

An
Un(Bij)

∣∣∣∣2 ≤ C∗µ(B11)µ(Bij),

holds for each ij ∈ {12, 21} with some constant C∗ > 0. Moreover, since Un(t, s) is constant on
intervals k/n ≤ t < (k+1)/n, by the last statement of Lemma 2.1 we may assume that nt, nt1 and
nt2 are all integers. To prove (3.11), we introduce the notations

X
(1)
i = XiI{s1(n/d) < Xi ≤ s(n/d)}, m

(1)
i = EX

(1)
i ,

X
(2)
i = XiI{s(n/d) < Xi ≤ s2(n/d)}, m

(2)
i = EX

(2)
i .

Using Lemmas 2.3 and 2.5 and (1.12) we get

E

∣∣∣∣ 1

An
Un(B11)

∣∣∣∣2 ∣∣∣∣ 1

An
Un(B21)

∣∣∣∣2
= E

(
1

An

nt∑
i=nt1+1

(X
(1)
i −m

(1)
i )

)2(
1

An

nt2∑
i=nt+1

(X
(1)
i −m

(1)
i )

)2

≤ (1 + ψ(1))2
1

A4
n

E

(
nt∑

i=nt1+1

(X
(1)
i −m

(1)
i )

)2

E

(
nt2∑

i=nt+1

(X
(1)
i −m

(1)
i )

)2

10



≤ C8(t− t1)(t2 − t)(s− s1)
2 = C8µ(B11)µ(B21).

for n ≥ n0. On the other hand,

E

∣∣∣∣ 1

An
Un(B11)

∣∣∣∣2 ∣∣∣∣ 1

An
Un(B12)

∣∣∣∣2
=

1

A4
n

E

(
nt∑

i=nt1+1

(X
(1)
i −m

(1)
i )

)2( nt∑
i=nt1+1

(X
(2)
i −m

(2)
i )

)2

=
1

A4
n

E

(
nt∑

i=nt1+1

Y
(1)
i

)2( nt∑
i=nt1+1

Y
(2)
i

)2

,(3.12)

where we put

Y
(1)
i = X

(1)
i −m

(1)
i , Y

(2)
i = X

(2)
i −m

(2)
i .

The expression in the third line of (3.12) equals the sum of all expressions

(3.13) A−4
n E(Y

(1)
i Y

(1)
j Y

(2)
k Y

(2)
ℓ ),

where nt1 + 1 ≤ i, j, k, ℓ ≤ nt. The following facts can be verified by elementary calculations using
Lemmas 2.2–2.4:

(a) E|Y (1)
i | ≪ s− s1, E|Y (2)

i | ≪ s2 − s, E|Y (1)
i Y

(2)
i | ≪ (s− s1)(s2 − s)

(b) E(Y
(1)
i )2 ≪ (n/d)(s− s1), E(Y

(2)
i )2 ≪ (n/d)(s2 − s),

(c) E(Y
(1)
i )2|Y (2)

i | ≪ (n/d)(s− s1)(s2 − s), E|Y (1)
i |(Y (2)

i )2 ≪ (n/d)(s− s1)(s2 − s),

(d) E(Y
(1)
i )2(Y

(2)
i )2 ≪ (n/d)(s− s1)(s2 − s),

where ≪ means the same as the O notation, with an implied constant depending on the sequence
(Xn). We prove relation (d), the proof of (a), (b), (c) is similar (and simpler). We have

E(Y
(1)
i )2(Y

(2)
i )2 = E

[
(X

(1)
i −m

(1)
i )2(X

(2)
i −m

(2)
i )2

]
= E(X

(1)
i )2(X

(2)
i )2 − 2m

(2)
i E(X

(1)
i )2X

(2)
i + (m

(2)
i )2E(X

(1)
i )2 − 2m

(1)
i EX

(1)
i (X

(2)
i )2

+ 4m
(1)
i m

(2)
i EX

(1)
i X

(2)
i − 2m

(1)
i (m

(2)
i )2EX

(1)
i + (m

(1)
i )2E(X

(2)
i )2 − 2(m

(1)
i )2m

(2)
i EX

(2)
i

+ (m
(1)
i )2(m

(2)
i )2.

Clearly X
(1)
i and X

(2)
i are supported on different sets and thus X

(1)
i X

(2)
i = 0. Thus among the 9

terms above, the first, second, fourth and fifth are equal to 0. Also, the second and third statement
of Lemma 2.4 imply, in view of 1/2 ≤ s1 < s < s2 ≤ 3/2,

m
(1)
i = EX

(1)
1 ≪ s− s1, m

(2)
i = EX

(2)
i ≪ s2 − s

E(X
(1)
i )2 ≪ (s− s1)(n/d), E(X

(2)
i )2 ≪ (s2 − s)(n/d)

for n ≥ n0. This shows that the remaining five terms of the sum above are ≪ (n/d)(s− s1)(s2− s),
proving statement (d) above. Statements (a), (b) and (c) can be proved similarly.

We can now estimate the expressions in (3.13). We will distinguish four cases according as
i, j, k, ℓ are all different, or the number of different ones among them is 1, 2 or 3. Consider first

11



the case when i, j, k, l are all different, say i < j < k < ℓ; let r = j − i. Applying Lemma 2.2

with X = Y
(1)
i , Y = Y

(1)
j Y

(2)
k Y

(2)
ℓ and using that EX = 0, we get that the absolute value of the

expression (3.13) is bounded by

A−4
n ψ(r)E|X|E|Y | ≤ CA−4

n ψ(r)E|Y (1)
i |E|Y (1)

j |E|Y (2)
k |E|Y (2)

ℓ | ≤ CA−4
n ψ(r)(s− s1)

2(s2 − s)2,

where we used Lemma 2.3 to estimate E|Y | and relation (a) above. Here, and in the rest of the
tightness proof, C denotes (possibly different) constants depending only on the sequence (Xn).
Arguing similarly, but splitting the four-term product in (3.13) after the third term, we get the
same bound, except that ψ(r) gets replaced by ψ(r′), where r′ = ℓ− k. Thus the absolute value of
the expression in (3.13) is at most

CA−4
n ψ(r)1/2ψ(r′)1/2(s− s1)

2(s2 − s)2.

Fixing the pair (i, ℓ) and summing for (j, k) means summing for (r, r′) and since
∑∞

n=1 ψ(n)
1/2 <∞

and the pair (i, ℓ) can be chosen by at most (nt−nt1)2 different ways, it follows that the contribution
of all terms (3.13) with i < j < k < ℓ is at most

CA−4
n (nt− nt1)

2(s− s1)
2(s2 − s)2 ≤ C(d2/n2)(t− t1)

2(s− s1)
2(s2 − s)2

≤ C(t− t1)
2(s− s1)(s2 − s) = Cµ(B11)µ(B12),

using (1.12) and d/n → 0. The contribution of terms (3.13) where i, j, k, ℓ are different, but their
order is different can be estimated similarly.

Next we consider the case when i = j = k = ℓ. In this case the expression (3.13) becomes

A−4
n E(Y

(1)
i )2E(Y

(2)
i )2, which by the estimate in (d) above is at most CA−4

n (n/d)(s − s1)(s2 − s).
Since the number of choices for i is nt− nt1 ≤ (nt− nt1)

2, the contribution of all such expressions
is bounded by

CA−4
n (n/d)(s− s1)(s2 − s)(nt− nt1)

2 ≤ C(d/n)(s− s1)(s2 − s)(t− t1)
2 ≤ Cµ(B11)µ(B12),

using again (1.12) and d/n→ 0.
Assume now that among i, j, k, ℓ there are two different ones, i.e. these numbers are pairwise

equal or three are equal and the fourth is different. Starting with the case of two pairs, assume e.g.

that i = j and k = l, but i ̸= k. In this case the expression (3.13) becomes A−4
n E(Y

(1)
i )2(Y

(2)
k )2

which, in view of Lemma 2.3 and the estimate in (b) above is at most

CA−4
n (n/d)2(s− s1)(s2 − s).

Since the number of choices for the pair (i, k) is at most (nt−nt1)2, using (1.12) it follows that the
total contribution of all such terms (3.13) is at most

CA−4
n (n/d)2(s− s1)(s2 − s)(nt− nt1)

2 ≤ C(s− s1)(s2 − s)(t− t1)
2 = Cµ(B11)µ(B12).

If i = k, j = l and i ̸= j, then the expression (3.13) becomes A−4
n EY

(1)
i Y

(2)
i Y

(1)
j Y

(2)
j which by

Lemma 2.3 and the estimate in (a) above is bounded by

CA−4
n E|Y (1)

i Y
(2)
i |E|Y (1)

j Y
(2)
j | ≤ CA−4

n (s− s1)
2(s2 − s)2.

Since the number of pairs (i, j) is ≤ (nt− nt1)
2, the contribution of such terms is at most

CA−4
n (s− s1)

2(s2 − s)2(nt− nt1)
2 ≤ C(s− s1)(s2 − s)(t− t1)

2 = Cµ(B11)µ(B12).
12



Assume now that from the indices i, j, k, l three are equal and the fourth one is different. Letting

e.g. i = j = k and i ̸= ℓ, the expression (3.13) becomes A−4
n E(Y

(1)
i )2Y

(2)
i Y

(2)
ℓ which is, by Lemma

2.3 and the estimates (a) and (c) above is bounded by

CA−4
n E(Y

(1)
i )2|Y (2)

i |E|Y (2)
ℓ | ≤ CA−4

n (n/d)(s− s1)(s2 − s)2.

Since the number of pairs (i, ℓ) is ≤ (nt − nt1)
2, the total contribution of such terms is at most

Cµ(B11)µ(B12).
Finally, if the number of different indices among i, j, k, l is 3, e.g. if i = j < k < ℓ, then the

expression (3.13) becomes A−4
n E(Y

(1)
i )2Y

(2)
k Y

(2)
ℓ which by using EY

(2)
ℓ = 0, Lemma 2.2, Lemma 2.3

and estimates (a) and (b) above, can be estimated by

(3.14) CA−4
n ψ(r)E(Y

(1)
i )2E|Y (2)

k |E|Y (2)
ℓ | ≤ CA−4

n ψ(r)(n/d)(s− s1)(s2 − s)2,

where r = ℓ−k. Since for fixed r the number of triples (i, k, ℓ) with ℓ−k = r is at most (nt−nt1)2,
the contribution of such terms (3.13) is at most

CA−4
n ψ(r)(n/d)(s− s1)(s2 − s)2(nt− nt1)

2 ≤ Cψ(r)(s− s1)(s2 − s)(t− t1)
2

and summing for r we get again ≤ Cµ(B11)µ(B12). The other cases (e.g. i < j = k < ℓ, etc.) can
be treated similarly and the proof of tightness in Theorem 1.3 is completed. This also completes
the proof of the theorem.

We prove now, as claimed after Theorem 1.3, that

(3.15)
ηd,n
n/d

P−→ 1

for d = dn → ∞, dn/n → 0. Fix n ≥ 1, 1/2 < t < 2 and let Tk = I{Xk ≥ tn/d}, 1 ≤ k ≤ n. Then
by Lemma 2.2 and (1.11) we get

|ET1Tk − ET1ETk| ≤ ψ(k − 1)ET1ETk ≤ C9 exp(−λk)(d/n)2

and thus setting T̄k = Tk − ETk we conclude that

E

(
n∑

k=1

T̄k

)2

= nET̄ 2
1 + 2

n∑
k=2

(n− k + 1)ET̄1T̄k

≤ n

(
ET̄ 2

1 + 2

n∑
k=2

|ET̄1T̄k|

)

≤ n

(
ET 2

1 + C10(d/n)
2

n∑
k=2

exp(−λk)

)
≤ n

(
ET1 + C11(d/n)

2
)

≤ C12d.

Hence Markov’s inequality and d = dn → ∞ imply for any ε > 0

P

{
n∑

k=1

T̄k ≥ εd

}
−→ 0,

13



and since ETk = ET1 ∼ d/(nt) by (1.11), it follows that

#{k ≤ n : Xk ≥ tn/d} =

n∑
k=1

I{Xk ≥ tn/d} ∼ d/t in probability as n→ ∞.

Thus for fixed t > 1 and n large, with probability tending to 1 the number of Xk’s, 1 ≤ k ≤ n
exceeding tn/d is smaller than d, and thus ηd,n ≤ tn/d. Similarly, for t < 1 and n large, with
probability tending to 1 we have ηd,n ≥ tn/d, and thus (3.15) is proved.

Proof of Remark 1.1. Let (Xn) be a sequence satisfying the assumptions of Theorem 1.2, and

put X ′
n = Xn + 4−n. Letting η′d,n denote the d-th largest of X ′

1, . . . , X
′
n and S

(r)
n and S

′(r)
n denote

the sums
∑n

k=1Xk,
∑n

k=1X
′
k after removing their r largest terms, it is easily seen that

(3.16) |S(r)
n − S′(r)

n | ≤ 2 for any r ≥ 1

and

(3.17) n|m(ηd,n)−m(η′d,n)| = OP (1).

Clearly, relation (1.11) will fail for the perturbed sequence (X ′
n), but as inspection shows, all the

lemmas in the proof of Theorem 1.2 and the subsequent arguments remain valid, so conclusion
(1.13) of the theorem remains valid if we replace Xi by X ′

i and ηd,n by η′d,n. Since the Xn are

integer valued, with probability one all the X ′
j , j = 1, 2, . . . are different, and thus the sum of the

Xj ’s, 1 ≤ j ≤ n not exceeding η′d,n equals S
′(d−1)
n . Thus we have

(3.18)
S
′(d−1)
n − nm(η′d,n)

n/
√
d

d−→ N(0, c0).

In view of (3.16) and (3.17), we can drop the primes in (3.18) and since S
(d−1)
n − S

(d)
n = ηd,n =

OP (n/d) by (3.15), the conclusion of Theorem 1.1 follows.
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