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Abstract— Spinal cord injury (SCI) can disrupt the 

communication pathways between the brain and the rest of the 

body, restricting the ability to perform volitional movements. 

Neuroprostheses or robotic arms can enable individuals with SCI 

to move independently, improving their quality of life. The 

control of restorative or assistive devices is facilitated by brain-

computer interfaces (BCIs), which convert brain activity into 

control commands.   

In this paper, we summarize the recent findings of our research 

towards the main aim to provide reliable and intuitive control.  

We propose a framework that encompasses the detection of goal-

directed movement intention, movement classification and 

decoding, error-related potentials detection and delivery of 

kinesthetic feedback. Finally, we discuss future directions that 

could be promising to translate the proposed framework to 

individuals with SCI. 
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I.  INTRODUCTION  

Many everyday goal-directed interactions, such as grasping 
a cup of coffee, are not possible for people who received a 
cervical spinal cord injury (SCI). The communication pathways 
between the brain and the peripheral nervous system can be 
affected, depending on the level and severity of the damage to 
the spinal cord. To improve the quality of life of individuals 
with SCI, and help them regain independence in movement, we 
aim to record their electroencephalographic (EEG) brain 
signals and transform these signals into continuous control 
commands for a restorative neuroprosthesis or robotic arm.    

We have shown that such control signals can be obtained 
from a brain-computer interface (BCI) and used for motor 
control [1]. For instance, one approach to switch between 
different grasp phases is the sustained motor imagery (MI) of 
hand or feet movements [2], [3]. Furthermore, we have shown 
that imagined movements with different durations could be 
used, both in healthy and in end-users with SCI, for motor 
control [4]–[6].  

The advantages of BCI for motor control can be augmented 
by adding other input modalities (e.g. shoulder position sensor) 

leading to a complementary system, the hybrid BCI [7]–[9]. 
Although such systems have shown promising results [10], 
[11], they still lack an intuitive control. This drawback could be 
overcome if the movements decoded by the system can closely 
reflect the user’s intention [12].        

In the next section, we will present some concepts of our 
framework: goal-directed movement intention detection, 
classification of single upper limb movements and grasp types, 
kinematics decoding and error-related potentials detection.   

II. METHODS & RESULTS 

A. Goal-directed movement intention 

We are currently studying the cognitive processes which 
allow a decision on motor goals and lead to the initiation of 
movement. In [13], we investigated whether the detection of 
movement intention was influenced by the goal-directedness 
of the movement in a movement execution (ME) task. We 
used low-frequency time-domain EEG features in a single-trial 
classification scheme and found that the presence of a motor 
goal had a positive influence on the classifier performance, 
when compared to a non-goal-directed condition. More 
specifically, the highest classification accuracies were 
achieved when the goal-directed movement condition was 
executed (grand-average of 79%). Notably, before actual 
movement onset, results were above chance level for all 
subjects for the goal-directed movement condition, while only 
6 out of 10 subjects were above chance level for the non-goal-
directed condition.   

In another study [14], we designed a paradigm to separate 
target selection from the actual motor task, which allowed us 
to study the differences between externally and internally-
driven target selection. Differences between conditions were 
observed in the positive late component of the event-related 
potential (ERP). Further, this paradigm allowed us to have an 
estimation of the onset of a self-paced MI task and study the 
movement-related cortical potentials (MRCPs) to assess 
suitability of MI for the detection of movement intention.   



 

 

B. Classification of single upper limb movements  

Discrimination of several single and non-repetitive upper 
limb movements is also possible using the time-domain of 
low-frequency EEG [15]. Fifteen healthy subjects executed 
and imagined six different sustained upper limb movements. 
We applied a multi-class classification of 6 movements: elbow 
flexion/extension, forearm supination/pronation, and hand 
open/close. Additionally, these movements were classified 
against a rest class. We obtained significant average 
classification accuracies of 55% (movement vs. movement) 
and 87% (movement vs. rest) for ME, and 27% and 73%, 
respectively, for MI. By analyzing the classifier patterns in the 
source space, we could show that for ME, mainly motor areas 
M1, S1, premotor and posterior parietal cortex contained the 
discriminable movement-related information. 

C. Classification of grasp types  

Despite the high number of degrees of freedom of the 
human hand, most actions of daily life can be executed 
incorporating only palmar, pincer and lateral grasp. We 
showed that these three different executed reach-and-grasp 
actions are discriminable using EEG [16]. Using low-
frequency time-domain features, we achieved binary 
classification accuracies of 72.4% (grasp vs. grasp) and 93.5% 
(grasp vs. rest). In an offline multi-class classification scenario 
which incorporated not only all reach-and-grasp actions but 
also the rest condition, classification performance peaked at 
65.9%. These findings will eventually contribute to our 
attempt of controlling a grasp neuroprosthesis. 

D. Classification of movements in end-users  

Transferring the results to a study with five end-users with 
high SCI (Neurological level: C3 - C5), we investigated 2 
smaller subsets, i.e. types of movements, of the two 
aforementioned studies [15], [16]. For the single upper limb 
movements (subset 1), a classification accuracy of 53% was 
achieved. Grasps (subset 2) could also be classified from 
MRCP features with an average accuracy of 57% [17].  

E. Kinematics decoding and EOG artifacts  

Complementary to classifying hand/arm movements, we 
have also investigated decoding of movement kinematics. In 
[18], 3D hand velocities (and positions) significantly 
correlated with their neural estimates (r = 0.7 across 
dimensions) for a continuous self-paced arm movement task in 
a healthy population. However, transferring this approach to 
the end-users is not trivial, since their condition impedes 
arm/hand movements, and consequently prevents recording of 
the ground truth kinematic signals. We showed in a healthy 
population that it is feasible to circumvent this limitation by 
switching to an imagery task and designing the paradigm so 
that the ground truth can be reliably estimated. In [19], we 
used a metronome as an auditory pacemaker to induce 
rhythmic arm movement imaginations. 

Another option is to study overt orienting in visuomotor 
(VM) tasks. These tasks involve visual stimuli and feedback; 
e.g. a target stimulus’ position in space or distance between a 
target and an end-effector. Intuitively, subjects would orient 

attention to objects of interest and/or track them by moving 
their eyes.  If the experimental protocol does not impose the 
additional task of inhibiting these eye movements, 
electrooculogram (EOG) artifacts arise. 

An ocular artifact correction approach is required to (1) be 
suitable for online experiments, (2) attenuate the artifacts to 
noise level, and (3) assure invariance to cortical sources, 
considering the fact that eye movements and brain activity  
can be substantially correlated in VM tasks. In [20], we 
addressed constraints (1) and (2) by applying a block design 
based experimental approach. In the first block, we recorded 
calibration data. The data was intended to fit model parameters 
of 5 EOG artifact correction algorithms. We then evaluated the 
algorithms’ correction quality and their influence on resting 
EEG data of a second block, recorded 1 hour later. We found 
that an algorithm, based on artifact subspace subtraction [21], 
could attenuate horizontal and vertical eye movement artifacts 
to chance level, and maintain resting brain activity (root mean 
squared error between resting EEG before and after correction 
< 1.5 µV). 

F. Error-related Potentials 

The incorporation of error-related potentials (ErrPs) 
detection into a BCI can improve its performance, contributing 
to a swifter interaction with the users. 

We recorded 8 subjects during a task with continuous 
control, in which, in some trials, an erroneous event happened 
(error trials). The feedback was continuous and either 
unmasked (normal feedback) or masked [22]. The masked 
feedback intended to mimic the instability resulting from 
decoding the cursor’s position from brain signals and was 
obtained by adding a variable noise component perpendicular 
to the velocity vector of the cursor. The time-locked 
classification of masked error trials against unmasked error 
trials resulted in, on average, 59.1% of the masked error trials 
being successfully classified and 59.5% of the unmasked error 
trials being successfully classified. The time-locked 
classification of correct trials against error trials (when 
considering both masked and unmasked trials together) 
resulted in, on average, 94.3% of the correct trials being 
successfully classified and 80.3% of the error trials being 
successfully classified. 

III. DISCUSSION 

In our framework, we envision an end-user with spinal 
cord injury sitting in a wheelchair. He would like to grasp the 
cup of coffee located on the table in front of him, by sending 
his motor command to a robotic arm. Once the robot starts the 
movement, it follows a path derived from EEG signals 
towards the target. The robot could also misinterpret the motor 
commands and reach the wrong target, leading to an error. 
During the reaching and grasping movements, we would 
deliver continuous kinaesthetic feedback to a sensory 
receptive area of the body (e.g. the shoulder).     

With respect to the movement intention detection, our 
findings suggest that the detection of movement intention is 
increased when the movement has a specific goal [13]. 
Moreover, we also found out that several movements of the 
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upper limb have distinct brain patterns and that these 
differences can be exploited for BCI control [15], [16]. Our 
first offline results in end-users with SCI seem promising [17], 
however, it is now mandatory to test the detectors and 
classifiers online and asynchronously.  

Any movement can be achieved by differently combining 
muscle contractions and joint positions. An interesting 
question is: How does the brain decide which combination is 
suitable for a particular movement? One theory is that the 
brain simplifies this problem by encoding particularly useful 
patterns of joint movements as distinct units or “synergies”. A 
given task can then be performed by selecting from a small 
number of synergies, avoiding the need to choose between 
huge numbers of options every time a movement is intended 
[23]. Therefore, we want to investigate, in a wider range of 
movements, the relation between their neural and behavioral 
activity patterns at a synergetic level. 

If an end-user is actually in control of the robotic arm, 
feedback allows the brain to estimate the arm’s state over time 
and adjust its trajectory. The absence of genuine kinaesthetic 
feedback from the robotic arm requires the user to closely 
monitor any movement and its interactions with objects 
visually. Accurate vision-based state estimation naturally leads 
to eye movements and in turn to EOG artifacts. Our findings 
suggest that these artifacts can be selectively attenuated to 
noise level in an online fashion with little disturbance to the 
resting EEG. Further evaluation with regard to their influence 
on trajectory decoding and established movement-related 
phenomena such as the MRCP and event-related 
desynchronization/synchronization (ERD/ERS) is required. 

Relying on visual feedback alone places a large load on the 
visual system and potentially affects the performance of 
complex regulatory processes such as grasping. Moreover, it 
leads to the control feeling artificial, rather than a genuine 
extension of one’s own body. To facilitate intuitive control, it 
is imperative to provide supplementary feedback via 
somatosensory channels, such as proprioceptive or haptic 
feedback. 

The delivery of meaningful somatosensory feedback 
encompasses proper adjustment of a multitude of parameters 
and degrees of freedom, such as choosing the feedback 
modality (e.g. vibrotactile, pressure or electrotactile), 
determining suitable stimulation loci, or aptly encoding the 
information, to name just a few. Moreover, taking into account 
e.g. inter-subject variations of sensitivity profiles (in general, 
and among individuals with SCI in particular) requires a 
certain degree of adaptability. We are pursuing investigations 
into vibrotactile feedback, its potential to enhance intuitive 
prosthesis control and its effects on EEG movement-related 
features. 

When the BCI misinterprets the brain signals from the end-
user, it initiates an unintended command. For the user, the 
mismatch between the expected action and the received 
feedback leads to the generation of an ErrP. In our study [22], 
masked and unmasked ErrPs were indistinguishable in terms 
of time-locked classification. This indicates that the potential 
instability resulting from decoding the trajectory of the robotic 
arm directly from brain signals, will not hinder the decoding 

of ErrPs in an online scenario. In order to detect and correct 
such mismatches during the continuous movement of the 
robotic arm, we would need an asynchronous detector of 
errors. In the future, we will investigate the asynchronous 
decoding of ErrPs during a task with continuous control and 
continuous feedback. 

CONCLUSION 

In conclusion, we evaluated our framework in a large 
number of healthy users, as well as in some end-users with 
high SCI, and we obtained promising results. Future studies 
are needed to confirm if imagined or attempted movements 
can be classified/ decoded online from individuals with SCI 
and if the BCI performance is sufficient to reliably control a 
neuroprosthesis or a robotic arm. It also has to be determined 
if the BCI performances can be maintained and/or increased 
by user training. Furthermore, the translation of the ErrPs 
detection and kinaesthetic feedback delivery needs to be 
assessed in end-users with SCI.    
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