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Abstract: In recent years, verification and validation processes of automated driving systems have
been increasingly moved to virtual simulation, as this allows for rapid prototyping and the use of
a multitude of testing scenarios compared to on-road testing. However, in order to support future
approval procedures for automated driving functions with virtual simulations, the models used for
this purpose must be sufficiently accurate to be able to test the driving functions implemented in the
complete vehicle model. In recent years, the modelling of environment sensor technology has gained
particular interest, since it can be used to validate the object detection and fusion algorithms in Model-
in-the-Loop testing. In this paper, a practical process is developed to enable a systematic evaluation
for perception–sensor models on a low-level data basis. The validation framework includes, first, the
execution of test drive runs on a closed highway; secondly, the re-simulation of these test drives in a
precise digital twin; and thirdly, the comparison of measured and simulated perception sensor output
with statistical metrics. To demonstrate the practical feasibility, a commercial radar-sensor model (the
ray-tracing based RSI radar model from IPG) was validated using a real radar sensor (ARS-308 radar
sensor from Continental). The simulation was set up in the simulation environment IPG CarMaker®

8.1.1, and the evaluation was then performed using the software package Mathworks MATLAB®.
Real and virtual sensor output data on a low-level data basis were used, which thus enables the
benchmark. We developed metrics for the evaluation, and these were quantified using statistical
analysis.

Keywords: automated driving; driver assistance system; virtual test and validation; radar sensor;
physical perception model; virtual sensor model; digital twin

1. Introduction

In the field of driver assistance and active safety systems, an increasing level of
automation has been introduced in public transport in recent years [1]. Automated vehicles
will be able to detect and react to hazards and vulnerable road users faster and more
appropriately than a human driver. This is expected to lead to a significant reduction in
road accidents, as around 90 percent of accidents are primarily caused by human error,
e.g., [2,3]. Taking the driver out of control will improve driving comfort by reducing the
driver’s workload, especially in monotonous situations, such as traffic jams, where the
driver is mentally under-challenged, or in cases where the driver is overloaded and cannot
fully manage the traffic situation. The human driver can also perform other productive or
enjoyable activities during the journey, thus, reducing the opportunity cost of time spent in
the car.
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Automated vehicles can significantly increase access and mobility for populations
currently unable or not allowed to use conventional cars [4]. In addition, automated
driving functions can improve fuel economy by providing more subtle acceleration and
deceleration than a human driver. However, a number of issues remain to be resolved
before self-driving vehicles become a reality.

Motivation

Increasing the level of driving automation leads to an increase in system complexity.
Therefore, the number of test cases necessary to proof the functional safety increases
exponentially [5]. The literature reports that hundreds of millions of accident-free driving
kilometres are needed to prove that the system is better than human vehicle control in
terms of vehicle safety, e.g., [6]. Therefore, testing and validation efforts are being shifted
towards virtual validation as well as X-in-the-Loop methods [7]. An essential requirement
for testing ADAS/AD systems in virtual space is the realistic modelling of the virtual
environment required for the system under test.

Virtual testing is particularly suitable for testing safety-critical scenarios that are diffi-
cult, costly, unsafe and impossible to reproduce on test tracks or roads [8]. The development
and testing of driving assistance and automated vehicle control systems is performed step
by step, from simple object detection to highly sophisticated functions, in the phases defined
in the V-Model presented in ISO 26262-2:2018 [9]. Accordingly, the virtual environment, as
well as the architecture and capabilities of the sensor models used, will vary according to
the development phases [10].

To accelerate the test execution, a possible, and in recent years, very relevant so-
lution is provided by the use of simulation tools on a virtual basis [11,12]. In the case
of perception–sensor models in early development phases, virtual simulation based on
ideal or phenomenological sensor models has become established in the industry. These
models can be used to test and validate the fundamental operating principles of control
architectures.

Using advanced perception–sensor models enables the testing of machine-perception
and sensor-fusion algorithms in a later stage, enabling thus a first parameter tuning on a
complete vehicle level before the first prototype is built.

Since sensor models have a limited ability to represent reality, careful consideration
must be given to whether the model is a satisfactory replacement for the real sensor for
validating the safety of ADAS/AD functions. However, there is no accepted methodology
available that objectively quantifies the quality of perception–sensor models. In the present
paper, a novel approach to assess the performance of virtual perception model is described.

The rest of the paper is structured as follows: Section 2 reviews the state-of-the-art
technology, Section 3 describes the used method including the digital twin of the driving
environment, the vehicle and the assessment approach. Section 4 presents the results of the
new performance evaluation method using the IPG RSI model compared to an automotive
radar sensor already proven on the market. Section 5 discusses the results of the sensor
performance assessment and describes the limitations detected during the research and
gives an outlook on future improvements.

2. State-of-the-Art

The simulation of perception sensors has been a part of worldwide research in re-
cent years. Vehicles equipped with Automated Driving or Advanced Driver Assistance
functions perform their tasks based on information provided by sensors that sense the
environment, such as different types of radar sensors, front-, rear-, surround-view and
night-vision cameras, LIDAR sensors, ultrasonic sensors [13]. The reliability of the warning
and intervention hardware components and the algorithms that control them is strongly
influenced by the quality of the information provided by the perception sensors. One of the
goals of virtual testing is to model the behaviour of these sensors to match their behaviour
under real environmental conditions.
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In the simplest case, it is sufficient for the sensor model to give a perfect representation
of the environment, using information artificially generated from the scenario, such as the
relative distance, relative velocity, angular position, classification etc., taking into account
the sensor’s sensing properties, such as the maximum sensing range, horizontal and vertical
coverage (FOV). This so called geometric or ideal sensor model is well suited to test the
dynamic behaviour of complex systems at the whole vehicle level [14].

A more realistic modelling approach would be to implement physical sensor models
simulating the behaviour of the complex interaction between sensors and the environment,
such as the reflectivity, sight obstruction by other objects, multipath fluctuation, interference,
damping etc.; however, the computational time and effort involved make the use of such
models for vehicle testing impractical [15].

However, some sensor phenomena need to be modelled to test the performance of
ADAS/AD systems with higher complexity. To test such systems under sub-optimal
sensing conditions, sensor models are needed that reflect typical sensor phenomena based
on the results of field tests, such as reduced range or increased noise levels in bad weather
conditions, erroneous, missing or incomplete information on some sensed parameters,
tracking errors, loss of objects etc. [16]. Models describing the phenomenological effects of
different sensing technologies under similar conditions allow the performance and fault
tolerance of the whole system chain to be investigated, taking into account an appropriate
balance between the fidelity of the simulation, the complexity of the parameter settings
and the computational power.

2.1. Classification of Virtual Sensor Models

Depending on the use case for virtual sensors, a general classification of sensor mod-
elling approaches can be given. Using the basic simulation methodology, a model can
be classified as a High-, Mid- or Low-Fidelity sensor model [10] or as black-, gray- or
white-box [11]. As Peng in [17] and Schaermann in [18] denoted, there are three differ-
ent modelling approaches for active perception sensors. These are the deterministic, the
statistical and the field propagation approach; see Table 1. The deterministic modelling
approach is based on mathematical formulations, which are represented by a multitude of
parameters. If a sufficiently large amount of data is collected, the parameters can be trained
and ideal sensor behaviour can be mapped.

The statistical approach is based on statistical distribution functions. This model is also
called phenomenological sensor model and the realisations are drawn from a distribution
function, which has to be determined before. This model architecture represents a good
trade-off between computational effort and realism. This paper will focus on the validation
of the third modelling approach, the field-propagation models. These models are simulating
the propagation using Maxwell’s equations. As these equations only can be solved for few
geometries, a numerical approximation must be used.

In the case of a radar sensor, the propagation of the wave can be approximated with the
Finite-Difference Time-Domain (FDTD). In order to achieve a real-time capable simulation,
FDTD is too expensive in terms of computational power. However, other methods to
approximate Maxwell’s equations include the ray-optical approaches [17], simulating
the propagation of electromagnetic waves by optical rays. Ray-tracing methods, like the
published approach in [19], can model electromagnetic waves with various physical effects.
For every radar transmitter–receiver pair, the wave propagation can be analysed to output
the range and Doppler frequency for every detected target.

A major disadvantage of models based only on optics theory is that the effect of scatter-
ing is not included. Therefore, a scattering model must be implemented in the simulation.
This can be either a stochastic scattering approach or a micro-facet-based scattering model
as shown in [20]. By using these field-propagation models in the simulation environment,
unprocessed environment sensor data with physical attributes are generated. This data
is on a low-level in the signal processing chain, since it has not yet undergone any object
detection or fusion algorithm.
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Table 1. Classification of sensor modelling methods according to [17,18].

Modeling Approach

Deterministic Statistical Field Propagation

data object list o o
level low-level detection (o) o

2.2. Assessment Methods of Virtual Sensors

Virtual testing, for all its potential benefits, has limited fidelity because of its generali-
sation to the real environment. Sensor models represent reality only roughly or by focusing
on a specific property of a sensor type. Therefore, it is necessary to assess whether a sensor
model can sufficiently represent the real world to validate the safety of ADAS/AD systems.
In the literature, several methods have been published on verification and validation meth-
ods for perception–sensor models [21–23]. All these approaches have their advantages and
disadvantages and specific areas of application.

Depending on the general validation strategy and the accuracy of the available percep-
tual sensor models, different goals can be achieved with the virtual ADAS/AD validation.
Therefore, it is difficult to quantify the performance of the different techniques since no
accepted methodology to assess the performance of sensor models in the automotive spec-
trum exists today. One simple approach to assess the accuracy of a virtual sensor model can
be to compare the performance of the ADAS/AD function within the virtual environment
with its real world performance, running the same driving scenario [8]. This approach
assumes that, for the assessment, models describing the ADAS/AD function under test are
available in addition to sensor models of sufficient fidelity and that at least one prototype
of the real hardware is available for real-world testing.

Since our hardware resources are limited to open-interface sensors freely available on
the market, our sensor modelling efforts are designed accordingly. The present research
introduces a novel approach that we call Dynamic Ground Truth—Sensor Model Validation
(DGT-SMV) for performance assessment of perception–sensor models. The method is based
on a statistical comparison of simulated and measured low-level radar data and aims to
provide a quantifiable evaluation of the low-level radar-sensor model used. The method is
presented in the next section.

3. Methodology
3.1. Dynamic Ground Truth Sensor Model Validation Approach

The DGT-SMV approach is depicted in Figure 1. The process starts with the definition
of driving scenarios (scenario definition), which are related to phenomena of the evaluated
sensor, such as multipath-propagation and separation capability [24,25]. In the next step,
the tests are performed on a proving ground or in public traffic (real test drive), including an
accurate measurement equipment.

The measurement data is used to label the recorded low-level sensor output (measure-
ment data labelling). For providing a method for direct comparison, the test drives are then
re-simulated in a detailed virtual representation using a digital twin of the environment
and the investigated virtual sensor (virtual sensor replay). The sensor then produces the
virtual low-level sensor output that is finally compared with the measured sensor output
(performance evaluation) with statistical methods. The individual steps in the DGT-SMV
process are described in detail in the next sections.

3.2. On-Road Measurements

Virtual testing can be conducted on a road section edited with a simple road editor
in the initial development phase; however, commercially available simulation programs
can be also used to re-simulate the real-world measurements of road sections. Ultra-High-
Definition Maps [25] allow the simulation of existing real road geometries, thus, facilitating
the realistic modelling of the virtual environment. This method allows the analysis of the
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complete functional chain from detection of environment perception sensors to intervention
systems.

On the digital map, one can accurately measure the position, direction and movement
of the test vehicle, as well as the reference distance to static objects, such as lane markings,
guardrails and curbs using a high precision inertial measurement unit (IMU). As part of the
measurement campaign in cooperation with the Department of Automotive Technologies
of the Budapest University of Technology and Economics [25], several driving manoeuvres
were performed to determine the validation criteria for radar-sensor models by collecting
real radar-sensor data.

Figure 1. Dynamic ground truth sensor model validation process.

3.2.1. Driving Scenario

In our literature review, we did not find systematic validation and verification methods
that would allow for the objective testing of available sensor models, in particular, with
respect to the different phenomena that occur in different test scenarios during test drives
with real sensors. The problem was first raised in the ENABLE-S3 [26] project. The ENABLE-
S3 EU project aimed to develop an innovative V&V methodology that could combine the
virtual and the real world in an optimal way. Several experiments were conducted to
define and test validation criteria for sensor models. Three radar-specific phenomena were
identified to be investigated in detail.

All of these phenomena derive from the physics of radar detection and are widely
used to describe the performance of radar sensors. These are the ability to detect occluded
objects (multipath propagation), the separation of close objects (separability) and the rapid
fluctuation of the measured radar cross-sectional signal (RCS) over azimuth angles. As a
result of this research, Holder et al. [24] concluded that validating and verifying sensor
models and measurement data for repeatability and reliability is a difficult and complex
task due to the highly stochastic nature of the radar output data. Furthermore, they found
that radar-specific characteristics can be related either to the hardware architecture of the
sensor under investigation (i.e., separability) or to signal propagation properties, such as
multipath propagation, scattering and reflections (i.e., detection of occluded objects).

In this research work, the Continental ARS308 commercially available radar sensor
was used for generating radar-sensor-measurement data to characterise the behaviour of the
real radar sensor under different driving scenarios. Since we did not have detailed technical
documentation for the radar sensor used in our experiments, which would allow us to infer
its sensor performance and some expected hardware-related radar-specific phenomena, we
decided to treat the sensor as a black box. Thus, we only used the information given in the
sensor data-sheet to set the parameters in the virtual sensor model.

The measurement campaign on the M86 highway section in Hungary was conducted
in cooperation with international industrial and academic partners. In this campaign, two
important aspects of the assessment of ADAS/AD functions were considered. First, the
mapping of the road geometry in order to produce a UHD map of the highway section.
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Secondly, the creation of a ground truth database of all participating test cars using
high accuracy Global Navigation Satellite System (GNSS). Detailed insights for the entire
measurement campaign can be found in [25]. Taking into account the number of available
potential target vehicles, a tailor-made manoeuvre catalogue was prepared, that includes a
total of 17 manoeuvrers, with 12 manoeuvrers designed for measurement runs on a M86
highway section and five on the dynamic platform of the ZalaZone automotive proving
ground [27].

As more target vehicles were available, the manoeuvres were performed with up to
five vehicles, with different configurations in terms of distance, speed and acceleration. For
completeness, it should be mentioned that there were also manoeuvres involving up to
11 vehicles and two trucks, for which high accuracy GPS data are also available. In this
research work, we demonstrate the potential of our assessing method using one selected
manoeuvre—the Range test target leaving, which is depicted in Figure 2.

v0_T1 = 30km/h

v1_T1 = 40km/h

v2_T1 = 60km/h

v3_T1 = 80km/h

v4_T1 = 100km/h

v0-4_E = 30 km/h

R0=ACC on EGO TAR

Figure 2. Target leaving with constant delta speed.

This driving scenario contains four driving manoeuvres with varying target vehicle
speed parameters. The initial state is defined as follows. Both vehicles with activated FSRA
(Stop and Go ACC) and follow time set to the minimum reached the initial speed, which
was set to 30 km/h for this manoeuvre. The distance to the TARGET vehicle controlled by
the FSRA system of the EGO vehicle is in steady state condition. After the initial conditions
are reached, the driver of the target vehicle changes the set speed of the FSRA system from
the initial 30 km/h to vset_TAR = v1-4_TAR and leaves the EGO vehicle.

The measurement is considered complete when the distance between the vehicles has
reached 250 m. To obtain the best measurement result, the angular orientation deviation
(with respect to the direction of movement of the sensor) of the vehicles tested shall be kept
below 1 degree. Unfortunately, the highway section used in this joint research project had a
slightly curved characteristic, and therefore the angular orientation deviation continuously
changes during the test runs and increases over 1 degree. This road geometry will lead to
that the reflection points on a cumulative representation are shifted.

3.2.2. Vehicle Set-Up and Measurement System

The sensor performance evaluation process is based on the comparison of low-level
detection points from real measurements using automotive radar sensors and the cor-
responding simulation. This requires high accurate ground truth reference data of the
environment including static and dynamic objects. An appropriate approach to generate
ground truth data in terms of high accuracy measurements is illustrated in Figure 3.

In order to detect as much information as possible of the surrounding of the car, the
ego vehicle was equipped with the following sensors for environmental perception:

• Continental ARS 308 RADAR sensor configured to detect “targets”, also referred as
low-level data and providing a new data set for each scan period.

• Continental ARS 308 RADAR sensor, configured to detect “objects” also referred to as
highly processed data, provides information on the output of the tracking algorithm
over several measurement periods.
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• Robosense RS-16 LIDAR sensor, provides the data point cloud of the 360° sensor field
of view.

• MobilEye ME-630 Front Camera Module, provides information of traffic signs, traffic
participants, lane markings etc.

• Video Camera, provides visual information of the driving scenarios, used during post
processing.

Radar sensors mounted on ego-vehicles are shown in Figure 4. In addition to the
environmental sensors, the DEWETRON-CAPS Measurement System [28] was also mounted
on the target and the ego vehicle. The CAPS measurement system allows the implementation
of a wirelessly connected topology of data acquisition units, consisting of one master and
several slave measurement PCs. In addition to the time-stamped input and output hardware
interfaces, the core of the CAPS system is the high accuracy inertial measurement unit
(IMU).

In our experimental setup, we used the most advanced Automotive Dynamic Motion
Analyzer (ADMA-G-Pro+) GPS/INS-IMU from GeneSys Ltd. The ADMA, combined with
an RTK-DGPS receiver [29] and connected to the Hungarian Positioning Service, provided
high accuracy dynamic state and position information of the test vehicles in real time. In
addition, an accurate time measurement is derived from the GPS/PPS signal, allowing
synchronous measurement of all connected data acquisition units.

As all measurement inputs are time-stamped, the measurement system ensures that all
data streams received local or via WLAN connection are stored in time synchronisation. In
addition, the robust WLAN connection allows for the real-time transmission of dynamic
state and position information from the target vehicle to the ego vehicle. The transmitted
data allows the driver to monitor the driving scenario online to rapidly ensure the quality of
the measurement process.

Wi Fi

Car2Car 

Cohda MK4

DEWE-510 Vehicle 

Data Acquisition 

Unit

Wi Fi

ADMA G+
Vehicle Data 

Bus

Vehicle Dynamic

SAT

Target Vehicle
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Figure 3. Schematic diagram of the measurement setup.
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Figure 4. Test vehicle measurement setup.

3.3. Re-Simulation of Experiments

When on-road measurements are conducted, it is possible to generate exact the same
scenarios in the virtual simulation using the recorded trajectory of the vehicles. IPG
CarMaker® was selected for the simulation environment, as this software package provides
a Virtual Vehicle Environment (VVE), which represents a Multi-Body-Simulation (MBS).
This includes the equations of motions, kinematics and also for ADAS applications, sensor
models. For building a Digital-Twin of a highway section, a detailed Ultra-High-Definition
(UHD) map was provided by Joanneum Research Forschungsgesellschaft, which were also
a partner in the consortium [25]. This map represents a highly accurate representation of the
highway section in an OpenDrive file format. As the road geometry in IPG CarMaker® [30]
is defined in a RD5 file format, the UHD map in in OpenDrive format has to be converted.

The virtual map includes the following road geometry items [25]:

• lane borders and markings,
• lane centre lines,
• curbs and barriers,
• traffic signs and light pole and
• road markings.

This detailed description of the environment makes it possible to reduce deviations
between the real and virtual world to a minimum. In addition to the preparation of the
virtual environment, the recorded trajectories must be transformed from the geodetic WGS-
84 coordinate system to a metric coordinate system, which is used in the simulation. Since
the operating radius of the experiments is smaller than 50 km, the curvature of the earth
can be neglected, and the transformation can be performed on a plane metric coordinate
system, which is spanned relative to a reference point [28].

IPG CarMaker distinguishes between two categories of vehicles, the ego vehicle and
traffic vehicle. The first one represents the Vehicle Under Test (VUT), including a multi-body
representation where all sub-systems can be changed by the user, e.g., mounting ADAS
sensors to the vehicle, whereas the traffic vehicle only represents a motion model, which is,
in our case, a single-track model. In order to make the traffic vehicle follow the previously
recorded and afterwards transformed trajectory, the exact position in x- and y-direction
was given to the vehicle at every time step.

The ego vehicle is controlled via the IPG Driver, a mathematical representation of
the behavior of a human. This Driver performs any interaction to the car, e.g., steering
or accelerating/braking. If the ego vehicle is now given a target trajectory, this would
be approximated by the IPG Driver, just as a human driver would do. However, since
in our case, an exact following of the recorded trajectories is absolutely necessary for the
evaluation of the sensor model, a by-pass has to be performed on the driver model. This
was done with a modification in the C-Code interface provided by the software vendor
IPG. With this adaptation, the ego vehicle is now able to reproduce the same trajectory in
the virtual environment as it was measured in the real world, ignoring any intervention by
the IPG driver.
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For the replay of the scenarios, a standard IPG-Car parameter set was used, including
models of powertrain, tires, chassis, steering, aerodynamics and sensors. Since the ego
vehicle exactly follows the recorded trajectory, no detailed parameter setting is required.
The simulation software offers a number of different sensor models, which operate at
different levels, ranging from ideal sensors to phenomenological sensors and to raw signal
interfaces.

Since this paper focuses on the validation of low-level sensor models, the RSI radar-
sensor model from IPG CarMaker V 8.1.1® [30] is considered and described in detail.

3.3.1. IPG RSI Radar Sensor Model

This sensor model provided by IPG CarMaker imitates the physical wave propagation
by an optical ray-tracing approach. It includes the major effects of wave propagation, e.g.,

• Multipath/repeated path propagation.
• Relative Doppler shift.
• Road clutter.
• False positive/negative detections of targets.

Using this ray optical sensor model in a virtual environment requires the modelling of
material properties of objects, such as the relative electric permittivity for electromagnetic
waves and scattering effects. This parameters have a significant influence on the reflected
direction and field strength of the reflected wave. The reflections are created by a detailed
3D surface in the visualisation. In the used set-up, the default values provided by the
simulation tool for a 77 GHz radar were used.

3.3.2. Parameter Setting of the Sensor Model

Radar sensors are influenced by a multitude of parameters, which makes the parameter
setting of such models complex. To ensure the comparability of the sensor model, the real
hardware was treated like a black box so the sensor model was set with those parameters
given in the data sheet provided by the manufacturer of the Radar sensor. To set the
parameters for the atmospheric environment, temperatures and and in particular the data
sheet based parameters: Field of View, Range, Cycle time, Max. Channels, Frequency,
Separability Distance, Separability Azimuth, Separability Elevation, and Separability Speed
was used.

With the additional offered two “design” parameters and scattering effect, CarMaker®

gives users the possibility to fine tune the sensor model. However, one parameter given
in the data sheet of the real hardware was not adjustable in the software package. The
inaccuracy depending on the distance of the detected object was afterwards superimposed
to the simulation results, as this leads to more robust results. To make this modified data
visible in the results, this data is marked as modified data in Section 4 [30,31].

3.4. Labelling of Radar Measurement Data

In order to assign the individual reflection points of the radar sensor to the dynamic
targets, a method that is already known in the field of object tracking is used, namely
the gating technique. Using the ground truth information of the dynamic objects, target
points only in a specific shaped area around an object of interest are considered. Figure 5
represents the gating area with the associated and not associated target points. The shape
of the gating area can be variously designed, such as rectangular or elliptical [32].

In accordance with the shape of an average car, we used a rectangular shape. In this
case, only dynamic objects are considered, as no static object information is available in the
virtual map, e.g., bridge heads or overhead traffic signs. This means that the evaluation
is limited to moving objects where the ground truth is measured with the RTK-GPS IMU
measurement equipment but is also applicable to static objects, given that the ground truth
is referenced.
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Figure 5. Gating area of the target vehicle with and with not associated reflection points according
to [31].

3.5. Evaluation Procedure

Different evaluation metrics are given in literature, such as comparison of occupancy
grid maps, statistical hypothesis testing, confidence intervals, correlation measurements
and the generation of probability density functions [18,21,33,34]. In contrast to object list
based deterministic sensor models, physical non-deterministic sensor models do not allow
a direct comparison between experimental observations and simulation models. To make
the highly stochastic process of a physical radar-sensor model comparable, including the
physical attributes, e.g., the relative velocity or RCS value, statistical evaluation methods
are best suited to describe the distribution of parameters in space and time.

Using previously labelled data, it is possible to evaluate them by statistical means in
such a way that a quantitative statement can be made about the quality of the sensor model
used in comparison to the real hardware. Introducing a reference point Pre f (x, y) on the
target vehicle enables the calculation of the deviation on every radar detection point to the
ground truth of the dynamic object, see Figure 6. Radar detection points are represented by
the vector ζr for the measured sensor data and ζs for the simulated data. The deviation is
calculated with

ζs,∆(x, y) = ζs(x, y)−Pre f (x, y), (1)

ζr,∆(x, y) = ζr(x, y)−Pre f (x, y). (2)

where ζs,∆ representing the deviation of the simulation data and ζr,∆ representing the
deviation of the real sensor data to the reference point.

Figure 6. Reference point Pre f (x, y) on the dynamic object; Deviation target points real sensor to
reference point ζr,∆(x, y) and deviation target points simulation to reference point ζs,∆(x, y) according
to [31].

Assuming radar sensors are subject to a highly stochastic process, the detection points
can be treated as realizations of a distribution function [35], p. 35. Using methods, including
kernel density estimation (KDE), a probability density function (PDF) can be generated
from the large number of realizations.
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3.6. Validation Metrics for Comparing Probability Distributions

The validation of simulation models is based on the numerical comparison of data sets
from experimental observations and the computational model output for a given use case.
To quantify the comparison, validation metrics can be defined to measure the difference
between the physical observation and the simulated output. Whether comparing measured
physical quantities or virtual simulations, observed values contain uncertainties. In the
presence of uncertainties, the observed values subject to validation are samples from a
distribution of possible measured values, which are usually unknown.

To optimally quantify the difference or the similarity between distributions, we need
the actual distributions. For the empirical data sets resulting from experimental observa-
tions (real radar sensor) and the output of the computational model (physical radar-sensor
model), we do not know the actual distribution, or even its shape. Although one can always
make assumptions (parametric) or estimate kernel density estimates (KDE), these are not
quite ideal in practice, as their analysis is limited to specific types of distributions or kernels
used. To stay as close to the data as possible, we therefore consider a non-parametric
divergence measure. Non-parametric models are extremely useful when moving from
discrete data to probability functions or distributions.

Non-parametric approaches are another way to estimate distributions. Such methods
can be used to map discrete distributions of any shape. The simplest implementation of non-
parametric distribution estimation is the histogram. Histograms benefit from knowledge of
the data sets to be estimated and require fine-tuning to achieve optimal estimation results.
In our application, this knowledge is available, since the bin width of the histogram can be
determined according to the real sensor data sheet.

As stated above, a metric is a mathematical operator that gives a formal measure of
the difference between experimental and model results. The metric plays a central role as it
can be used to describe the fidelity of sensor models used to validate ADAS/AD functions.
A low metric value means a good match and vice versa. According to [18] the metric can
be defined by the following criteria: it must be intuitively understandable, applicable to
both deterministic and non-deterministic data, a good metric defines a confidence interval
as a function of the number of measured data and meet the mathematical properties of
the metric.

The variables measured by perception sensors are usually non-parametric due to the
highly stochastic nature of the output data [24]. Based on these properties, one possible
description of the correspondence between synthetic and real perceptual data could be
the comparison of their probability distribution functions. In the context of validating
perception–sensor models, the most useful characterization appears to be the comparison
of the distributions of random variables and the shapes of the corresponding observations.
Random variables whose distribution functions are the same are called “distribution
inequalities”.

If the shapes of the distributions are not exactly the same, the difference can be mea-
sured using several possible measures. Maupin et al. [36] described a number of validation
metrics for deterministic and probabilistic data that are used to validate computational mod-
els by quantifying the information provided by physical and simulated observations. In
the context of this research, we proposed to use the Jensen–Shannon Divergence (JSD) [37],
as it provides a quantified expression of the results of a comparison between two or more
discrete probability distributions in a normalised manner.

The JSD, is a symmetrised version of the Kullback–Leibler Divergence described in
detail in [18,36]. We consider a true discrete probability distribution P and its approxima-
tion Q over the values taken on by the random variable. The Jensen–Shannon Divergence
calculated with

DJS(P||Q) = 1
2

DKL(P||M) +
1
2

DKL(Q||M) (3)



Energies 2022, 15, 2545 12 of 20

whereM is the mean distribution for P and Q, as given by

M =
P +Q

2
(4)

The Jensen–Shannon Divergence uses the Kullback–Leibler Divergence to calculate
a normalized measure. If P and Q describe the probability distribution of two discrete
random variables, the KL divergence is calculated according to Equation (5).

DKL(P||Q) = ∑
i=1
Pi(x)log(

Pix
Qix

) (5)

Since the JS Divergence is a smoothed and normalised measure from the KL Diver-
gence, it can be easily integrated into development processes. By definition, the square root
of the Jensen–Shannon divergence describes the Jensen–Shannon distance.

DistJS(P||Q) =
√

DJS(P||Q) (6)

As both the divergence DJS(P||Q) and the distance DistJS(P||Q) are symmetric with
respect to the arguments P and Q and the JS-Divergence is always non-negative, the value
of DJS(P||Q) is always a real number in the closed interval of [0; 1].

0 ≤ DJS(P||Q) ≤ 1 (7)

If the value is 0, the two distributions P and Q are the same, if the value is 1, the
two distributions are as different as possible. For better interpretation we present JSD in
percentage values in the following. As DistJS(P||Q) fulfils the mathematical properties of
a true metric [38], such as symmetry, triangle inequality and identity, the Jensen–Shannon
Distance is a valid metric distance.

4. Results

In this chapter, the results of the statistical analysis are presented, showing the be-
haviour and the differences of the sensor model compared to the Ground Truth and the
real sensor. In order to implement the DGT-SMV procedure and to illustrate the potential
of the method, the driving scenario defined in Section 3.2.1 was used. As already described
in Section 3.3.2, the modified data set with the super-positioned deviation was used for the
evaluation of the RSI sensor model.

The data of both, the real and the simulated radar sensor, was accordingly to the radar
properties split in a near range (0 to 60 m) and a far range (60 to 200 m) section. The used
radar sensor can detect objects in the near range between 0 and 60 m in near and far range
mode, which results in an overlap of the two sensor modes. For this reason, the far range
was further subdivided into those data from the 0 to 60 m and 60 to 200 m for detailed
analysis.

4.1. Comparison of Simulated and Measured Radar Signals

In Figures 7–9, visualizations of various statistical analysis of the near range radar
and radar model are shown. Figure 7a,b presents the visualization of the radar detection
points, which are associated to the corresponding dynamic target. The grey scale of each
target point indicates its relative velocity, and the stroked line indicates the bounding box
of the target vehicle. The contour lines in this plots are representing the multi-variant
distribution of the reflection points. In Figure 8, the PDF’s of the deviation to the reference
point Pre f (x, y) in x- and y-direction of the realizations are shown.

The probability distribution can not only be used for the qualitative assessment of the
distribution of the reflections but also serves as a basic prerequisite for the calculation of
the Jensen–Shannon divergence. In Figure 8a, the deviation in the longitudinal direction,
and in Figure 8b, the deviation in the lateral direction is shown. Figure 9 shows a PDF of
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the deviation of the relative velocity of each radar detection point in comparison to the
Ground Truth relative velocity of the target vehicle.

(a) (b)

Figure 7. Evaluation of the detections in the range of 0 to 60 m of the near-range radar sensor and
sensor model. (a) Scatterplot of detections for the real sensor. (b) Scatterplot of detections for the
sensor model.

(a) (b)

Figure 8. Evaluation of the detections in the range of 0 to 60 m of the near-range radar sensor and
sensor model. (a) PDF of the deviation in the x-direction from Pre f (x, y) of the real sensor and sensor
model. (b) PDF of the deviation in the y-direction from Pre f (x, y) of the real sensor and sensor model.
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Figure 9. Evaluation of the detections in the range from 0 to 60 m of the near-range radar sensor and
sensor model: PDF of the relative velocity in the x-direction from the reference velocity of the real
sensor and sensor model.

In Figures 10–12, the visualization of the statistical analysis of the far range sensor
in the near range section are shown. The results of the far range sensor for the far range
section (60 to 200 m) can be found in Figures A1–A3.

(a) (b)

Figure 10. Evaluation of the detections in the range of 0 to 60 m of the far-range radar sensor and
sensor model. (a) Scatterplot of detections of the real sensor. (b) Scatterplot of detections of the sensor
model.
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(a) (b)

Figure 11. Evaluation of the detections in the range of 0 to 60 m of the far-range radar sensor and
sensor model. (a) PDF of the deviation in the x-direction from Pre f (x, y) of the real sensor and sensor
model. (b) PDF of the deviation in the y-direction from Pre f (x, y) of the real sensor and sensor model.

Figure 12. Evaluation of the detections in the range of 0 to 60 m of the far-range radar sensor and
sensor model: PDF of the relative velocity in the x-direction from the reference velocity of the real
sensor and sensor model.

4.2. Performance Metrics

When evaluating the performance of a virtual sensor for accuracy or fidelity, the
correct performance metric should be selected to meet the requirements of the application.
As described in [36], the data sets under comparison can be treated with or without
uncertainty. Since, in our application, both experimental and predicted values are treated
with uncertainty, comparison in the shape of a non-parametric discrete distribution is one
promising solution.

The Jensen–Shannon Divergence (JSD) measures the distance between two discrete
distributions by comparing the shape of two PDFs, one of which is the accuracy reference
(real sensor data) and the other the output of a virtual model. JSD has two important
features: first, JSD includes all the statistical information known about each distribution in
the comparison. This means that the comparison is not limited to the average behaviour of
the distributions. Second, it provides a real mathematical metric.

Since the Jensen–Shannon distance is a real mathematical metric, using the property
that the value of DistJS(P||Q) is always a real number in the closed interval between 0
and 1, and if the value is 0, then the two distributions, P and Q, are the same; otherwise
they differ as much as possible, a quantitative comparison can be made between the sets of
simulation.

In Tables 2–4, the JSD is expressed as a percentage for the near range as well as for
the far range. The evaluated variables are ζs,r∆(x), defining the JSD metric for the relative
distance in x, ζs,r,∆(y), for the relative distance in y and ζs,r,∆(v) for the relative velocity v.
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Table 2. The results for the near-range radar sensor, detection range 0 < x < 60 [m].

Evaluated Variable JS-Distance in [%]

ζs,r∆(x) 54.8
ζs,r,∆(y) 53.1
ζs,r,∆(v) 51

Table 3. The results for the far-range radar sensor, detection range 0 < x < 60 [m].

Evaluated Variable JS-Distance in [%]

ζs,r∆(x) 46.5
ζs,r,∆(y) 65.1
ζs,r,∆(v) 34.2

Table 4. The results for the far-range radar sensor, detection range 60 < x < 200 [m].

Evaluated Variable JS-Distance in [%]

ζs,r∆(x) 44.1
ζs,r,∆(y) 52.8
ζs,r,∆(v) 25.6

5. Discussion

Inspecting the results, a quick overview on the performance of the virtual sensor can
immediately be achieved by the JSD metrics, where, for the deviations ζs,r∆, 0% is perfect
performance and 100% is the worst performance. In our example, it can be seen that, in the
far range, the virtual sensor is more accurate in reproducing the relative velocity than in
the relative distance. For the relative velocity, the JSD of ζs,r∆(v) is 34.2% up to 60 m and
25.6% up to 200 m. In the near range, the performance is worse at 51%.

For the relative distance, the better performance is seen in the x direction. The JSD
of ζs,r∆(x) is 46.5% in the far range up to 60 m and 44.1% up to 200 m, for the near range
54.8% was observed. In the y direction, the related JSD values of ζs,r∆(y) are 65.1%, 52.8%
and 53.1%, respectively.

This result is confirmed by visual inspection of the PDF illustrated in
Figures 8, 9, 11 and 12 as well as the scatter plots in Figures 7 and 10. Comparing the shape
of the PDFs, the strengths and shortcomings of the sensor model can be assessed, provid-
ing recommendations for parameter tuning and drawing conclusions on the validity of
the results. The explanation of the results may be found in the specific modelling approach
of the commercial radar-sensor model and is not part of this paper.

Limitations

The paper is subject to the following limitations:

• Limitations for dynamic objects: Since the UHD map in the simulation did not include
any static objects, such as bridges, traffic signs, roadside barriers, vegetation and
others, we only focused on the dynamic objects. The method can be enhanced for
static objects in case the ground truth is annotated in the virtual sensor data.

• Limitations for the investigated radar phenomena: Here, we focused on a specific
radar related phenomenon, the rapid fluctuation of the measured RCS over azimuth
angles. Other phenomena as described in [26], such as multipath-propagation and
separability were not covered here, since the real world driving tests included some
limitations detected afterwards. The method can be extended to other phenomena,
one has to define suitable driving scenarios and performance criteria.

• Limitations of specific benchmark results: Since no parameter tuning was performed
in the IPG RSI model, the results obtained are not a direct indicator of the capabilities
of the sensor model. However, the method can be used to improve the quality of the
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modelling by fine-tuning the model parameters. Only after finding the best fit does
the quality assessment become complete and can be directly compared with another
model.

• Limitations for vehicle contours: According to the literature, the Jensen–Shannon
divergence can be extended to a multivariate space with independent components,
which allows for the comparison of multivariate random variables, making it possible
to consider the contour of the vehicle. However, in this paper, we focused on the
development of the methodology and data where the results are based on included
one type of target vehicle. Hence, the difference of the rear wall of different vehicles
can not be explicitly taken into account.

These limitations will be addressed in future research.

6. Summary

Despite the advantages of automated driving technologies with respect to safety,
comfort, efficiency and new forms of mobility, only driver assistance of SAE levels 0 to 2,
with the first applications in SAE L3, are on the market. One of the main reasons is the lack
of proof in functional safety, which is due to the immense efforts required in real world
testing. Virtual testing and validation is a promising option; however, the proof of realism
of the simulation is not guaranteed at the moment.

One of the main obstacles is to reproduce the performance of machine perception in
the simulation. Currently, there is a huge amount of development and research ongoing in
providing virtual sensors. However, there is no accepted method for the proof of realism
and prognosis quality for sensor models. In the present paper, we developed a method,
the Digital Ground Truth–Sensor Model Validation (DGT-SMV), which is based on the re-
simulation of actual test drives to thus allow for a direct comparison between the simulated
and recorded sensor output. This approach requires defining suitable driving manoeuvres
to reproduce the individual phenomena of the real sensor.

For the radar sensor, this is the multipath-propagation, separation ability and rapid
fluctuation of the measured RCS over azimuth angles. The approach also requires ac-
curate measurement equipment that records the ground truth of the driving scenario
synchronously to the sensor data. After labelling the ground truth of the sensor output, a
direct comparison between the simulated and recorded sensor output is possible.

For performance evaluation, we proposed a visual inspection of the simulated and
recorded sensor output that we call scatter plots and, secondly, the transformation of these
data with statistical methods based on Probability Distribution Functions to reveal the
main performance of the virtual sensors. Finally, for a quick quantitative comparison,
we proposed performance metrics based on the Jensen–Shannon distance. The method
was applied on a commercially available sensor model (RSI radar-sensor model of IPG
CarMaker) using real test drives on a closed highway in Hungary. For those tests, a high
precision digital twin of the highway was available as well as the ground truth of the
moving objects using RTK-GPS localization.

The results show that the DGT-SMV method is a promising solution for performance
benchmarks of low-level radar-sensor models. In addition, the method can also be trans-
ferred to other active sensor principles, such as lidar and ultrasonic sensors.
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Appendix A

(a) (b)

Figure A1. Evaluation of the detections in the range of 60 to 200 m of the far-range radar sensor
and sensor model. (a) Scatterplot of the real sensor detections. (b) Scatterplot of the sensor model
detections.

(a) (b)

Figure A2. Evaluation of the detections in the range of 60 to 200 m of the far-range radar sensor and
sensor model. (a) PDF of the deviation in the x-direction from Pre f (x, y) of the real sensor and sensor
model. (b) PDF of the deviation in the y-direction from Pre f (x, y) of the real sensor and sensor model.
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Figure A3. Evaluation of the detections in the range of 60 to 200 m of the far-range radar sensor and
sensor model: PDF of the relative velocity in the x-direction from the reference velocity of the real
sensor and sensor model.
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