
ar
X

iv
:2

11
1.

10
30

3v
1 

 [
m

at
h.

A
T

] 
 1

9 
N

ov
 2

02
1

Asymptotic Improvements on the Exact Matching Distance

for 2-parameter Persistence

Håvard Bakke Bjerkevik∗ Michael Kerber†

November 22, 2021

Abstract

In the field of topological data analysis, persistence modules are used to express geometrical

features of data sets. The matching distance dM measures the difference between 2-parameter

persistence modules by taking the maximum bottleneck distance between 1-parameter slices

of the modules. The previous fastest algorithm to compute dM exactly runs in O(n8+ω),
where ω is the matrix multiplication constant. We improve significantly on this by describing

an algorithm with expected running time O(n5 log3 n). We first solve the decision problem

dM ≤ λ for a constant λ in O(n5 logn) by traversing a line arrangement in the dual plane,

where each point represents a slice. Then we lift the line arrangement to a plane arrangement in

R3 whose vertices represent possible values for dM, and use a randomized incremental method

to search through the vertices and find dM. The expected running time of this algorithm is

O((n4 +T (n)) log2 n), where T (n) is an upper bound for the complexity of deciding if dM ≤ λ.

1 Introduction

Persistent Homology [14, 15, 28] is a method to summarize the topological properties of a data
set across different scales. The last 20 years have witnessed numerous applications of persistent
homology in various scientific fields, including neuroscience [2, 30, 31], material science [18, 25],
cosmology [29, 33], and many others, shaping the field of topological data analysis [5]. Part of the
success of this field is the presence of fast algorithms for the most important sub-tasks, namely
computing a discrete summary of the topology of the data (the so-called barcode) via Gaussian
elimination of a sparse matrix, and computing the distance of two such barcodes (the so-called
bottleneck distance) as a minimal cost matching via the Hopcroft-Karp algorithm.

The standard theory of persistent homology assumes a single scalar (real) parameter to deter-
mine the scale. In many applications, however, it is natural to alter more than one parameter: As
a simple example, consider the situation of a point cloud in Euclidean space, where one parameter
controls until what distance two points are considered as close, and a second parameter determines
until which local density a point is labeled as an outlier. Every combination of these two parame-
ters results in a shape approximating the data, and studying the evolution of topological properties
across the 2-parameter space of shapes leads to the theory of multi-parameter persistence. Unfor-
tunately, already for two parameters, there is no direct generalization of the barcode [6], and the
most natural notion of distance between two 2-parameter data sets, the interleaving distance, is
NP-hard to approximate for any factor smaller than 3 [4].

∗Institute of Geometry, TU Graz; bjerkevik@tugraz.at
†Institute of Geometry, TU Graz; kerber@tugraz.at

1

http://arxiv.org/abs/2111.10303v1


Despite these negative results, there are alternative notions of distance which allow for a
polynomial-time computation. Among them is the matching distance (dM), the topic of this paper.
The main idea is that when imposing a linear condition on the parameters, we effectively restrict
the data to one-parameter and can compute barcodes and bottleneck distance for this restriction.
The matching distance is then defined as the supremum of the bottleneck distance over all possible
linear restrictions.

Kerber at al. showed recently [21] that the matching distance can be computed (exactly) in
polynomial time, more precisely, with an asymptotic complexity of O(n8+ω), where n is the size of
the input and ω is the matrix multiplication constant.

Contribution. We describe a randomized algorithm that computes the exact matching distance
in Õ(n5), where Õ means that we ignore logarithmic factors in n. We achieve this substantial
improvement in complexity through a combination of several techniques from computational ge-
ometry, computational topology, and graph matchings. We only list the major ideas and refine
them in Section 2 where we outline the approach in more detail.

• We focus on the decision question of whether dM ≤ λ or dM > λ for a fixed λ ∈ R. We show
that this question can be addressed using a line arrangement with O(n2) lines, substantially
reducing the size from the O(n4) lines needed in the previous approach by Kerber et al. [21].

• We traverse the line arrangement and maintain the barcodes and the bottleneck matching
between them during this traversal. Using the vineyard algorithm by Cohen-Steiner et al. [10]
and a result about computing bottleneck matchings from [22], this allows us to spend only
linear time per visited arrangement cell (up to logarithmic factors), resulting in an Õ(n5)
algorithm for the decision problem.

• We identify a set of O(n6) candidate values for λ that is guaranteed to contain the exact
value of the matching distance. These values are obtained from triple intersections in a plane
arrangement with O(n2) planes.

• We show how to avoid considering all candidate values through randomized incremental
construction (e.g. [12, Ch 4]). More precisely, we maintain upper and lower bounds on the
matching distance and cluster the candidates in groups. We can quickly rule out clusters if
they do not improve the bounds, and by randomization, we expect only a logarithmic number
of improvements of the bounds.

Motivation and Related work. A common theme in topological data analysis is to consider
topological properties of a data set as a proxy and analyze a collection of data sets in terms of
their topology. A distance measure allows for standard data analysis tasks on such proxies, such
as clustering or visualization via multi-dimensional scaling.

For such a distance measure to be meaningful, it is required that it is stable, that is, a slightly
perturbed version of a data sets is in small distance to the unperturbed data set. At the same time,
the distance should also be discriminative, that is, distinguish between data sets with fundamental
differences. (In the extreme case, the distance measure that assigns 0 to all pairs is maximally
stable, but also maximally non-discriminative.) Finally, for practical purposes, the distance, or at
least an approximation of it, should also be efficiently computable.

For the case of one parameter, the bottleneck and Wasserstein distances satisfy all these prop-
erties. They are both stable under certain tameness conditions [8, 9, 32] and efficient software is

2



available for computation [22]. Moreover, the bottleneck distance is universal, meaning that it is
the most discriminative distance among all stable distances [1].

In the multi-parameter setup, the situation is more complicated: the interleaving distance is
universal [26], but NP-hard to compute [4]. There is also a multi-parameter extension of the bot-
tleneck distance based on matching indecomposable elements, which is unstable and only efficiently
computable in special cases [13]. The matching distance is an attractive alternative, because it is
stable [24] and computable in polynomial time. Moreover, since it compares two multi-filtered data
sets based on the rank invariant [6], we can expect good discriminative properties in practice, even
if no theoretical statement can be made at this point. At least, first practical applications of the
matching distance have been identified in shape analysis [3, 7] and computational chemistry [20];
see also [17] for a recent case study.

The matching distance allows for a rather straightforward approximation algorithm [3] through
adaptive geometric subdivision with a quad-tree data structure. Recently, this approach has been
refined [23] and the code has been released in the Hera library1. These developments raised the
question of practical relevance for our approach, given that a good approximation of the distance is
usually sufficient in practical data. We believe that, besides the general interest in the theoretical
complexity of the problem, an exact algorithm might turn out to be faster in practice than the
proposed approximation scheme. The reason is that to achieve a satisfying approximation factor,
the subdivision approach has to descend quite deep in the quad-tree, and while the adaptiveness
of quad-trees avoids a full subdivision in some instances, there are others where large areas of
the domain have to be fully subdivided to certify the result – see for instance Figure 11 in [23].
An exact approach might be able to treat such areas as one component and save time. At the
same time, we emphasize that the approach presented in this paper is optimized for asymptotic
complexity; we do not claim that it will be efficient in practice as described.

Acknowledgements. This work is supported by the Austrian Science Fund (FWF) grant number
P 33765-N.

2 Extended overview of our approach

We give an overview describing all the main ideas of the paper, but skipping formal proofs of
correctness and only introducing terms and technical constructions through simplified examples.
Everything needed to prove our results will be introduced independently in later sections.

Bottleneck distance. The input data in topological data analysis often takes the form of a
filtration (Xs)s≥0 of simplicial complexes. Applying homology in some degree to the complexes and
inclusion maps, one gets a 1-parameter persistence module, to which one can associate a barcode,
which is a multiset of intervals (i.e., bars) of the form [b, d). Intuitively, each bar represents a
homological feature that is born at b and dies at d. Given two such persistence modules, one
would like to say something about how similar they are, which is usually done by comparing their
barcodes.

We consider two barcodes B1 and B2 as close if B1 can be transformed into B2 by changing
all endpoints of bars in B1 by a small value. More concretely, consider a real value λ ≥ 0 and
consider all barcodes that arise from B1 by shifting both endpoints of every bar by at most λ to
the left or right. In particular, a bar of length ≤ 2λ can be transformed to an empty interval, and

1https://github.com/grey-narn/hera

3

https://github.com/grey-narn/hera


thus removed. Likewise, any bar of length ≤ 2λ can be created by conceptually inserting an empty
interval [c, c) in B1, and shifting the left endpoint to the left and the right endpoint to the right.
The bottleneck distance of B1 and B2 is the smallest λ such that B2 can be obtained from B1 by
such a λ-perturbation.

The computation of the bottleneck distance can be reduced to computing maximum-cardinality
matchings in bipartite graphs. The idea is to set up a graph for a fixed λ ≥ 0 with the bars of
B1 and B2 as vertex set and connect two bars if they can be transformed into each other via a
λ-perturbation. Moreover, the graph has to be extended to account for the possibility of removing
and creating bars in the perturbation – see [14, Ch. VIII.4] for details. Setting up this graph Gλ

properly, we get that the bottleneck distance is at most λ if and only if Gλ has a perfect matching.
While the complexity for finding a maximum-cardinality matching is O(n2.5) using the Hopcroft-

Karp algorithm [19], it can be reduced to O(n1.5 log n) here because of the metric structure of the
graph [16]. The idea is that a bar [a, b) can be represented as a point (a, b) in the plane (resulting
in the so-called persistence diagram), and two points are connected in Gλ if their ℓ∞-distance is at
most λ. Then, in order to find an augmenting path, we can avoid traversing all edges of Gλ (whose
size can be quadratic), but instead use a range tree data structure [12, Ch. 5] to find neighbors in
the graph.

2-parameter filtrations In some important cases, our filtration is equipped with two parameters
instead of one; in this case one has a family (Xa,b)a≥0,b≥0 of simplicial complexes with inclusion
maps Xa,b → Xa′,b′ when a ≤ a′ and b ≤ b′. As in the 1-parameter setup, we are interested in the
evolution of the homology as the parameters range over their domain. There is no summary for
that evolution in the same way as the barcode for a single parameter. However, we can explore the
2-parameter filtration by fixing a line s of positive slope, called a slice, and consider the 1-parameter
family of simplicial complexes (Xa,b), where (a, b) ranges over all points on s. One example is the
family (Xa,a)a≥0, obtained from the slice x = y. Because slices have positive slope, the induced
1-parameter family is a filtration in the above case, so there is a well-defined barcode for the 2-
parameter filtration with respect to every slice s. Moreover, having two 2-parameter filtrations and
a slice s, there is a well-defined bottleneck distance between the slice barcodes.2 The matching
distance between two 2-parameter filtrations is the supremum of the bottleneck distance over all
slices.

These definitions carry over to an arbitrary number of parameters, but the algorithm that
follows will not, so we restrict to two parameters throughout.

Duality and bottleneck function We rephrase the definition of the matching distance through
the well-known point-line duality of computational geometry [12, Ch. 8.2]. We assign for each line
y = ax + b with slope a > 0 a dual point (a, b) ∈ R>0 × R. A point p = (px, py) ∈ R2 dualizes to
a line y = −pxx+ py, and the points on that dual line are the duals of all slices that pass through
p. We refer to the parameter plane as the primal plane and the space in which the dual points
and lines are contained as the dual plane throughout. For every dual point (a, b) (with a > 0),
we can assign a real value which is defined by the bottleneck distance of the two slice barcodes
with respect to the slice y = ax+ b. This induces a function B : R>0 × R → R, which we call the
bottleneck function. The matching distance is then just the supremum of B over its domain.

2Technically, the barcode and bottleneck distance depend on the parameterization of the line, but we postpone
the discussion to the technical part.

4



Barcode templates The advantage of the described duality is that the space of slices can be
decomposed into parts where the bottleneck function is simpler to analyze. As a first step, we
define the barcode pairing of a one-parameter filtration of simplicial complexes as the collection of
pairs (σ, τ) where σ is a simplex giving rise to a homology class and τ is the simplex eliminating it.
In the same way we obtained slice barcodes, we also have a slice barcode pairing, and by duality,
we can talk about the barcode pairing of a point in the dual plane.

The barcode can be obtained by just replacing σ and τ by the points at which they appear in
the filtration, which we will refer to as their weights. Importantly, while the barcode depends on
the weights, the barcode pairing only depends on the order of the weights. Hence, when moving
in the dual plane, the corresponding barcode pairings remain the same as long as no two simplices
switch order.

As observed by Lesnick and Wright [27], there is a line arrangement decomposing the dual
plane into (2-dimensional) regions, such that the barcode pairing is identical for all dual points in a
region. The line arrangement is not difficult to define: let us consider two simplices σ with weight
(a, b) and σ′ with weight (a′, b′) and assume a < a′. If also b < b′, σ will precede σ′ in the filtration
of any slice. If b > b′, the simplices σ and σ′ will have the same critical value exactly for those
slices that pass through the join of the two weights, which is the point (a′, b). Hence, the dual line
y = −a′x+ b will split the dual plane into two half-planes where the order of the two simplices is
fixed. Doing this for all pairs of simplices yield the line arrangement which we call L. It consists
of O(n2) lines and therefore has O(n4) regions.

Fast computation of barcode templates. Naively, computing the barcode template for each
region can be done in O(n4+ω) time by computing the arrangement L (O(n4) [12, Thm. 8.6]),
picking one dual point per region (O(n4)), generating the filtration along the primal slice (O(n)
per region), computing the slice barcodes (O(nω) per region), and computing their bottleneck
distance (O(n1.5 log n) per region).

In [27], it is shown how to reduce the complexity to O(n5) using fast updates of persistence
diagrams under transpositions as explained in [10]. Specifically, knowing the decomposition RU = ∂
for a fixed order of simplices of a simplicial complex and a transposition of two neigboring simplices
in that order, we can update the decomposition (R,U) in linear time in the size of the matrix.
Crossing a line of the arrangement L corresponds exactly to such a transposition. This suggests
the following approach: Construct a spanning tree for the dual graph of the arrangement (“dual” in
a different sense than above: the vertices of the graph are the regions, and the edges correspond to
pairs of regions that share an edge). The spanning tree defines a walk through L with O(n4) steps
that visits every region at least once (by doubling every edge and using an Eulerian tour). We
compute the barcode pairing for the starting region and keep applying the transposition algorithm
of [10] to get the barcode pairing for the next region in linear time. This yields an O(n5) time
algorithm.

Though this method of computing the barcode at every slice is not new, using it to efficiently
compute the matching distance is. Since our setting is rather different than that of [27], which
allows us some simplifications, we give the details of the computation in Section 4.

Computing the matching distance – previous version. We outline the algorithm of [21].
They refine the arrangement L to an arrangement L′ by adding O(n4) additional lines such that
within each region, the bottleneck distance is determined by the distance of a fixed pair of simplices.
Therefore, the bottleneck function takes a simple form in each region of L′, and they show that in
each region, the bottleneck function is maximized at a boundary vertex (or potentially as a limit

5



for unbounded cells – we ignore this case for simplicity). Hence, the algorithm simply evaluates
the bottleneck function at all vertices of the arrangement and takes the maximum. This yields a
running time of O(n8+ω) because the arrangement L′ has O(n8) vertices. Using the more efficient
barcode computation from above, the complexity drops to O(n9.5 log n), because we obtain the
barcodes in O(n9) time and the cost of computing the bottleneck distance at a fixed dual point is
now dominated by the (geometric) Hopcroft-Karp algorithm with complexity O(n1.5 log n). Still,
the large size of the arrangement L′ prevents us from further improvements with this approach.

Decision version of the matching distance. We first study the decision version of the prob-
lem: Given λ ≥ 0, decide whether the matching distance is strictly greater than λ. We show how
to answer this question in Õ(n5): for that, we refine the arrangement L to an arrangement Tλ by
adding O(n2) further lines. The crucial property is that within each region of Tλ, the bottleneck
function B is either ≤ λ or > λ throughout. The construction is based on the observation that if
B changes from ≤ λ to > λ along some path in the dual plane, this must happen at a dual point
where the distance between two simplices along the primal slice changes from ≤ λ to > λ. However,
we show that such a change can only happen at dual points that lie on constantly many lines in
dual space per pair of simplices – note that some of these dual lines are vertical and therefore do
not have a corresponding point in primal space.

With the arrangement Tλ, the decision version is directly solvable in O(n5.5 log n) time: Pick
one point in the interior of each region, compute the bottleneck function, and return if the function
is (> λ) for at least one point.

We further improve the complexity by the same idea of dynamic updates as for the compu-
tation of barcode templates. Recall that the question whether the bottleneck distance between
two barcodes is at most λ reduces to the existence of a perfect matching in a graph Gλ. Every
slice/dual point gives rise to such a graph, and by our construction, Gλ is fixed for every region
of Tλ. Moreover, Gλ changes in a very controlled way when crossing an edge of Tλ. The most
important example is that Gλ might gain or lose exactly one edge if we cross a line that changes
the distance of two simplices from ≤ λ to > λ.

This suggests the following strategy: We fix a walk through Tλ and maintain a perfect matching
for Gλ. In many cases, we can either keep the matching or update it in constant time when walking
to the next region. The exception is that an edge of the matching is removed from Gλ, turning
two vertices of Gλ unmatched. Still, the remaining edges still form an “almost perfect” matching.
We simply look for an augmenting path in the new Gλ to make the matching perfect again (if
no augmenting path exists, the matching distance is larger than λ). In our geometric setting,
computing one augmenting path can be done in O(n log n) time. So, by starting with an almost-
perfect matching, we avoid the O(

√
n) rounds of the Hopcroft-Karp algorithm which leads to the

improvement in the complexity.

Candidate values. To turn the decision version into an algorithm to compute the matching
distance, we identify a candidate set λ1, . . . , λm with m = O(n6) with the guarantee that the exact
matching distance δ is one of the candidates.

The cleanest way to describe the candidate set is by lifting all arrangements Tλ in R3 parame-
terized by (a, b, λ) such that the intersection with λ = λ0 yields Tλ0

. It turns out that this lifting is
a plane arrangement with O(n2) planes. We extend this arrangement by adding some other planes
and call the resulting arrangement T (which still has O(n2) planes).

For every open 3-dimensional region in T , we have the property that either B(a, b) < λ for
all (a, b, λ) in the region, or B(a, b) > λ for all (a, b, λ) in the region. Call a region green in the

6



former and red in the latter case. The matching distance is ≤ λ0 if and only if the the plane
λ = λ0 intersects no red region, and the exact matching distance δ is determined by the lowest
plane with that property. It follows that δ is the λ-value of a vertex of T . Since such a vertex is
the intersection of 3 planes, there are at most O(n6) such vertices.

Sorting the candidate set and using binary search, we can then find the exact matching distance
using logm = O(log n) queries to the decision algorithm. This results in a O(n6 log n) algorithm
for the matching distance.

Randomized construction. Our final ingredient is to avoid computing all candidates using
randomization. The idea is to iterate through the O(n2) planes of T in random order and mantain
an interval containing the matching distance. After each iteration, the interval contains the λ-value
of just one vertex that lies on the planes we have considered so far. After having run through all
the planes of T , we are left with just one possible value for the matching distance.

We prove that we can check if the interval needs to be updated in Õ(n2), and if it does, we can
update it in Õ(n4+T (n)), where T (n) is an upper bound on the complexity of solving the decision
problem dM ≤ λ. Because of the random order, we only expect O(log n) updates, leading to an
expected runtime of Õ(n4 + T (n)) in total. As mentioned previously, we will show that T (n) can
be taken to be Õ(n5), so we get a total expected runtime of Õ(n5).

We hope that our work can be used to prove an even better bound on the complexity of
computing the matching distance. For instance, it follows from our results that to find an algorithm
computing dM in expected time Õ(n4), it is enough to describe an algorithm deciding if dM ≤ λ
in expected time Õ(n4).

3 Persistence modules and the bottleneck distance

Persistence modules We consider R and R2 as posets, R with the usual poset structure ≤, and
R2 with the poset structure given by (a, b) ≤ (a′, b′) if a ≤ a′ and b ≤ b′. In what follows, we fix a
finite field F and let P ∈ {R,R2}.

Definition 3.1. A persistence module M is a collection of vector spaces Mp over F for each p ∈ P
and linear transformations Mp→q : Mp → Mq for all p ≤ q. We require that Mp→p is the identity
and that

Mq→r ◦Mp→q = Mp→r

whenever these are defined.
If P = R, we call M a 1-parameter (persistence) module, and if P = R2, we call M a 2-

parameter (persistence) module.

We say that two modules M and N are isomorphic and write M ≃ N if there is a collection
{fp}p∈P of isomorphisms Mp → Np such that for all p ≤ q, fq ◦Mp→q = Np→q ◦ fp. One can check
that the isomorphism relation is an equivalence relation.

The direct sum M⊕N of modules M and N is defined straightforwardly: (M⊕N)p = Mp⊕Np,
and (M ⊕N)p→q = Mp→q ⊕Np→q.

Definition 3.2. Let I ⊂ R be an interval. The interval module II is the 1-parameter module
defined by IIp = F if p ∈ I, and IIp = 0 if p /∈ I. In addition, IIp→q is the identity whenever p, q ∈ I.

We will see below that the 1-parameter modules we will consider are isomorphic to direct sums of
interval modules. The associated intervals give rise to the barcodes mentioned in the introduction.

7



0

F

F

F 2

F

[

1
0

]

[

0
1

]

[

1
1

]

gr(g1)

gr(g2)

gr(r)

Figure 1: A 2-parameter module presented by ([1;−1], {g1 , g2}, {r}, gr) for certain choices of grades.
The shade of red shows the dimension, and some of the vector spaces Mp and linear transformations
Mp→q are shown.

Presentations We will only consider persistence modules that allow a finite description. To be
precise, we restrict ourselves to finitely presented modules.

Let P ∈ {R,R2}, and let Q = ([Q],G,R, gr) be the collection of the following data:

• a finite (m×m′)-matrix [Q] with entries in F ,

• tuples G = (g1, . . . , gm) and R = (r1, . . . , rm′) indexing the rows and columns of Q, respec-
tively,

• a grade gr(g) ∈ P for each g ∈ G and gr(r) ∈ P for each r ∈ R,

such that for every i and j with the entry in the ith row and jth column of [Q] nonzero, we have
gr(gi) ≤ gr(rj). We call the elements of G generators and those of R relations. We often treat G
and R as sets instead of tuples when the order of their elements is understood or irrelevant.

Let e1, . . . , em be the standard basis of Fm, cj the jth column of [Q], and for p ∈ P , define

Gp = {ei | gr(gi) ≤ p},
Rp = {cj | gr(rj) ≤ p}.

Then Q induces a module MQ with

MQ
p = span(Gp)/ span(Rp)

and MQ
p→q induced by the inclusion Gp → Gq. We say that Q is a presentation of a module M if

M is isomorphic to MQ, and in this case, we say that M is finitely presented. See Fig. 1.
We say that a presentation ∂ = ([∂],G∂ ,R∂ , gr) is a permutation of Q if there are permutations

σ and τ such that [∂]i,j = [Q]σ(i),τ(j) for all i and j, and G∂ = (gσ(1), . . . , gσ(m)) and R∂ =
(rτ(1), . . . , rτ(m′)). That is, we permute the rows and columns of [Q] and permute the indexing
elements correspondingly. If Q is a presentation of a module M , then so is ∂.

A presentation ([Q],G,R, gr) of a 1-parameter module is ordered if the rows of [Q] are nonde-
creasing with respect to gr(g) for g ∈ G and the same holds for the columns and r ∈ R. Observe

8



that for any presentation of a 1-parameter module, there always exists a permutation of it that is
ordered.

From presentations to barcodes It is a classical result in persistence theory that 1-parameter
modules admit an invariant up to isomorphism called a barcode:

Theorem 3.3 ([11, Theorem 1.1]). Let M be a finitely presented 1-parameter module. Then there
is a unique multiset B of intervals such that

M ≃
⊕

I∈B

II .

We call B the barcode of M . Isomorphic modules have the same barcode. The original state-
ment of the theorem is for a larger set of modules, but we will not need the stronger version. In our
case, where the modules are finitely presented, all the intervals are of the form [a, b) with a ∈ R and
b ∈ R∪{∞}. (Equivalently, one can represent the barcode as a multiset of points in R×(R∪{∞}),
with a point (a, b) for each interval [a, b) in the barcode. This alternative description is called a
persistence diagram, and is used instead of barcodes in some of our references.)

For reasons that will become clear, we need to understand how these barcodes are computed.
We give a quick summary following [10, Sec. 2; Computation]. First, some terminology: A column
operation on a matrix is the addition of a multiple of the ith column to the jth column for some
i < j, a pivot is a bottommost nonzero element of a (nonzero) column, and reduced form means
that the pivots are all in different rows. In the standard algorithm to compute the barcode [34],
one takes as input an ordered presentation Q = ([Q],G,R, gr) of a 1-parameter module M and
performs column operations on [Q] until the matrix is in reduced form.

One can summarize this column reduction by R = [Q]V , or equivalently RV −1 = [Q], where R
is the reduced matrix and V is the upper-triangular matrix expressing the column operations we
performed on [Q] to get R. We call (R,V −1) an RU-decomposition of Q, also in the case when Q
is unordered and/or a presentation of a 2-parameter module. We consider the rows and columns
of R to be indexed by G and R and view this information as part of the RU-decomposition.

We define the barcode pairing associated to Q as follows: It contains each pair (g, r) of a
generator g and a relation r such that gr(g) 6= gr(r) and the element in the row of g and the
column of r in R is a pivot, as well as a pair (g,∞) for each g whose row in R does not contain
a pivot. We view ∞ as a dummy relation at infinity, and define gr(∞) = ∞. The barcode of M
turns out to be the multiset of intervals [gr(g), gr(r)) for the pairs (g, r) in the barcode pairing.

The RU-decomposition and barcode pairing are not invariants of M (as any module has several
presentations), but, as stated by Theorem 3.3, the barcode is.

The bottleneck distance We will define the bottleneck distance on 1-parameter modules in
terms of perfect matchings in graphs built on barcode pairings of the modules. The bottleneck
distance is usually defined in terms of barcodes, not barcode pairings, but there are technical
reasons why we want to keep track of the pairs of generators and relations instead of throwing that
information away and just consider the intervals in the barcode. The end result is the same, as our
definition is equivalent to the usual one.

Let M and N be 1-parameter modules with barcode pairings B and B′, respectively. Given
λ ∈ [0,∞], define an undirected bipartite graph G = Gλ

B,B′ as follows: The vertex set of G is

(B ∪B′)⊔ (B′ ∪B), where B has an element (g, r) for each (g, r) ∈ B, and B′ is defined similarly.
There is an edge between (g, r) ∈ B and (g′, r′) ∈ B′ if

| gr(g)− gr(g′)| ≤ λ and | gr(r)− gr(r′)| ≤ λ.

9



Let U ⊂ B ⊔B′ be the set of (g, r) such that

| gr(g)− gr(r)| ≤ 2λ.

For each (g, r) ∈ U , there is an edge between (g, r) and (g, r). Lastly, there is an edge between
each (g, r) ∈ B and (g′, r′) ∈ B′.

Observe that the isomorphism class of G only depends on the barcodes of M and N , so the
existence of a perfect matching is independent of which barcode pairings we use. This justifies the
following definition.

Definition 3.4. Let B and B′ be barcode pairings of 1-parameter modules M and N . Define the
bottleneck distance between M and N as

dB(M,N) = min{λ | Gλ
B,B′ allows a perfect matching}.

The set we take the minimum of is never empty, as G∞
B,B′ is the complete bipartite graph. That

the minimum is well-defined follows from the observation that if an edge is present in Gλ
B,B′ for all

λ ∈ (a,∞], then it is also present in Ga
B,B′ . This, in addition to the fact that as λ increases, the

vertex set of G stays the same and no edges are removed, implies the following lemma:

Lemma 3.5. dB(M,N) ≤ λ holds if and only if Gλ
B,B′ allows a perfect matching.

We remark, leaving the proof to the reader, that the existence of a perfect matching in Gλ
B,B′ is

equivalent to the existence of a matching in the subgraph induced by B ⊔B′ covering (a superset
of) (B ⊔ B′) \ U . Intuitively, we are allowed to match intervals in the barcodes that are similar,
and we do not have to match short (i.e. “insignificant”) intervals.

The matching distance We define a slice as a line s ⊂ R2 with positive slope. For p ∈ R2, let
px and py be the x- and y-coordinates of p, respectively; that is, p = (px, py).

Definition 3.6. Let M be a 2-parameter module and s a slice with slope at most one. We define
M s as the 1-parameter module with M s

r = Mp, where p is the unique point on s such that py = r,
and M s

py→qy = Mp→q for p ≤ q ∈ s.
If s has slope more than one, we define M s as the 1-parameter module with M s

px
= Mp for all

p ∈ s, and morphisms defined by M s
px→qx

= Mp→q for p ≤ q ∈ s.

Thus, if the slope of s is at most one, we can visualize M s as being the restriction of M to s
projected to the y-axis. If the slope is more than one, we can visualize M s as being the restriction
of M to s projected to the x-axis.

Definition 3.7. We define the matching distance as

dM(M,N) = sup
slice s

dB(M
s, N s)

for finitely presented 2-parameter modules M and N .

In view of Lemma 4.1 below, M s and N s are finitely presented, so dB(M
s, N s) is indeed well-

defined.
We will find it convenient to avoid the case distinction between slope less than and greater than

one. Let
d≤1
M(M,N) = sup

slice s with slope ≤1
dB(M

s, N s);

10



R s

(3, 2)
pushs(3, 2) = 2

(4, 1.5)

(4, 3)pushs(4, 1.5) = 3

(1, 1)
pushs(1, 1) = 1

Figure 2: Points in red above, on and below a slice s and the pushes of the points on the real line
in blue.

d≥1
M (M,N) is defined similarly. Clearly,

dM(M,N) = max
{

d≤1
M (M,N), d≥1

M (M,N)
}

,

so to compute dM(M,N), it is sufficient to compute d≤1
M(M,N) and d≥1

M (M,N). Since com-

puting d≤1
M (M,N) and d≥1

M(M,N) are completely symmetric problems (simply switch x- and y-

coordinates), we can assume without loss of generality that d≤1
M (M,N) ≥ d≥1

M (M,N) for the pur-

poses of asymptotic complexity, so that d≤1
M(M,N) = dM(M,N). We will use this assumption

throughout the rest of the paper.

4 Deciding if dM ≤ λ

Our goal is to compute dM(M,N), but first we consider an easier problem: given λ ≥ 0, decide if
dM(M,N) ≤ λ. We explain how to do this in O(n5 log n). In the next section, we show how to
use this to compute dM(M,N) exactly.

Fix λ ∈ [0,∞). Since we assume d≤1
M (M,N) = dM(M,N), every slice in this section will be

assumed to have slope at most one. To decide if dM(M,N) ≤ λ for modules M and N , we need to
decide if dB(M

s, N s) ≤ λ for every slice s. Since there are infinitely many slices, it is not obvious
how to do this in finite time, let alone efficiently. To decide if dB(M

s, N s) ≤ λ for a given slice s,
the most obvious approach is to find presentations of M s and N s, then barcode pairings B and B′,
construct the graph Gλ

B,B′ , decide if it has a perfect matching and apply Lemma 3.5. Our strategy
will be to group the slices into a finite number of sets such that we only need to go through this
procedure for one slice in every set. We begin by explaining how a presentation Q of a 2-parameter
module M induces a canonical presentation of M s for every slice s.

Induced presentations Let p ∈ R2, let s be a slice, and let q be the least point on s that is
greater than or equal to p. We define pushs p to be qy. If p is on or above s, then pushs p = py;
in particular, if p ∈ s and M is a 2-parameter module, then M s

pushs p
= Mp. If p is below s and

(px, r) ∈ s, then pushs p = r. See Fig. 2. Let Q be a presentation of a 2-parameter module

11



with indexing sets G = (g1, . . . , gm) and R = (r1, . . . , rm′). Let pushs(Q) be the 1-parameter
presentation with [pushs(Q)] = [Q], indexing sets

pushs(G) = (pushs(g1), . . . ,pushs(gm)), pushs(R) = (pushs(r1), . . . ,pushs(rm′))

(here pushs(gi) and pushs(rj) are to be understood simply as (labels for) the ith generator and jth

relation of pushs(Q)) and

gr(pushs(gi)) = pushs(gr(gi)), gr(pushs(rj)) = pushs(gr(rj))

for all i and j. This is indeed a valid presentation, as

gr(p) ≤ gr(q) =⇒ gr(pushs(p)) ≤ gr(pushs(q))

for all p, q ∈ R2.

Lemma 4.1. Let s be a slice. If Q = ([Q],G,R, gr) is a presentation of a 2-parameter module M ,
then pushs(Q) is a presentation of M s.

Proof. For h ∈ G ∪ R and p ∈ s, we have gr(h) ≤ p if and only if pushs(gr(h)) ≤ py. We get

M
pushs(Q)
py = span{ei | pushs(gr(gi)) ≤ py}/ span{cj | pushs(gr(rj)) ≤ py}

= span{ei | gr(gi) ≤ p}/ span{cj | gr(rj) ≤ p}
= span(Gp)/ span(Rp)

= MQ
p .

The morphisms M
pushs(Q)
py→qy and MQ

p→q are induced in the same canonical way, so they are equal.
Since M s

py = Mp, M
s
py→qy = Mp→q and M ≃ MQ all hold, we get Mpushs(Q) ≃ M s. Thus, pushs(Q)

is a presentation of M s.

We say that pushs(Q) is the presentation of M s induced by Q.

RU-decompositions and barcode pairings at slices Let Q = ([Q],G,R, gr) be a presenta-
tion of M , and let ∂ = ([∂],G∂ ,R∂ , gr) be a permutation of Q such that pushs(∂) is an ordered
presentation of M s. Such a permutation always exists, as it is always possible to sort pushs(G)
and pushs(R) in nondecreasing order. If (R,U) is an RU-decomposition of ∂, we say that it is an
RU-decomposition of Q at s. We say that the set B of (g, r) ∈ G∂ ×R∂ = G ×R obtained from the
pivots of R is a barcode pairing of Q at s, and let pushs(B) be the induced barcode pairing of M s.

Computing the barcode at every slice The idea of defining RU-decompositions and barcode
pairings of a fixed presentation at different slices is that we want to group many slices together and
use the same RU-decompositions, barcode pairings and (as we will explain later) bipartite graph
and perfect matching for all of them. We will use the following geometric representation exploiting
point-line duality to make it easier to work with the set of slices.

Definition 4.2. Let ω = (0, 1]×R. We say that (a, b) ∈ ω represents the slice given by y = ax+ b.

12



We say that a point in ω and the slice it represents are dual to each other. One can see that
the set of slices through a point p is represented by the line y = −pxx+ py. We call this the line
dual to p. We use the notation −∗ for duality – for instance, p∗ is the line given by y = −pxx+ py,
and (p∗)∗ = p. We say that p lies in the primal plane, and p∗ in the dual plane. We usually abuse
notation and identify a slice with the point in ω that represents it, but we sometimes write s∗ if
we want to emphasize that we treat it as a point in the dual plane and not as a line in the primal
plane. The vertical line x = r contains exactly the (points representing) slices with slope r. We
remind the reader of some standard facts: If p is a point and s a slice, then p ∈ s if and only if
s∗ ∈ p∗, and p is above (below) s if and only if p∗ is above (below) s∗.

For the remainder of the section, we fix two 2-parameter modules M and N along with presen-
tations Q = ([Q],G,R, gr) and Q′ = ([Q′],G′,R′, gr), respectively. Let G = G ∪ R ∪ G′ ∪ R′, and
let n = |G|. Our next step is to define a line arrangement in ω and show that in a certain precise
sense, in each region of the arrangement, RU-decompositions and thus barcode decompositions stay
constant. We also show that we can update the RU-decompositions efficiently as we cross a line in
the arrangement. Later, as we traverse the arrangement and decide if dB(M

s, N s) at every slice s,
this will come in handy.

For p, p′ ∈ R2, let p ∨ p′ denote the join of p and p′, i.e., the least element that is greater than
or equal to p and p′.

Definition 4.3. Define the following set of lines in ω:

L = {(gr(h) ∨ gr(h′))∗ | h, h′ ∈ G}.

This is the barcode template described in Section 2. There are O(n2) lines in L, so the line
arrangement has O(n4) open regions [12, Theorem 8.4 (iii)].

For h ∈ G, let hx = gr(h)x and hy = gr(h)y. When working with L and the line arrangement
Tλ defined below, we run into the technical issue of coinciding lines. In L, this happens for instance
if there are h 6= h′ ∈ G with hx = h′x, as in that case, we get gr(h) ∨ gr(h′′) = gr(h′) ∨ gr(h′′)
for any h′′ ∈ G with h′′y ≥ hy, h

′
y . The only reason why this might be a problem for us is that

we will traverse these arrangements, and the complexity of our algorithm depends on how many
times we have to cross a line. When lines coincide, we have to count the number of times we cross
them with multiplicity, as we need to perform certain operations for each coinciding line. To avoid
distracting technical details, we will gloss over this issue and assume that the lines we consider
have multiplicity one in what follows. Then, in the proof of Theorem 4.10, we will explain how to
handle lines with multiplicity greater than one.

Lemma 4.4. Let S be an open region in L, let s ∈ S, and let (R,U) be an RU-decomposition of
Q at s.

(i) For any s′ ∈ S, (R,U) is an RU-decomposition of Q at s′.

(ii) If S′ is another open region in L that is separated from S by a single line, then for any s′ ∈ S,
an RU-decomposition of Q at s′ can be obtained from (R,U) in O(n).

The analogous statements hold if Q is replaced by Q′.

Proof. (i): Any slice s induces a total preorder ≤s on G by letting h ≤s h′ if pushs(gr(h)) ≤
pushs(gr(h

′)). If (the points represented by) s and s′ are both in the same open half-plane defined
by (h ∨ h′)∗, then h ≤s h

′ if and only if h ≤s′ h
′: If hx < h′x and hy > h′y, then h <s h

′ if and only
if s is above h∨ h′, and h >s h

′ if and only if s is below h∨ h′. These correspond to s∗ lying above
(h ∨ h′)∗ and below (h ∨ h′)∗, respectively. We leave the other cases to the reader.

13



This means that ≤s only depends on where s is in relation to each line in L, i.e., whether it
is on, above or below it. Thus, the preorder is constant in S. But if ∂ is a permutation of Q,
whether pushs′(∂) is an ordered presentation of M s′ depends only on ≤s′ . Therefore, (R,U) is an
RU-decomposition of Q at s if and only if it is an RU-decomposition of Q at s′.

(ii): Suppose the only line in L separating S and S′ is (gr(h) ∨ gr(h′))∗, and let s ∈ S and
s′ ∈ S′. We have just shown that j ≤s j′ and j ≤s′ j′ are equivalent for all {j, j′} 6= {h, h′}.
Thus, only the relations between h and h′ can change between the two regions. Suppose ∂ is a
permutation of Q and pushs(∂) is an ordered presentation of M s. In this case, pushs′(∂) is not
necessarily an ordered presentation of M s′ . But if it is not, we know that we can make the rows and
columns of [pushs′(∂)] nondecreasing by either switching two rows or two columns, namely those
indexed by h and h′. Suppose ∂′ is the permutation of ∂ (and thus of Q) we get by switching h
and h′, and their corresponding rows/columns. By [10, Sec. 3], we can find an RU-decomposition
of ∂′ in O(n), since we already have an RU-decomposition of ∂ and we only need to make a single
transposition. Because [pushs′(∂

′)] is nondecreasing, an RU-decomposition of ∂′ is by definition an
RU-decomposition of Q at s′.

The proofs for Q′ are exactly the same.

Since we can keep track of how the barcode pairing changes as the RU-decomposition changes,
Lemma 4.4 allows us to efficiently update the barcode pairing as we move from a region to a
neighboring region.

Deciding if dB ≤ λ at every slice Now that we have dealt with the RU-decompositions, we
want to refine the line arrangement L so that deciding if dB(M

s, N s) ≤ λ holds for all slices s in a
given region boils down to checking if a single graph has a perfect matching.

Let s be a slice, and let B ⊂ G×R and B′ ⊂ G′×R′ be barcode pairings at s (so pushs(B) and
pushs(B

′) are barcode pairings of M s and N s). Recall from Lemma 3.5 that dB(M
s, N s) ≤ λ if and

only if there is a perfect matching in the graph Gλ
C,C′ , where C and C ′ are arbitrary barcode pairings

of M s and N s; in particular we can choose C = pushs(B) and C ′ = pushs(B
′). Define Gs

B,B′ (we

write Gs,λ
B,B′ if we want to emphasize that it depends on λ) as being equal to Gλ

pushs(B),pushs(B
′),

except that each vertex (pushs(g),pushs(r)) ∈ pushs(B) ∪ pushs(B
′) is replaced by (g, r), and

(pushs(g),pushs(r)) ∈ pushs(B)∪pushs(B′) by (g, r). The graphs Gs
B,B′ and Gλ

pushs(B),pushs(B
′) are

clearly isomorphic, so one has a perfect matching if and only if the other has. Thus, dB(M
s, N s) ≤ λ

if and only if there is a perfect matching in Gs
B,B′ .

For h, h′ ∈ G, define

ds(h, h′) = | gr(pushs(h))− gr(pushs(h
′))|.

Observe that in Gs
B,B′ , there is an edge between (g, r) ∈ B and (g′, r′) ∈ B′ if and only if

ds(g, g′), ds(r, r′) ≤ λ. Similarly, there is an edge between (g, r) and (g, r) if and only if ds(g, r) ≤
2λ.

We now construct a line arrangement Tλ and show that for each open region S in Tλ, there are
B and B′ such that Gs

B,B′ is well-defined and Gs
B,B′ = Gs′

B,B′ for all s, s′ ∈ S.

Definition 4.5. Define the following sets of lines in ω:

Pλ = {(hx, h′y + iλ)∗ | h, h′ ∈ G, i ∈ {−2,−1, 1, 2}},

Sλ =

{{

iλ

|hx − h′x|

}

× R | h, h′ ∈ G, i ∈ {1, 2}
}

,

Tλ = Pλ ∪ Sλ ∪ L.

14



For h, h′ ∈ G, let T h,h′

λ be the set of all lines in Tλ involving h and h′, i.e.,

T h,h′

λ = {(hx, h′y + iλ)∗ | i ∈ {−2,−1, 1, 2}}
∪ {(h′x, hy + iλ)∗ | i ∈ {−2,−1, 1, 2}}

∪
{

(gr(h) ∨ gr(h′))∗,

{

λ

|hx − h′x|

}

× R,

{

2λ

|hx − h′x|

}

× R

}

if hx 6= h′x, and the same except the last two elements if hx = h′x.

Observe that Tλ =
⋃

h,h′∈G T h,h′

λ .

Definition 4.6. For h, h′ ∈ G, let d−(h, h′) : ω → [0,∞) be the function defined by s 7→ ds(h, h′).
Define an equivalence relation ∼h,h′ on ω by letting the equivalence classes be d−(h, h′)−1(I) for
I ∈ {[0, λ), {λ}, (λ, 2λ), {2λ}, (2λ,∞)}.

Thus, s ∼h,h′ s′ if and only if ds(h, h′) and ds
′

(h, h′) are contained in the same of the sets [0, λ),
{λ}, (λ, 2λ), {2λ}, (2λ,∞).

Lemma 4.7. Let h, h′ ∈ G. If s, s′ ∈ ω lie in the same open region of T h,h′

λ , then s ∼h,h′ s′.

Proof. Fix h and h′. It is straightforward to check that the function ω → R given by r 7→
gr(pushr(h)) is continuous. Thus, also d−(h, h′) is continuous.

Assume that s and s′ lie in the same open region S of T h,h′

λ . We will show that if λ ∈
d−(h, h′)(S), then d−(h, h′)(S) = {λ}, and if 2λ ∈ d−(h, h′)(S), then d−(h, h′)(S) = {2λ}. By con-
nectivity of S and continuity of d−(h, h′), d−(h, h′)(S) is connected, so this implies that d−(h, h′)(S)
is contained in one of the sets [0, λ), {λ}, (λ, 2λ), {2λ}, (2λ,∞), which proves the lemma.

Suppose dr(h, h′) = λ for some r ∈ S. We will only consider this case; the argument for
dr(h, h′) = 2λ is practically the same. First assume that gr(h) and gr(h′) are above or on r∗. (As
the arguments that follow are heavy on geometry and point-line duality, we will be careful about
differentiating between the point r in ω and the slice r∗ in the primal plane.) Then dr(h, h′) =
|hy − h′y|, so |hy − h′y| = λ. In this case, gr(h) = (hx, h

′
y ± λ) and gr(h′) = (h′x, hy ± λ), so

gr(h)∗, gr(h′)∗ ∈ Pλ. Since gr(h) and gr(h′) are above or on r∗ in the primal plane, r is below or
on gr(h)∗ and gr(h′)∗ in ω. Since gr(h)∗, gr(h′)∗ ∈ Pλ, this implies that all elements of S are below
gr(h)∗ and gr(h′)∗ in ω, and thus the slices they represent lie below gr(h) and gr(h′) in the primal
plane. Thus, dr

′

(h, h′) = |hy − h′y| = λ holds for all r′ ∈ S.
Next, assume that gr(h) and gr(h′) are below or on r∗. Then there are two points

(hx, a), (h
′
x, a± λ) ∈ r∗,

since dr(h, h′) = λ. In this case, r∗ has slope λ
|hx−h′

x|
and thus r lies on the line x = λ

|hx−h′

x|
in

ω, which is one of the lines in T h,h′

λ . (Consider r = s3 in Fig. 3.) This is a contradiction, as we

assumed that r is in an open region S, which does not intersect any line in T h,h′

λ .
Lastly, assume that gr(h) and gr(h′) are on opposite sides of r∗; say gr(h) is above and gr(h′)

below. Then gr(pushr(h)) = hy. This means that gr(pushr(h
′)) = hy ± λ, so there is a point

(h′x, hy ± λ) ∈ r∗. (Consider r = s1 or r = s2 in Fig. 3.) Thus, r ∈ (h′x, hy ± λ)∗ ∈ T h,h′

λ , which is
again a contradiction.

Lemma 4.8. Let S be an open region in Tλ and s ∈ S. Let B ⊂ G×R and B′ ⊂ G′×R′ be barcode
pairings at s ∈ S. Then for any s′ ∈ S, Gs′

B,B′ is well-defined, and Gs
B,B′ = Gs′

B,B′ .

15



R

gr(h)

gr(h′)

(h′x, hy − λ)

(h′x, hy + λ)

s∗1

s∗2

s∗3

λ

λ

λ

s3

s2

s1

(h′x, hy − λ)∗

(h′x, hy + λ)∗

x = λ
h′

x−hx

Figure 3: On the left: the grades of h and h′ in the primal plane, and three slices dual to s1, s2, s3 ∈
ω with dsi(h, h′) = λ. s∗1 and s∗2 pass through (h′x, hy ± λ), and s∗3 has slope λ

h′

x−hx
. On the right:

s1, s2, s3 all lie on lines in Tλ. The lines (h′x, hy − λ)∗ and (h′x, hy + λ)∗ are given by the equations
y = −h′xx+ (hy − λ) and y = −h′xx+ (hy + λ), respectively.

Proof. Since L ⊂ Tλ, S is contained in an open region of L. By Lemma 4.4 (i), B and B′ are then
barcode pairings at s′, so Gs′

B,B′ is well-defined.
Let h, h′ ∈ G. Since s, s′ lie in the same open region of Tλ, they lie in the same open region

of T h,h′

λ . By Lemma 4.7, we get s ∼h,h′ s′. But whether there is an edge between two vertices of
Gr

B,B′ depends only on whether inequalities of the form dr(h, h′) ≤ λ and dr(h, h′) ≤ 2λ hold, and
since s ∼h,h′ s′, these inequalities hold for r = s if and only if they hold for r = s′.

With this in mind, we define GS
B,B′ as Gs

B,B′ for any s ∈ S and say that B and B′ are barcode
pairings in S. Similarly, we say that an RU-decomposition at s ∈ S is an RU-decomposition in S,
as justified by Lemma 4.4 (i).

Lemma 4.9. Let R and S be regions in Tλ that are separated by a single line, and suppose we are
given RU-decompositions with associated barcode pairings B ⊂ G ×R and B′ ⊂ G′ ×R′ in R and a
perfect matching in GR

B,B′ . Then we can find RU-decompositions with associated barcode pairings

BS ⊂ G × R and B′
S ⊂ G′ × R′ in S and either find a perfect matching in GS

BS ,B
′

S
or determine

that a perfect matching does not exist in O(n log n).

Proof. We first assume that the line ℓ separating R and S is in L. Then we can update the RU-
decompositions and thus B and B′ in O(n) using Lemma 4.4 (ii). By [10, Fig. 4, left]3, either B
and B′ do not change, or one of the following happens:

• a pair (g, r) appears or disappears in B or B′ (in this case, the RU-decomposition does not
necessarily change, but (g, r) gives rise to an empty interval in R and a nonempty interval in
S, or vice versa),

3The setup in [10] is a little different than ours. In their framework, an element can act both as a generator and
a relation. Since this is impossible for us, we can ignore the right part of Fig. 4.

16



• two pairs (g, r) and (g′, r′) are replaced by (g′, r) and (g, r′) in B or B′.

In both cases, the graph GR
B,B′ only has to be modified “locally” to get a graph GS

BS ,B
′

S
: At most

two vertices are added, removed or replaced, and only the edges adjacent to the modified vertices
are changed. (Actually, in the second bullet point, the graphs are isomorphic. We will not need
this fact, so we do not prove it.) The matching in GR

B,B′ therefore gives us a matching in GS
BS ,B

′

S

covering all but at most four vertices.
Now assume that ℓ is in Tλ \ L = Pλ ∪ Sλ. Then by Lemma 4.4 (i), the RU-decompositions

and barcode pairings are valid also in S, as R and S are contained in the same region of L. The
only relevant change crossing ℓ can make is that there might be two elements h, h′ ∈ G such that
dr(h, h′) ≤ λ and ds(h, h′) > λ or vice versa for r ∈ R and s ∈ S, or the same statement holds for
2λ instead of λ. The only change this can make to the graph is that an edge between the elements
in B ∪ B′ involving h and h′ has to be added or removed, or, in the case (h, h′) ∈ B ∪ B′, an
edge between (h, h′) and (h, h′) has to be added or removed. In either case, the matching in GR

B,B′

induces a matching in GS
B,B′ (which is well-defined, as B and B′ are valid in S) covering all but at

most two vertices.
Thus, we have reduced the problem to finding a perfect matching, or decide that a perfect

matching does not exist, in a graph GS
BS ,B

′

S
where we already have a matching covering all but

at most four vertices. By [22, Theorem 3.1], which builds on [16], the bottleneck distance can be
computed in O(n1.5 log n). But a factor of O(n0.5) comes from the number of times one has to
augment the matching, and after each augmentation one has a matching with at least one more
edge. Since we only need to add a constant number of edges, we can replace this factor by a
constant, so the complexity of constructing a perfect matching or determining that it does not
exist is only O(n log n).

Theorem 4.10. For any λ ∈ [0,∞), we can decide if dM(M,N) ≤ λ in O(n5 log n).

Proof. By [21, Lemma 3], the function f sending a slice s to dB(M
s, N s) is continuous. Since the

union U of open regions of Tλ is dense in ω, we have f(U) ⊂ [0, λ] if and only if f(ω) ⊂ [0, λ].
Thus, to find out if dM ≤ λ, it is enough to check if dB(M

s, N s) ≤ λ for all s in open regions. By
Lemma 3.5 and Lemma 4.8, for any open region S, dB(M

s, N s) ≤ λ is equivalent to dB(M
s′ , N s′) ≤

λ for all s, s′ ∈ S. Thus, it is enough to check if dB(M
s, N s) ≤ λ for one slice s in each open region.

We construct a spanning tree T of the dual graph of Tλ; that is, the graph with a vertex for
each open region and an edge between two open regions if they are separated by a line. We begin
by computing RU-decompositions of Q and Q′ by column operations in an open region S of Tλ,
finding the associated barcode pairings B and B′, constructing GS

B,B′ and either finding a perfect
matching or determining that it does not exist with the Hopcroft-Karp algorithm [19]. All of this
can be done in O(n3). If there is no perfect matching, then dB(M

s, N s) > λ for all s ∈ S, so
dM(M,N) > λ, and we are done.

Assuming that we found a perfect matching, we walk through T in such a way that we visit
all the vertices and do not cross any edge more than twice. When we move along an edge in T ,
which corresponds to crossing an edge in Tλ going from an open region S to a neighboring region
S′, we update the RU-decompositions, barcode pairings and the perfect matchings. If a perfect
matching does not exist, we conclude that dM(M,N) > λ and stop; otherwise, we continue. If we
have visited every vertex of T (i.e., every open region of Tλ) and have never failed to find a perfect
matching, we conclude that dM(M,N) ≤ λ.

If the line between S and S′ has multiplicity one, then by Lemma 4.9, the complexity of the
updates we make as we go from S to S′ is O(n log n). However, some of the lines we cross might

17



2

3

3

1

Figure 4: Tλ on the left with the multiplicities of the lines shown, and T ′
λ on the right. The arrows

show part of a walk visiting the open regions of Tλ. Crossing a line with multiplicity k in Tλ
corresponds to crossing k lines in T ′

λ.

have multiplicity greater than one. To handle this, we consider a line arrangement T ′
λ where for

all k, each line in Tλ with multiplicity k has been replaced with k different parallel lines, all within
some small ǫ of the original line. (To be precise, we pick ǫ such that all open regions of Tλ contain
a closed disk with radius ǫ.) Since T ′

λ has O(n2) lines, it has O(n4) open regions and edges between
open regions. See Fig. 4. Moving from one region across a line with multiplicity k to a neighboring
region in Tλ then corresponds to moving across k lines with multiplicity one in T ′

λ. If we do not
cross any edge in Tλ more than twice, we do not cross any edge in T ′

λ more than twice, either.
Thus, we only perform O(n4) edge crossings in T ′

λ as we walk through Tλ. Each edge crossing in
T ′
λ costs O(n log n) by Lemma 4.9, as we only need to perform updates associated to a single line.

Thus, the total running time is O(n5 log n).

5 Computing dM

From now on, we use the shorthand dM for dM(M,N). Before we explain the algorithm to compute
dM, we deal with the special cases dM = 0 and dM = ∞. Let T (n) be an upper bound for the
complexity of deciding if dM ≤ λ for an arbitrary λ. (In the last section we proved that we can
take T (n) to be O(n5 log n).) First, we check if dM ≤ 0 in time T (n). If the answer is yes,
we know that dM = 0. To find out if dM = ∞, we check if dB(M

s, N s) = ∞ for one slice s
in O(n3). These are equivalent: One can check that ds(h, h′) − ds

′

(h, h′) is bounded above by
max{|hx − h′x|, |hy − h′y|} for any s, s′ in the same region of L. One can then use Lemma 4.4 (i) to

prove that |dB(M s, N s)− dB(M
s′ , N s′)| is bounded above by

L := max
h,h′∈G

max
{

|hx − h′x|, |hy − h′y|
}

.

Since dB(M
s, N s) varies continuously with s in all of ω and there are only finitely many regions

of L, dB(M
s, N s) has a global (finite) upper bound for all s ∈ ω if it is finite for one such s.

Considering this, we will assume dM ∈ (0,∞).

The plane arrangement T We will now move up a dimension from ω and work with Ω :=
ω × [0,∞). Elements in Ω are of the form (s, λ), where s should be viewed as a slice and λ as a

18



potential value for dM. We now define a plane arrangement T that can be viewed as the union
of the line arrangements Tλ for all λ with some extra planes added in. We define these planes as
subsets of R3. Ω should be understood as a subset of R2 × R ≃ R3.

Definition 5.1. We define the following sets of planes in Ω. Lines of the form p∗ should be
understood to be the extension of p∗ in ω to R2.

P = {Ph,h′,i | h, h′ ∈ G, i ∈ {−2,−1, 0, 1, 2}},

where
Ph,h′,i =

⋃

λ∈R

(hx, h
′
y + iλ)∗ × {λ};

S = {Sh,h′,i | h, h′ ∈ G, |hx − h′x| 6= 0, i ∈ {1, 2}} ∪ {S0, S1},
where

Sh,h′,i =

{

((a, b), λ) | a =
iλ

|hx − h′x|

}

,

Si = {i} × R2;

H = {R2 × {λ} | ∃(h, h′) ∈ G s.t. |hy − h′y| ∈ {λ, 2λ}}.
Finally, define T = P ∪ S ∪ H.

Note that |T | = O(n2). The reader can verify that the intersection of the planes in P ∪S with
R2 × {λ} gives a set of lines that contains all the lines in Tλ, assuming that we identify R2 × {λ}
with R2 in the obvious way. In particular, (h1 ∨h2)

∗ ∈ L is of the form (hx, h
′
y + iλ)∗ for i = 0 and

some choice of h, h′ ∈ {h1, h2}.
It is clear that the sets in S and H are indeed planes, as they are given by linear equations.

The same holds for the sets in P, as ((a, b), λ) ∈ Ph,h′,i is equivalent to b = −hxa+ h′y + iλ.
For a set X of planes, we write

⋃X =
⋃

H∈X H. We call a connected component of the
complement of

⋃ T an open cell. Letting h = h′, we see that R2 ×{0} ∈ H. The union R2 ×{0} ∪
S0 ∪ S1 contains the boundary of Ω. Therefore, any open cell is either contained in Ω or contained
in R3 \ Ω.

dM is attained at a vertex of T Define a function f : Ω → R by

(s, λ) 7→ λ− dB(M
s, N s).

Thus, dB(M
s, N s) ≤ λ if and only if f(s, λ) ≥ 0.

Proposition 5.2. f is continuous.

Proof. As we have already noted, [21, Lemma 3] shows that the function sending a slice s to
dB(M

s, N s) is continuous. It follows that f is continuous.

Lemma 5.3. Let (s, λ) ∈ Ω. If f(s, λ) = 0, then (s, λ) ∈ ⋃ T .

Proof. If f(s, λ) = 0, there is an edge in Gs,λ
B,B′ that is not in Gs,λ′

B,B′ for any λ′ < λ (where B and
B′ are any barcode pairings of M s and N s). By the definition of the graphs, this means that there
are h, h′ ∈ G such that ds(h, h′) ∈ {λ, 2λ}. We showed in the proof of Lemma 4.7 that this implies
that either s ∈ ℓ for some ℓ ∈ Tλ, or |hy −h′y| ∈ {λ, 2λ}. In the first case, s ∈ ⋃

(P ∪S), and in the
second, s ∈ ⋃H.

19



R

Figure 5: For ease of visualization, we illustrate Tλ as a line arrangement in R2 instead of as a
plane arrangement in R3. The function f is negative in the orange cells and nonnegative in the
blue cells. The levels of the vertices are shown on the real line on the left. These are the potential
values for dM, which is the supremum of the projection of the orange region to the real line. In
Tλ, the vertices are triple intersections of planes instead of (double) intersections of lines.

Corollary 5.4. Suppose C ⊂ Ω is an open cell. Either f(s, λ) > 0 for all (s, λ) ∈ C, or f(s, λ) < 0
for all (s, λ) ∈ C.

Proof. Since C is connected and f is continuous, f(C) is connected. By Lemma 5.3, 0 /∈ f(C), so
either f(C) ⊂ (0,∞) or f(C) ⊂ (−∞, 0).

By definition,

dM = sup
slice s

dB(M
s, N s)

= sup{λ | ∃s such that f(s, λ) ≤ 0}
= sup{λ | ∃s such that f(s, λ) < 0}
= sup{λ | ∃s such that (s, λ) ∈ f−1(−∞, 0)}.

Since dM > 0 by assumption, there exists an s such that dB(M
s, N s) > 0, so none of the sets we

are taking the supremum over is empty. Since Ω \ ⋃ T (i.e., the union of all open cells in Ω) is
dense in Ω and f−1(−∞, 0) is open, this is equivalent to

dM = sup{λ | ∃s such that (s, λ) ∈ f−1(−∞, 0) ∩ (Ω \
⋃

T )}.

By Corollary 5.4, it follows that

dM ∈
{

sup
(s,λ)∈C

λ | C open cell in Ω

}

⊂
{

sup
(s,λ)∈C

λ | C open cell

}

, (1)

where we now assume that s is a point in R2 that is not necessarily in ω. Call a cell small if its
projection onto R is bounded above. Since we have assumed dM 6= ∞, we can restrict ourselves to
small cells:

dM ∈
{

sup
(s,λ)∈C

λ | C small open cell

}

=

{

max
(s,λ)∈C

λ | C small open cell

}

. (2)

20



(C denotes the closure of C.) Each value max(s,λ)∈C λ must be attained at a point that is the unique

intersection point between three planes.4 Let the level of a point in R3 be its third coordinate.
That is, the level of (a, b, λ) is λ. By a vertex of T , we mean a point p such that there exist
P,P ′, P ′′ ∈ T with P ∩ P ′ ∩ P ′′ = {p}. See Fig. 5. We sometimes abuse terminology and call {p}
a vertex when we mean that p is a vertex.

Searching through the vertices to find dM Recall that we assume that T (n) is an upper
bound on the time needed to decide dM ≤ λ for a given λ, and that we proved that we can take
T (n) to be O(n5 log n) in the previous section. To find dM, we could do the following: Compute
the intersections of all triples of planes in T (for the triples whose intersection is a single point),
sort the levels of these points, and find dM by binary search. This would give us a runtime of
O(n6 log n+ T (n) log n) = O(n6 log n), as the most expensive operation is to sort the O(n6) triple
intersections.

However, we want to do better and describe an algorithm that runs in expected time

O((n4 + T (n)) log2 n).

Roughly, our idea is to start with an interval (a, b] that contains dM and run through the planes
in T in random order, narrowing the interval as we go. After having dealt with a plane P ∈ T , we
want the updated a and b to be such that the interval (a, b) does not contain the level of any vertex
in P . In the end, we will be left with an interval (a, b] such that b is the only point in the interval
that is the level of a vertex, so we can conclude that dM = b. By a randomization argument, we
will prove that the expected number of times we have to update a and b is O(log n). Thus, since
|T | = O(n2), it is sufficient to prove that we can check if we have to update a and b for a given
plane in O(n2 log n) (also O(n2 log2 n) would be good enough), and that we do not spend more
time than O((n4 + T (n)) log n) every time we update a and b.

Definition 5.5. For a plane P ∈ T , let c1 < · · · < cK be the levels of the vertices of T in P . Let
cK+1 = ∞, and if c1 > 0, let c0 = 0. Let IP = (αP , βP ] be the interval of the form (ci, ci+1] that
contains dM.

Lemma 5.6. For any P ∈ T and any interval (α, β] containing dM, we can decide if (α, β] ⊆ IP
in O(n2 log n).

The idea of the proof is illustrated in Fig. 6: α and β induce two parallel lines on P , and the
planes in T not parallel to P induce a line arrangement on P . Now, (α, β] ⊆ IP if and only if this
line arrangement does not have an intersection point in the strip between α and β. This in turn is
equivalent to the order of these arrangement lines along the α line and along the β-line being the
same, which can be checked in O(n2 log n) time by sorting. The subsequent proof contains more
details:

Proof. If P is of the form R2 × {λ}, then all the vertices in P are at level λ. Thus, IP is either
(0, λ] or (λ,∞], so (α, β] ⊆ IP holds if and only if λ /∈ (α, β), which we can check in constant time.
(The intersection (α, β] ∩ IP cannot be empty, as both intervals contain dM.)

Assume P is not of the form R2×{λ}. Then P intersects the planes R2×{α} and R2×{β} in
lines Pα and Pβ , respectively. Let P(α,β) be the subset of P that lies strictly between Pα and Pβ .
We have (α, β] ⊆ IP if and only if there are no vertices in P(α,β).

4This requires that not all the planes in T are parallel to a single line. Since M and N are not both the zero
module, G contains a generator g. Then there are three planes Pg,g,1, S0 and R2 ×{0} in T that are not all parallel
to one line.

21



Pα

Pβ

P(α,β)P 1
P 2

P 3

p

P 4

P 5

Figure 6: Illustration of P with Pα and Pβ as well as the intersection with slanted planes P 1, . . . , P 5.
P(α,β) is the open region in pink. We have P 1 <α P 2 =α P 3 <α P 4 <α P 5 and P 1 =β P 2 <β

P 4 <β P 3 =β P 5. The only i and j for which both P i <α P j and P j <β P i hold are i = 3 and
j = 4, and this corresponds to the only vertex in P(α,β) arising from the planes we have drawn,
namely p ∈ P ∩ P 3 ∩ P 4.

Call a plane P ′ ∈ T straight if P ∩P ′ is a line contained in a plane of the form R2 ×{λ}. That
is, all the points in P ∩ P ′ are at the same level. Call a plane in T slanted if it is neither straight
nor parallel to P .

We first find all the straight planes in T and check if the level of the intersection of each plane
with P (i.e., the level of any point in this intersection) is strictly between α and β. We can do this
in O(n2). If we find one such plane P ′, then all the vertices in P ∩P ′ are at a level between α and
β, and we conclude that (α, β] * IP . Otherwise, we know that no straight plane contains a vertex
in P(α,β), so we can ignore the straight planes.

Assuming that the straight planes can be safely disregarded, the only vertices we have left to
check are those of the form P ∩P ′∩P ′′ where P ′ and P ′′ are both slanted. If P ′ is slanted, P ′∩Pα

and P ′ ∩ Pβ both contain exactly one point. This is because the intersection P ∩ P ′ is a line, as
P and P ′ are not parallel, and the line contains exactly one point at every level, as the line does
not lie at a fixed level. In O(n2), we can compute P ′ ∩ Pα and P ′ ∩ Pβ for all slanted P ′. The set
of slanted planes can be sorted by when they intersect Pα as we traverse Pα in one direction. This
gives a total preorder ≤α on the set of slanted planes with P ′ ≤α P ′′ if P ′ intersects Pα before or
at the same point as P ′′. This is not necessarily a total order, as several planes might intersect Pα

in the same point. Define a second total preorder ≤β by doing the same for Pβ , traversing it in the
same direction as Pα. See Fig. 6.

P ∩P ′∩P ′′ is a vertex in P(α,β) if and only if P ′ <α P ′′ and P ′′ <β P ′, or vice versa. Whether P ′

and P ′′ satisfying these inequalities exist can be checked in O(n2 log n): Fix an arbitrary total order
< of the slanted planes. List the slanted planes in increasing order by ≤α, using ≤β as a tiebreaker
if P ′ =α P ′′ and < as a tiebreaker if in addition P ′ =β P ′′ (in this case, P ∩ P ′ ∩ P ′′ is a line)
in O(n2 log n). This gives a total order on the set of slanted planes. Then list the slanted planes
by the same method with ≤α and ≤β switching roles. There are P ′ and P ′′ such that P ′ <α P ′′

and P ′′ <β P ′ if and only if these two lists are not identical: If P ′ <α P ′′ and P ′′ <β P ′, then P ′

and P ′′ are in opposite orders in the two lists, and if P ′ ≤α P ′′ and P ′ ≤β P ′′, then they are in
the same order. We can check if the lists are identical by running through them simultaneously in
O(n2).

22



Lemma 5.7. If T (n) is an upper bound on the runtime for deciding if dM ≤ λ for a given λ, then
for any P ∈ T , we can compute IP in O((n4 + T (n)) log n).

Proof. For each pair P ′, P ′′ of planes in T , we can compute P ∩P ′∩P ′′ in constant time. If this is a
single point, it is a vertex. In O(n4 log n), we can find all the vertices of T in P by running through
all pairs of planes in T , list their levels and sort them in increasing order. Adding cK+1 = ∞ and
possibly c0 = 0, we get a list (c0 <)c1 < · · · < cK+1 as in Definition 5.5. Using binary search, we
can find ci and ci+1 such that ci < dM ≤ ci+1 in O(T (n) log n). By definition, IP = (ci, ci+1].

Theorem 5.8. If T (n) is an upper bound on the runtime for deciding if dM ≤ λ for a given λ,
then we can compute dM in expected time O((n4 + T (n)) log2 n).

Proof. We want to compute (α, β] =
⋂

P∈T IP : Since all IP = (αP , βP ] contain dM, (α, β] contains
dM. Since (αP , βP ) does not contain the level of any vertex in P , (α, β) does not contain the level
of any vertex and thus does not contain dM. We conclude that dM = β.

We iterate through all planes in T in a random order P1, P2, . . . , P|T |. We first compute IP1

and let I1 = IP1
. For all subsequent Pi, we assume Ii−1 =

⋂j=i−1
j=1 IPj

and check if Ii−1 ⊆ IPi
. If the

answer is yes, we let Ii = Ii−1 and move on to the next iteration. If the answer is no, we compute
IPi

and let Ii = Ii−1 ∩ IPi
. In both cases, Ii =

⋂j=i
j=1 IPj

, so it is clear that I|T | =
⋂

P∈T IP .
Let N be the number of i for which Ii−1 * IPi

. By Lemma 5.6 and Lemma 5.7, the runtime of
this algorithm is

O(n2 · n2 log n+N(n4 + T (n)) log n). (3)

To find the expected runtime, we need to estimate N . For Ii−1 =
⋂j=i−1

j=1 IPj
* IPi

to hold, we
must either have αPi

> αPj
for all j < i, or βPi

< βPj
for all j < i. The probability for the first

inequality to hold is at most 1
i
, as in the sequence αP1

, . . . , αPi
, there has to be a unique smallest

number, this number has to be placed last, and it is equally likely to be in each of the i positions.
A similar argument shows that also the probability of βPi

< βPj
is at most 1

i
. Putting the two

together, the probability of Ii−1 * IPi
is bounded above by 2

i
. Summing over all i then shows that

the expected value of N is O(log n). We get the expected runtime given in the lemma by putting
this into Eq. (3).

Corollary 5.9. We can compute dM in expected time O(n5 log3 n).

Proof. By Theorem 4.10, we can take T (n) to be O(n5 log n). Inserting this in the expected runtime
O((n4 + T (n)) log2 n) in Theorem 5.8, we get O(n5 log3 n).

References

[1] Ulrich Bauer and Michael Lesnick. Induced matchings and the algebraic stability of persistence
barcodes. J. Comput. Geom., 6(2):162–191, 2015.

[2] Paul Bendich, J.S. Marron, Ezra Miller, Alex Pieloch, and Sean Skwerer. Persistent homology
analysis of brain artery trees. Annals of Applied Statistics, 10(1):198–216, 2016.

[3] Silvia Biasotti, Andrea Cerri, Patrizio Frosini, and Daniela Giorgi. A new algorithm for
computing the 2-dimensional matching distance between size functions. Pattern Recognition
Letters, 32(14):1735–1746, 2011.

23



[4] Håvard Bakke Bjerkevik, Magnus Bakke Botnan, and Michael Kerber. Computing the inter-
leaving distance is NP-hard. Foundations of Computational Mathematics, 20(5):1237–1271,
2020.

[5] Gunnar Carlsson. Topology and data. Bulletin of the AMS, 46:255–308, 2009.

[6] Gunnar Carlsson and Afra Zomorodian. The theory of multidimensional persistence. Discrete
& Computational Geometry, 42(1):71–93, 2009.

[7] Andrea Cerri, Barbara Di Fabio, Massimo Ferri, Patrizio Frosini, and Claudia Landi. Betti
numbers in multidimensional persistent homology are stable functions. Mathematical Methods
in the Applied Sciences, 36(12):1543–1557, 2013.

[8] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence dia-
grams. Discrete & Computational Geometry, 37(1):103–120, 2007.

[9] David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Yuriy Mileyko. Lipschitz func-
tions have Lp-stable persistence. Foundations of Computational Mathematics, 10(2):127–139,
2010.

[10] David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Morozov. Vines and vineyards by
updating persistence in linear time. In Proceedings of the 22nd ACM Symposium on Compu-
tational Geometry, Sedona, Arizona, USA, June 5-7, 2006, pages 119–126. ACM, 2006.

[11] William Crawley-Boevey. Decomposition of pointwise finite-dimensional persistence modules.
Journal of Algebra and its Applications, 14(05):1550066, 2015.

[12] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
geometry: algorithms and applications, 3rd Edition. Springer, 2008.

[13] Tamal K. Dey and Cheng Xin. Computing bottleneck distance for 2-d interval decomposable
modules. In 34th International Symposium on Computational Geometry, SoCG 2018, June
11-14, 2018, Budapest, Hungary, pages 32:1–32:15, 2018.

[14] Herbert Edelsbrunner and John Harer. Computational Topology. An Introduction. American
Mathematical Society, 2010.

[15] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. Discrete & Computational Geometry, 28(4):511–533, 2002.

[16] Alon Efrat, Alon Itai, and Matthew J. Katz. Geometry helps in bottleneck matching and
related problems. Algorithmica, 31(1):1–28, 2001.

[17] So Mang Han, Taylor Okonek, Nikesh Yadav, and Xiaojun Zheng. Distributions of matching
distances in topological data analysis. SIURO, 2020.

[18] Yasuaki Hiraoka, Takenobu Nakamura, Akihiko Hirata, Emerson G. Escolar, Kaname Mat-
sue, and Yasumasa Nishiura. Hierarchical structures of amorphous solids characterized by
persistent homology. Proceedings of the National Academy of Sciences, 113(26):7035–7040,
2016.

[19] John E Hopcroft and Richard M Karp. An nˆ5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on computing, 2(4):225–231, 1973.

24



[20] Bryn Keller, Michael Lesnick, and Theodore L. Willke. Persistent homology for virtual screen-
ing. ChemRxiv, 2018.

[21] Michael Kerber, Michael Lesnick, and Steve Oudot. Exact computation of the matching dis-
tance on 2-parameter persistence modules. In 35th International Symposium on Computational
Geometry (SoCG 2019), pages 46:1–46:15, 2019.

[22] Michael Kerber, Dmitriy Morozov, and Arnur Nigmetov. Geometry helps to compare persis-
tence diagrams. Journal of Experimental Algorithms, 22:1.4:1–1.4:20, 2017.

[23] Michael Kerber and Arnur Nigmetov. Efficient approximation of the matching distance for
2-parameter persistence. 36th International Symposium on Computational Geometry (SoCG
2020), pages 53:1–53:16, 2020.

[24] Claudia Landi. The rank invariant stability via interleavings. In Research in Computational
Topology, pages 1–10. Springer, 2018.

[25] Yongjin Lee, Senja Barthel, Pawel Dlotko, Seyed Mohamad Moosavi, Kathryn Hess, and
Berend Smit. High-throughput screening approach for nanoporous materials genome using
topological data analysis: Application to zeolites. Journal of Chemical Theory and Computa-
tion, 14(8):4427–4437, 2018.

[26] Michael Lesnick. The theory of the interleaving distance on multidimensional persistence
modules. Foundations of Computational Mathematics, 15(3):613–650, 2015.

[27] Michael Lesnick and Matthew Wright. Interactive visualization of 2-D persistence modules
persistence modules. arXiv:1512.00180, 2015.

[28] Steve Oudot. Persistence theory: From Quiver Representation to Data Analysis, volume 209
of Mathematical Surveys and Monographs. American Mathematical Society, 2015.

[29] Pratyush Pranav, Herbert Edelsbrunner, Rien van de Weygaert, Gert Vegter, Michael Kerber,
Bernard J. T. Jones, and Mathijs Wintraecken. The topology of the cosmic web in terms of
persistent betti numbers. Monthly Notices of the Royal Astronomical Society, 465(4):4281–
4310, 2017.

[30] Michael W. Reimann, Max Nolte, Martina Scolamiero, Katharine Turner, Rodrigo Perin,
Giuseppe Chindemi, Pawel Dlotko, Ran Levi, Kathryn Hess, and Henry Markram. Cliques of
neurons bound into cavities provide a missing link between structure and function. Frontiers
Comput. Neurosci., 11:48, 2017.

[31] Erik Rybakken, Nils A. Baas, and Benjamin Dunn. Decoding of neural data using cohomo-
logical feature extraction. Neural Comput., 31(1), 2019.

[32] Primoz Skraba and Katharine Turner. Wasserstein stability for persistence diagrams.
arXiv:2006.16824, 2021.

[33] Rien van de Weygaert, Gert Vegter, Herbert Edelsbrunner, Bernard J. T. Jones, Pratyush
Pranav, Changbom Park, Wojciech A. Hellwing, Bob Eldering, Nico Kruithof, E. G.
P. (Patrick) Bos, Johan Hidding, Job Feldbrugge, Eline ten Have, Matti van Engelen, Manuel
Caroli, and Monique Teillaud. Alpha, betti and the megaparsec universe: On the topology of
the cosmic web. Trans. Comput. Sci., 14:60–101, 2011.

25



[34] Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete & Compu-
tational Geometry, 33(2):249–274, 2005.

26


	1 Introduction
	2 Extended overview of our approach
	3 Persistence modules and the bottleneck distance
	4 Deciding if dM
	5 Computing dM

