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TIPSY COP AND TIPSY ROBBER: COLLISIONS OF BIASED RANDOM WALKS ON

GRAPHS

PAMELA E. HARRIS, ERIK INSKO, AND FLORIAN LEHNER

Abstract. We study collisions of two interacting random walks, where one of the walks has a bias to create
collisions, and the other one has a bias to avoid them. This can be seen as a variant of the well-studied cop
and robber game in which both of the players get to employ their respective strategies on some (random)
proportion of their moves, and move randomly otherwise.

We study different sensible strategies for both players on the infinite grid Z
2 and on certain families of

infinite trees obtained by attaching a δ-regular tree to every vertex of a ∆-regular tree, where ∆ ≥ δ. Our
results show that the best possible cop strategy on the grid is very sensitive to change, and the best possible
robber strategy on trees not only depends on the tree the game is played on, but also on the proportion of
random moves by either player. We conclude with some directions for further study.

1. Introduction

A random walk on a graph G is a stochastic process with random variables (Xi)i∈N={1,2,3...} where xi+1

is chosen among the neighbors of Xi according to some predefined probability distribution. The study of
random walks is a classical topic in discrete probability. For surveys on the study of random walks on graphs
we refer the reader to [14, 20]. One question of interest is whether a given random walk is recurrent (almost
surely Xi = X0 for infinitely many i) or transient (almost surely Xi = X0 for finitely many i). One of the
first and most famous results in the study of recurrence and transience is Pólya’s theorem, stating that the
simple random walk on Z

d is recurrent for d ≤ 2, but transient for d ≥ 3, or as Shizuo Kakutani succinctly
summarized it in a talk: “A drunk man will always find his way home, but a drunk bird may not.”1

Pólya describes his motivation for this result as follows, see [17]. He was taking a stroll in the woods
when he happened to cross paths with a young couple walking in the same woods, so often that he felt
embarrassed as he suspected they thought he was snooping, of which, he assures the reader that he was not.
This incident caused him to ask how likely it is that two independent random walks meet infinitely often.
In Z

d this reduces to the problem of recurrence or transience of a single random walk, which is precisely the
outcome of Pólya’s theorem.

While recurrence and transience of random walks are certainly interesting properties to study, the story
above suggests a different notion. Let us say that a random walk has the finite collision property if two
independent copies of it almost surely meet only finitely many times. As noted in [13], for simple random
walks on vertex transitive graphs such as Zd this notion is equivalent to transience, but there are examples of
graphs where this is not the case. First examples of recurrent simple random walks with the finite collision
property were studied by Krishnapur and Peres [13], for further results on the finite collision property of
recurrent graphs see for instance [2, 4, 6, 7, 8, 11].

There are also examples of transient random walks where two or even arbitrarily many copies meet
infinitely often [5, 9]. The simplest such example is perhaps a biased random walk on Z: the differences of
two such walks yield a simple random walk on Z which is recurrent by Pólya’s theorem and thus returns
to 0 infinitely often. One key property of these examples is that two independent copies almost surely ‘go
to the same point at infinity’ and move away from the starting vertex ‘at the same speed.’

In the examples mentioned above it was always assumed that the two random walks are independent and
that their distributions are identical; in the present paper we drop both of these assumptions and study
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collisions between two biased random walks, where (roughly speaking) the first walk has a bias to reduce
the distance between the positions of the two walks, whereas the second walk has a bias to increase this
distance.

As the title suggests, this situation can be modeled by a pursuit-evasion game similar to the cop-and-
robber game, a two-player game introduced independently by Quilliot [18] and by Nowakowski and Winkler
[16] in the 1980s. In this game, two players (called cop and robber) alternate in moving their playing pieces
from vertex to vertex along the edges of a given graph. The cop wins if after finitely many steps both the
cop and robber are at the same vertex. The monograph [3] by Bonato and Nowakowski offers an extensive
treatment of this game and numerous variants thereof.

A variant which is relevant to this paper is the cop and drunken robber game introduced by Kehagias
and Pra lat [12]. In this variant, the cop may follow some strategy, while the robber moves ‘drunkenly’
according to a random walk on the graph. More recently a variant called the tipsy cop and drunken robber

was introduced [1, 10], where in addition to the robber moving randomly, the cop only follows a strategy on
some steps and performs random moves otherwise.

In the current work, we consider the case in which both players can follow a strategy on some (randomly
selected) moves and make uniform random moves otherwise. We call this game the tipsy cop and tipsy robber

game. Roughly speaking, the tipsiness of each player governs the proportion of random moves of this player;
we make this precise in Section 2. We note that if both players have tipsiness 1, then all moves are random
and thus the question of who wins the game is equivalent to the question whether two independent random
walks almost surely collide. The other extreme case, when both players have tipsiness 0, resembles the
classical cop and robber game, but the two are not quite equivalent since in our game we choose randomly
which player gets to move, and hence the moves of the two players do not necessarily alternate.

As in all two-player games, one question of interest is whether one of the two players has a winning
strategy. Let us call a cop strategy winning if it almost surely leads to a win for the cop, and let us call
a robber strategy winning if it leads to a win for robber with positive probability. The reason for this
asymmetry in the definition of winning strategies is that (due to the randomness involved) there is always a
positive probability that the cop wins the game before either of the two players gets to make a non-random
move. It is worth noting that this observation also shows that on a finite graph, the cop will almost surely
win the game, which is why we focus our attention on infinite graphs.

In Section 3, we study the game on the infinite Cartesian grid Z
2. We show that the robber has a winning

strategy if and only if they are less tipsy than the cop. In fact, if the robber is less tipsy, then it is not hard
to show that the precise strategy does not matter so long as they increase the distance between themselves
and the cop whenever they have a sober move. Perhaps surprisingly, the cop’s winning strategies are more
sensitive to change: there are strategies where each sober cop move decreases the distance between the cop
and the robber that still allow the robber to win with positive probability despite being more tipsy than the
cop.

In Section 4, we analyze the game on certain families of infinite trees. It is not hard to see that for regular
trees, the question of who has a winning strategy boils down to a simple application of the gambler’s ruin
problem, but there are also trees exhibiting more interesting behavior. We consider the game on a family
of infinite trees, {X(∆, δ)}, where the tree X(∆, δ) is created by starting with a ∆-regular base tree and
attaching a copy of a δ-regular tree to each node in this base tree. These trees provide examples where
the robbers optimal strategy does not necessarily increase the distance between the players: under certain
conditions the robber’s optimal strategy may be to backtrack toward the cop in order to reach the base tree,
where the number of possible escape routes is higher. Interestingly, these conditions not only depend on the
values ∆ and δ, but also on the tipsiness parameters.

We conclude the article in Section 5 by providing some possible direction for further study.

2. Background and general set up

2.1. Markov chains and random walks. A Markov chain with state space Ω is a random process (Xs)s∈N

where each Xs takes values in Ω such that

P[Xs+1 = x | X1 = x1, X2 = x2, . . . , Xs = xs] = P[Xs+1 = x | Xs = xs]
2



whenever the event we condition on has positive probability. For a thorough introduction to the topic
of denumerable Markov chains see [22]; in this section we briefly recall some well known facts. Let us
say that the Markov chain is at x at time step s if Xs = x, and let us denote the transition probability

P[Xs+1 = b | Xs = a] by pab;s, or sometimes (for readability reasons) by pa,b;s. In order to make a Markov
chain well defined, we also need to give a distribution of the first random variable X1 in the process. Since
our results do not depend on the initial distribution, we will tacitly assume that there is some o ∈ Ω such
that P[X1 = o] = 1.

A Markov chain is called time homogeneous if pab;s does not depend on s; in this case we simply denote
it by pab. Most Markov chains that will appear in this paper have this property. A Markov chain is called
irreducible if for every pair a, b of elements of Ω and every s ∈ N there is some n such that the probability
pnab;s that Xs+n = b given that Xs = a is positive.

A random walk on a graph G is a Markov chain with state space Ω = V (G), where pab,s is only allowed
to be non-zero if ab is an edge of G. When speaking about random walks on N or Z, we always assume that
edges are between elements whose difference is 1. If pab = 1

deg a for any pair a, b of adjacent vertices, then

we speak of a simple random walk; in this case the random walk is equally likely to transition from a to
any of its neighbors. Another well-established way to define transition probabilities for a random walk is by
assigning a weight w(e) > 0 to each edge e of the graph. The probability to move from a to b in this case is
given by

pab =
w(ab)

∑

b′∼aw(ab′)
,(1)

in other words, the probability of moving from a to any of its neighbors is proportional to the weight of the
edge connecting them. The simple random walk is a special case of this, where all edge weights are equal.
We note that any random walk on a connected graph defined by edge weights as in (1) is time homogeneous
and irreducible.

For every pair a, b of elements of Ω, let us denote by Tab;s the random variable counting the number of
steps it takes the Markov chain to reach b if it is at a at time step s (assuming that P[Xs = a] > 0), that is

Tab;s = inf{n > 0 : Xs+n = b conditioned on Xs = a}.

For a time homogeneous Markov chain this once again does not depend on s, and we denote it by Tab.

Theorem 2.1. For every time homogeneous, irreducible Markov chain the following (mutually exclusive)
statements hold for every pair a, b of elements of Ω:

(1) P[Tab < ∞] = 1, in this case we call the Markov chain recurrent. This case further splits into:
(a) E[Tab] < ∞ (positive recurrent), and
(b) E[Tab] = ∞ (null recurrent).

(2) P[Tab < ∞] < 1, in this case we call the Markov chain transient.

In the remainder of this section we provide some well-known results about random walks and Markov
chains. Most of these results can be deduced from results contained in any introductory textbook on the
topics, see for instance [15, 21, 22].

The first result we mention is Pólya’s theorem on recurrence and transience of simple random walks on Z
d.

Theorem 2.2. The simple random walk on Z
d is null recurrent if d ∈ {1, 2} and transient if d ≥ 3.

The next result is [15, Exercise 2.1 (f)].

Theorem 2.3. A random walk on a graph defined by edge weights as in (1) is positive recurrent if and only
if the sum of the edge weights is finite.

The next result is a direct consequence of [15, Theorem 2.16].

Theorem 2.4. Let w and w′ be weight functions on E(G) and assume that there are constants c1 > 0 and
c2 such that c1w(e) ≤ w′(e) ≤ c2w(e) for every e ∈ E(G). The random walk defined by the weights w is
recurrent if and only if the simple random walk on G is recurrent.
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The last few results concern biased random walks on N0 = {0, 1, 2, . . .}. These are random walks where
the transition probability pn,n+1 is p and the transition probability pn,n−1 is q = 1 − p for every n > 0.
Such random walks can be interpreted as sums of random variables each taking values in {−1, 1}. If these
random variables are independent, then their sum is well-understood due to the central limit theorem. We
will need the following concentration result which readily follows from the central limit theorem, or from
other concentration results such as the Azuma-Hoeffding inequality.

Theorem 2.5. Let Xi be a sequence of i.i.d. random variables each of which has finite mean µ and finite
variance σ2. Let Sn =

∑

i≤n Xi. Then for every ǫ > 0 there are constants k and n0 such that

P[|Sn − nµ| > nǫ] < e−kn

for any n > n0.

The following well-known result can be found in most textbooks on probability theory, often as an intro-
ductory example to random walks.

Theorem 2.6 (Gambler’s ruin). Let Xs be a biased random walk on N0 as defined above.

• If p > 1
2 , then the random walk is transient.

• If p < 1
2 , then the random walk is positive recurrent and E[Tn,0] = n

1−2p .

• If p = 1
2 , then the random walk is null recurrent.

Theorem 2.6 also holds for reasonably well-behaved inhomogeneous random walks; in particular, the
following proposition can be derived by a suitable coupling of Xs with a simple random walk on N.

Proposition 2.7. Let Xs a random walk on N whose transition probabilities are pn,n+1;s = ps and pn,n−1;s =
qs = 1−ps for all n > 0. If ps ≤

1
2 for all s ∈ N, then almost surely Xs = 0 for infinitely many s. Conversely,

if ps >
1
2 for all s ∈ N, then there is a positive probability that there is no s > 0 such that Xs = 0.

The next result implies that the return time to the origin in the positive recurrent case of Theorem 2.6 has
finite mean and variance. We provide a proof since we need a specific generalization of the biased random
walk, where we allow finitely many transition probabilities to be different.

Proposition 2.8. Let Xs be a random walk on N0, and assume that all but finitely many transition
probabilities pn,n+1 are equal to p < 1

2 , and that the remaining transition probabilities are strictly less than
one. Let Ti denote the random number of steps it takes to get from i to i− 1 in this random walk. Then T1

has finite mean and variance.

Proof. First observe that T1 = 1 +B · (T2 +T1) , where B is a random variable which takes the value 1 with
probability p1,2, and takes the value 0 with probability 1− p1,2. Squaring both sides of this equation, we get
that T 2

1 = 1 + 2B · (T2 + T1) + B · (T 2
2 + 2T2T1 + T 2

1 ); note that B2 = B since B only takes values 0 and 1.
Taking expected values on both sides (and noting that T2 and T1 are independent) yields

E[T1] = 1 + p1,2(E[T1] + E[T2])

E[T 2
1 ] = 1 + 2p1,2(E[T1] + E[T2]) + p1,2(E[T 2

1 ] + 2E[T1]E[T2] + E[T 2
2 ]).

We use induction on the maximal n such that pn,n+1 6= p. If all pn,n+1 are equal to p, then T2 and T1 have
the same distribution, in particular E[T2] = E[T1] and E[T 2

2 ] = E[T 2
1 ]. Solving the above equations for E[T1]

and E[T 2
1 ] gives E[T1] = 1

1−2p and E[T 2
1 ] = 1

1−2p (1+4pE[T1]+2pE[T1]
2) which is finite because E[T1] is finite.

For the induction step, we may assume that E[T2] and E[T 2
2 ] are both finite. Again, solving the above

equations for E[T1] and E[T 2
1 ] yields finite values. �

Finally, we note that more precise statements about the behaviour of the biased random walk from
Theorem 2.6 can be made in both the positive recurrent and the transient case. As one might expect, in the
transient case the distance from 0 increases linearly in s (for instance by Theorem 2.5).

Theorem 2.9. Let Xs be a biased random walk on N0 as defined above, and assume that we are in the
transient case, that is p > 1

2 . Then for every small enough k > 0 the probability P[Xs > ks] goes to 1 as
s → ∞.

4



On the other hand, in the positive recurrent case, one can show that the random walk will spend a large
proportion of steps ‘close to 0’.

Theorem 2.10. Let Xs be a biased random walk on N0 as defined above, and assume that we are in the
positive recurrent case, that is p < 1

2 . Let M(n, s) be the number of t ≤ s such that Xs < n. For every

ǫ > 0 there is an n ∈ N such that almost surely lim infs→∞
M(n,s)

s
> 1 − ǫ.

2.2. The tipsy cop and robber game. In this paper, we will study pairs Cs,Rs of random walks, where
the probability distribution of the next step does not only depend on s, but also on the relative positions
of the random walks at the current time step. Roughly speaking, the random walk Cs should be biased to
maximize the probability that the two walks meet, whereas the random walk Rs should aim to minimize the
meeting probability.

More precisely, we have four parameters c, r, tc, and tr satisfying the condition c+ r+ tc + tr = 1, and for
every s we have a pair of strategy functions cs : V (G)×V (G) → V (G) and rs : V (G)×V (G) → V (G), where
cs(u, v) is a neighbor of u and rs(u, v) is a neighbor of v. Given these parameters and strategy functions, we
define the transition probabilities of the pair (Cs,Rs) by

• with probability c: (Cs+1,Rs+1) = (cs(Cs,Rs),Rs),
• with probability r: (Cs+1,Rs+1) = (Cs, rs(Cs,Rs)),
• with probability tc: Cs+1 is a uniformly chosen random neighbor of Cs and Rs+1 = Rs, and
• with probability tr: Rs+1 is a uniformly chosen random neighbor of Rs and Cs+1 = Cs.

We note that this defines a Markov chain with state space V (G)×V (G) whose transition probabilities depend
on c, r, tc, tr and the sequences cs and rs. We will be interested in the probability of the event that there is
some time step s ∈ N for which Cs and Rs coincide.

This can be thought of as a pursuit-evasion game on a graph of which we call the the tipsy cop and robber
game. This game is played between two players, the cop and the robber, each of whom controls a playing
piece. A move by either player consists of taking their respective playing piece and moving it to an adjacent
vertex. In every round we spin a spinner wheel with four possible outcomes which coincide with the four
transition options above: (1) the cop can (but does not have to) make a move of their choosing, (2) the
robber can make a move of their choosing, (3) the cop has to make a move chosen uniformly at random, (4)
the robber has to make a move chosen uniformly at random. An example of one such spinner is depicted in
Figure 1. The cop wins the game, if at some point both playing pieces are at the same vertex, the robber
wins the game if this never happens.

r

25%

c

30%

tc

20%

tr

25%

Figure 1. Probability of each move based on a spinner model.

We refer to tc and tr as the tipsiness parameter of the cop and robber, respectively. The family of functions
cs : V (G) × V (G) → V (G) is called a cop strategy; cs(u, v) = w denotes the fact that if at time s the cop is
at u, the robber is at v, and the cop gets to decide where to move, then the cop will move to w. Similarly,
the family of functions rs : V (G)× V (G) → V (G) is called a robber strategy. We refer to moves in which the
cop or robber gets to employ their strategy as sober cop or robber moves, and to moves where a random
neighbor is selected as tipsy moves.

We say that the cop strategy cs is winning against the robber strategy rs if and only if there almost surely
is a time step s such that Cs = Rs in the random process defined above. Note that if the Markov chain
(Cs,Rs) is recurrent, then the cop strategy cs is winning: in this case the probability of reaching any state
in finite time is 1, and in particular we will almost surely reach any state with Cs = Rs in finite time.

We note that most of the strategies we are interested in do not depend on s (but it will be convenient
to allow the dependency on s in some of the proofs). Moreover, the graphs will be such that the Markov
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chain (Cs,Rs) defined above is irreducible. Consequently, if the robber has a positive probability of winning
the game from some starting position (C0,R0), then they have a positive probability of winning from any
starting position, since there is a positive probability that the game state will reach (C0,R0) before either
player makes a sober move.

We call a cop strategy cs superior to a cop strategy c′
s

against a robber strategy rs if the corresponding
random processes (Cs,Rs) and (C′

s
,R′

s
) satisfy

∀N : P[∃ s < N : Cs = Rs] ≥ P[∃ s < N : C′
s

= R′
s
].

A cop strategy is called best possible in a class C of strategies against a given robber strategy rs, if it is
superior to any other strategy in C against rs. Superior and best possible robber strategies can be defined
analogously (with the converse inequality). We note that if cs is superior to a strategy c′

s
against rs and c′

s

is winning against rs, then so is cs. Thus there is no point in choosing c′
s

over cs in case the robber plays rs.

3. Optimal and less than optimal strategies on the infinite grid

In this section we describe the best strategy for each player to take given different values of r and c
when playing on the infinite grid graph Z

2. Following Pólya’s approach, we start by simplifying the random
process (Cs,Rs) defined in the last section: instead of keeping track of both random walks, it suffices to
keep track of the difference Ds := Rs − Cs. In other words, we always think of the cop’s position as the
origin (0, 0), and the current state is uniquely determined by the robber’s position (x, y) in Z

2.
Also the outcome of a tipsy robber move or tipsy cop move are essentially the same. So to simplify our

notation, we combine tr and tc into one parameter which we call t. We now have the following parameters:

• c is the probability of a sober move by the cop,
• r is the probability of a sober move by the robber,
• t = tc + tr = 1 − (c + r) is the probability of a random move by either player,
• Ds = (x, y) ∈ Z

2 is the difference between the cop’s and robber’s positions.

Intuitively, it is clear that the cop should try to decrease their distance from the robber while the robber
should try to increase this distance. Note that generally (unless x = 0 or y = 0) there will be two different
ways of increasing the distance and two different ways of decreasing it. Thus there are several somewhat
sensible strategies for both the cop and the robber. The main result of this section shows that not all of
these strategies are equally good.

It will be convenient to impose some restrictions on the strategies we consider. We assume that the
strategies of both the cop and the robber depend on the current state (x, y) of the game, and the number
of steps s made so far. It is worth noting that most of the strategies we consider do not depend on s, but
considering the possibility that they do will occasionally be convenient.

We introduce the following notation: cs(x, y) and rs(x, y) denote the strategies of the cop and robber,
respectively. We let (x′, y′) = cs(x, y), and (x′, y′) = rs(x, y) denote the fact that a sober cop or robber move
at step s in position (x, y) leads to the new position (x′, y′). We assume that strategies are symmetric in
both coordinates, i.e. if cs(x, y) = (x′, y′), then cs(−x, y) = (−x′, y′), cs(x,−y) = (x′,−y′), and cs(−x,−y) =
(−x′,−y′) and the same holds for rs. Note that under the above symmetry conditions it is sufficient to define
the strategies cs and rs for y ≥ |x|.

Among the possible strategies satisfying the conditions above, we will be particularly interested in the
following strategies which, by the above symmetry assumptions, we only need to define for y ≥ |x|.

• Robber Strategy (RS) always increases the y-coordinate.
• Cop Strategy 1 (CS1) always decreases the y-coordinate. Note that if x = y then by symmetry this

is equivalent to decreasing the x-coordinate, and if y = −x, then it is equivalent to increasing the
x-coordinate.

• Cop Strategy 2 (CS2): always decreases the y-coordinate, unless x = y in which case the cop is
allowed to do anything subject to the symmetry assumptions above. We point out that CS2 is a
family of strategies rather than a single strategy, and that CS1 is a special instance of CS2.

As mentioned above, throughout the game the game state (x, y) can be described by a random walk on
Z
2, where the transition probabilities depend on the strategies employed by the cop and the robber, as well

as on the probabilities c and r of a sober move by either player. We note that this random walk is irreducible.
6



It is also time homogeneous, unless the cop and robber strategies change over time. If this random walk
is recurrent, then the cop almost surely wins, if it is positive recurrent then the expected time until this
happens is finite. Conversely, if this random walk is transient, then the robber has a positive probability of
winning.

Our main result in this section, Theorem 3.1, is as follows.

Theorem 3.1. With parameters as defined above:

(1) If r > c, then the robber wins with positive probability as long as they play any strategy that
increases their distance from the cop in every round.

(2) If c ≥ r, then the cop almost surely wins, provided they play the strategy to always decrease the
largest coordinate. If c > r, then the expected time until the game ends is finite.

(3) If c ≥ r and the cop employs the strategy to always decrease the smallest coordinate, then the robber
can win with positive probability provided that the difference c− r is small enough.

The first part of this theorem follows from Lemma 3.2 below. The second and third part will follow from
results in Sections 3.1 and 3.2, respectively.

Lemma 3.2. If r > c, then robber wins with positive probability as long as the robber strategy is such
that the distance between the position of the cop and the robber increases on every sober robber move. In
particular, the robber wins by playing strategy RS.

Proof. Since r > c and the robber always increases the distance between themselves and the cop, we know
that the probability of the distance increasing between the cop and robber in any round is r + t/2 if they
are not on the same axis (the smaller coordinate is nonzero), and r + 3t/4 when they are on the same
axis (the smallest coordinate is zero). The probability of the distance decreasing is at most c + t/2. Since
r + t/2 > c + t/2, the probability of the distance increasing in any round is strictly larger than 1/2. Hence,
the expected distance between the cop and robber increases in each round. Implying that the robber wins
with positive probability. �

In the remainder of this section, we focus on the case c ≥ r. As one might expect, for c ≥ r the cop has
a strategy which makes the corresponding random walk recurrent, and positive recurrent in the case c > r.
This is shown in Subsection 3.1. On the other hand, in contrast to Lemma 3.2, this actually depends on the
strategy chosen by the cop; even if c > r there are cop strategies always decreasing the distance between
the cop and the robber which do not almost surely lead to a cop win. One such strategy is discussed in
Subsection 3.2.

3.1. Cop playing an optimal strategy. In this section, we show that as long as c ≥ r the cop has a
winning strategy. The section is organized as follows: we start by showing in Lemma 3.3 that RS is the best
possible symmetric robber strategy against CS1, and after that, we show that CS1 is almost surely winning
against RS given that c ≥ r. The proof of this result is divided into two lemmas: we begin by showing that
CS1 is the best possible strategy against RS in the family CS2, and then we give a strategy in the family
CS2 which is winning against RS.

Lemma 3.3. The robber strategy RS is superior to any symmetric robber strategy against CS1. In particu-
lar, if the cop plays CS1, then the robber has a symmetric strategy which is winning with positive probability
if and only if RS is winning with positive probability.

Proof. By the symmetry assumptions we assume that every game state (x, y) satisfies y ≥ |x|. If it does not,
then we can reflect along the diagonals to obtain an ‘equivalent’ game state that does satisfy this assumption.

We start by showing that if the robber has a strategy which is winning with positive probability, then RS is
also winning with positive probability. Let rs(x, y) be any winning robber strategy and let s0 be the minimal
s such that rs0(x, y) does not increase the larger coordinate for some (x, y). Assume that rs0(x, y) = (x+1, y)
(the other cases are similar) and that at time s0 there is a robber move. Define a robber strategy r̂ as follows:

r̂s(x, y) =











rs(x, y) if s < s0 or s > s0 and we are in equivalent game states using rs and r̂s

(x, y + 1) if s = s0

rs(x− 1, y − 1) otherwise.
7



We show that r̂s is superior to rs by giving a coupling between the two corresponding processes Ds and D̂s.
In this coupling, it is always true that if D̂N = (0, 0) then Dn = (0, 0) for some n ≤ N . The coupling is given
by playing games with the two different strategies simultaneously using the same feed of random variables.
More precisely, if we have a sober cop or sober robber move in one game, then we also have a sober cop or
sober robber move in the other game. If we have a random move in one game, then we have a random move
in the other, and the two random moves go in the same direction (modulo our symmetry assumptions).

Note that the game states using r and r̂ are either equivalent or differ by (1, 1) with the coordinates of r̂
being greater than or equal to those of r. In particular, if the robber gets caught using r̂, they get caught
in the same step or earlier using r. Iterating this construction shows that RS is superior to any symmetric
robber strategy against CS1.

We note that the other direction of the if and only if statement is a tautology – if RS is winning with
positive probability, then of course, the robber has a strategy which is winning with positive probability. �

Lemma 3.4. The cop strategy CS1 is superior to any strategy of type CS2 against RS. In particular, if the
cop wins almost surely by playing any strategy of type CS2 against RS, then the cop also wins almost surely
by playing CS1. Moreover, if the expected time until the cop wins using said strategy of type CS2 is finite,
then so is the time until they win using CS1.

Proof. By symmetry of the strategies we may assume that every game state (x, y) satisfies y ≥ |x|. If it does
not, then we can reflect along the diagonals to obtain an ‘equivalent’ game state satisfying this assumption.

As in the proof of Lemma 3.3, we show superiority of strategy CS1 by giving a coupling between two
games, G1 and G2, where the robber follows RS in both games, and the cop follows strategy CS1 in G1 and
strategy CS2 in G2. Again, the move sequences are determined by the same feed of random variables in
both games, meaning that if it is a cop’s turn in G1 it is also a cop’s turn in G2 and vice versa.

We inductively ensure that if the state of G1 is (x, y), then the state of G2 is (x+ j, y + j) or (x− j, y + j)
for some j ≥ 0. Note that this holds before the first step with j = 0.

If neither G1 nor G2 is on the diagonal, then the transitions are the same in G1 and G2 regardless of
whose move it is, so the inductive claim remains valid. Also, if it is a sober robber move, then G1 transitions
from (x, y) to (x, y + 1) and G2 transitions from (x ± j, y + j) to (x ± j, y + j + 1) since the robber plays
strategy RS in both games. Clearly the new game states satisfy the inductive hypothesis.

We now analyze what happens when it is a sober cop move or a random move when either G1 or G2

are on the diagonal, and before proceeding, we note that on the diagonal x = y, random ‘right’ and ‘up’
moves are both interpreted as ‘up’ (due to our symmetry assumptions), and similarly ‘left’ and ‘down’ moves
are interpreted as ‘left’. If both G1 and G2 are on the diagonal x = y and it is a sober cop move, then
G1 transitions from (x, x) to (x − 1, x) and G2 transitions from (x + j, x + j) to (x + j, x + j + 1) or to
(x + j − 1, x + j). In both cases the inductive claim is satisfied after the transition. Also if both G1 and G2

are on the diagonal x = y and it is a random move, then both games make the same move, so the inductive
claim remains valid.

Note that if only one game is on the diagonal, then it is G1. In this case, if G1 is at (x, x) then G2 is at
(x − j, x + j) for some j > 0. If only G1 is on the diagonal, and it is cop move, then G1 transitions from
(x, x) to (x− 1, x) and G2 transitions from (x− j, x+ j) to (x− j, x+ j− 1). The result of this round means
that the original value of j has now decreased by 1, and the inductive claim is still valid.

If only G1 is on the diagonal x = y, and it is a random move, then there are four random moves to
consider. Case-by-case analysis shows that if the game states of G1 and G2 make a random move to the
right or downwards, then the original value of j decreases by 1, and the inductive claim still holds. If the
game states make a random move to the left or upwards, then j remains the same, and the inductive claim
still holds.

By the inductive claim, if the cop wins using a strategy of type CS2, i.e., the game G2 reaches (0, 0),
then the game G1 must also be at state (0, 0) or it reached it sooner since the respective game states satisfy
|(x, y)| ≤ |(x ± j, y + j)|. �

Lemma 3.5. Assume that r < c. Take CS2 so that (on the diagonal) we follow CS1 with probability

p = t(c−r)
2c(2r+t) , and move up with probability 1− p. If cop plays this specific instance of CS2 and robber plays

strategy RS, then cop wins the game in finite expected time.
8



Proof. Due to our symmetry assumptions, the game describes a random walk on the induced subgraph of
the integer grid with vertex set {(x, y) ∈ Z

2 | y ≥ |x|}. The only possible transition in this graph starting
at (0, 0) is to (0, 1), but this is not important since the game ends when we reach (0, 0). The probability of
moving from (x, y) 6= (0, 0) to (x′, y′) are given by

p(x,y)→(x′,y′) =































r + t
4 if |x| 6= y and (x′, y′) = (x, y + 1)

c + t
4 if |x| 6= y and (x′, y′) = (x, y − 1)

t
2 if |x| 6= y and (x′, y′) = (x± 1, y)

pc + t
2 if x = ±y and (x′, y′) = (x ∓ 1, y)

(1 − p)c + r + t
2 if |x| = y and (x′, y′) = (x, y + 1).

As a first step, we will show that these are precisely the transition probabilities of a random walk given
by edge weights, that is, there is a function w : E(G) → R+ such that

pa→b =
w(ab)

∑

b′∼a w(ab′)
.

We claim that this function is given by

w((x, y), (x, y + 1)) =

(

r + t/4

c + t/4

)y

and

w((x, y), (x + 1, y)) =
t/4

c + t/4

(

r + t/4

c + t/4

)y−1

.

To prove this claim, first consider a vertex a = (x, y) with y 6= |x|. Then

∑

b′∼a

w(ab′) =

(

r + t/4

c + t/4

)y

+

(

r + t/4

c + t/4

)y−1

+ 2 ·
t/4

c + t/4

(

r + t/4

c + t/4

)y−1

=
(r + t/4)y−1

(c + t/4)y

and it is easy to verify that pa→b = w(ab)/
∑

b′∼a w(ab′) for every neighbor b of a. Next consider a vertex
a = (x, x); the case a = (x,−x) is analogous. We only have two incident edges and thus obtain

∑

b′∼a

w(ab′) =

(

r + t/4

c + t/4

)y

+
t/4

c + t/4

(

r + t/4

c + t/4

)y−1

=
(r + t/4)y−1

(c + t/4)y
·

(

r +
t

2

)

.

Letting b = (x− 1, y), we obtain

w(ab)
∑

b′∼a w(ab′)
=

t/4

r + t/2
=

t(c + r + t)

2(2r + t)
=

t(c− r + 2r + t)

2(2r + t)
=

t(c− r)

2(2r + t)
+

t(2r + t)

2(2r + t)
= pc +

t

2

as claimed. Since a has only two neighbors whose transition probabilities add up to 1, this concludes the
proof of our claim.

By Theorem 2.3, this random walk is positive recurrent if and only if
∑

a,b w(a, b) < ∞. Hence it suffices
to show that

∑

y≥0





∑

−y≤x≤y

w((x, y), (x, y + 1))



 +
∑

y≥0





∑

−y≤x<y

w((x, y), (x + 1, y))



 < ∞.

Letting β = r+t/4
c+t/4 and α = t/4

c+t/4 and noting that β < 1, we obtain

∑

y≥0





∑

−y≤x≤y

w((x, y), (x, y + 1))



 =
∑

y≥0





∑

−y≤x≤y

βy



 =
∑

y≥0

(2y + 1)βy =
β + 1

(β − 1)2
< ∞,

and

∑

y≥0





∑

−y≤x<y

w((x, y), (x + 1, y))



 =
∑

y≥1





∑

−y≤x<y

αβy−1



 =
∑

y≥1

2yαβy−1 =
2α

(β − 1)2
< ∞.
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Thus, the random walk is positive recurrent and in particular the expected time until we reach (0, 0) is finite;
in other words, the cop wins the game almost surely and the expected time until this happens is finite. �

Finally, let us consider the case r = c; note that Lemmas 3.3 and 3.4 still apply in this case.

Lemma 3.6. If 0 ≤ r = c ≤ 1/2 then the game is null recurrent provided the cop plays strategy CS1 and
the robber plays RS, that is, cop wins almost surely, but the expected length of the game does not exist.

Proof. First we note that when r = c = 0, then Ds describes a simple random walk on the integer lattice
Z
2 which is null-recurrent, and when r = c = 1/2 then Ds describes a simple random walk on the integers

Z which is also null-recurrent.
For the remaining cases 0 < r = c < 1/2, the distance of Ds and (0, 0) is a random walk on the integers

that is just slightly biased away from the origin because it increases with probability r + t/2 = c+ t/2 when
Ds is not on an axis and r + 3t/4 > c + t/4 in the rare event that it is on an axis. Since the simple random
walk on the integers is null recurrent, the random walk modeling the game cannot be positive recurrent.

If the cop plays a strategy of the form CS2 where on the diagonal cop always increases the y-coordinate
(this is the same strategy as in Lemma 3.5, with p = 0) against RS, then we get a random walk on a graph
with two different edge weights

w((x, y), (x + 1, y)) =

(

t/4

c + t/4

)

and w((x, y), (x, y + 1)) = 1.

Suppose for sake of contradiction that this walk is transient, then the random walk with all edge weights
equal to 1 would also be transient by Theorem 2.4, but we know that a simple random walk on Z

2 is recurrent.
So this particular instance of CS2 is winning against RS. By Lemma 3.4, if CS2 is winning against RS, then
so is CS1. By Lemma 3.3, if CS1 wins against RS, then CS1 wins against any symmetric robber strategy.
This shows that CS1 is a winning strategy for the cop. �

3.2. Cop playing foolish strategy. The aim of this subsection is to show that the cop should not deviate
too far from strategy CS1 if they want to maximize their chances of winning. More precisely, if the cop
plays a less than optimal strategy of decreasing the smaller coordinate first, and the robber plays strategy
RS (increase the larger coordinate), then we will show that the robber has positive probability of winning
for some values c > r.

Theorem 3.7. If the cop employs the strategy of always decreasing the smaller nonzero coordinate, and
the robber plays RS, then the robber has a positive probability of winning provided c, r, and t satisfy the
following constraint

2r2 + 2rt−
3ct

2
− 2c2 > 0.

Proof. We will show that the distance function’s larger coordinate is expected to increase after every pair
of moves when 2r2 + 2rt − 3ct

2 − 2c2 > 0. In any round of the game, the larger coordinate of the distance
function between the cop and robber is expected to increase except when the smaller coordinate is zero. So
if the smaller coordinate is greater than 1, the larger coordinate is expected to increase after any pair of
moves.

If the smaller coordinate is zero at the start of a round, then the expected change of the larger coordinate
is r−c < 0 after one round. To compute the expected change in the larger coordinate after two rounds when
the smaller coordinate is zero, we note the following probabilities describing the possible changes within one
round when the smaller coordinate is less than 2:

p(0,y)→(0,y+1) = p(±1,y)→(±1,y+1) = r + t/4, p(0,y)→(±1,y) = p(±1,y)→(±2,y) = t/4,
p(0,y)→(0,y−1) = p(±1,y)→(0,y) = c + t/4, p(±1,y),(±1,y−1) = t/4.

Thus the probabilities of moving from (0, y) to any other location within two rounds are as follows:

p(0,y)→(0,y+2) = (r + t/4)2, p(0,y)→(±1,y+1) = t(r + t/4),
p(0,y)→(±1,y−1) = t/2(c + t/2), p(0,y)→(0,y−2) = (c + t/4)2.
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Hence the expected change in the larger coordinate after two rounds is given by

2(r + t/4)2 − 2(c + t/4)2 + (t)(r + t/4) + (t/2)(c + t/2) = 2r2 + 2rt−
3ct

2
− 2c2.

The transition probabilities after two rounds when the smaller coordinate starts at plus or minus one are
calculated below:

p(±1,y)→(±1,y+2) = (r + t/4)2, p(±1,y)→(±1,y−2) = (t/4)2,
p(±1,y)→(0,y+1) = 2(c + t/4)(r + t/4), p(±1,y)→(±2,y+1) = (t/2)(r + t/4),
p(±1,y)→(0,y−1) = (c + t/2)(c + t/4), p(±1,y)→(±2,y−1) = 2(t/4)2.

Hence the expected change of the larger coordinate after two rounds of the game is 2r2 + 2rt+ 2rc− c2 − ct
4

when smaller coordinate starts off as plus or minus one, and we note that

2r2 + 2rt + 2rc− c2 −
ct

4
> 2r2 + 2rt−

3ct

2
− 2c2 > 0.

By Proposition 2.7, since the distance function’s larger coordinate is expected to increase after every pair
of moves when 2r2 + 2rt− 3ct

2 − 2c2 > 0, there is a positive probability that the game lasts forever when c,

r, and t satisfy the constraint 2r2 + 2rt− 3ct
2 − 2c2 > 0. �

4. Game on Trees

Throughout this section we use the same parameters as defined previously. However, our approach requires
us to distinguish between the tipsy moves by the cop and the robber. Hence we reintroduce tr and tc, the
probability of a tipsy robber move and the probability of a tipsy cop move, respectively. We assume that
c + tc = r + tr = 1/2, or in other words, we assume that no player gets to make significantly more moves
than the other; the only imbalance in the game comes from the tipsiness parameters of the two players.

We start by considering infinite δ-regular trees. On such a tree, all paths of length n look the same,
so a game state can be described completely (up to isomorphism) by the distance between the two players
without mentioning their exact positions. Hence the optimal cop strategy is to move in the unique direction
that decreases this distance and the optimal strategy for the robber is to move in any direction that increases
the distance (which are all the same up to isomorphism). If both players play their optimal strategies, then
the probability that the distance between the two players increases is given by r + (tc + tr) δ−1

δ and the

probability of moving closer is c + (tc + tr)1δ .
Consequently, the cop and robber game can be reduced to the gambler’s ruin problem with these transition

probabilities. By substituting c = 1/2 − tc and r = 1/2 − tr we arrive at the following result.

Lemma 4.1. Assume the cop and the robber play strategies as described above on an infinite δ-regular
tree. If tr ≥ tc(δ − 1), then the cop almost surely wins the game, otherwise the robber wins the game with
positive probability.

We now consider a more general class of trees which can be described as δ-regular trees rooted to a
(∆ − 1)-regular tree. To be precise, let δ > 1, and let T be the tree that is δ-regular everywhere except the
root, which has degree δ − 1. Let ∆ > δ, and let B be a (∆ − 1)-regular tree. Then the tree X(∆, δ) is
constructed by connecting the root of a copy of T to each node in B, see Figure 2 for examples. We call B
the base tree of X(∆, δ) and we refer to a copy of the δ-regular tree in X(∆, δ) as a small tree. Clearly, each
node in the base of X(∆, δ) has degree ∆, and each node in a small tree has degree δ. Note that X(δ, δ) is
simply a δ-regular tree.

An intuitive cop strategy on the trees X(∆, δ) (and in fact on any tree) is to simply move in the unique
direction toward the robber, call this strategy CS. There are two intuitively sensible robber strategies on
X(∆, δ) which we denote RSA and RSB. In both RSA and RSB, if the robber is in the base tree B, they
increase the distance between the two players while staying in B. In a smaller tree T , RSA will keep aiming
to increase the distance from the cop by picking a neighbor of Rs which does not lie on the unique path
connecting Rs to Cs; among the possible choices they pick one uniformly at random. A robber playing
strategy RSB will opt to backtrack toward the base tree B, that is, pick the unique neighbor of Rs that lies
closer to the base tree B than Rs. For different values of ∆ and δ, we will see that there are certain scenarios
in X(∆, δ) where RSA is preferable to RSB and vice versa. To simplify the analysis of the robber strategies
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we also introduce a cop strategy CSB which is similar to RSB: On the base tree B, a cop playing strategy
CSB moves towards the copy of T in which the robber is located (and opts not to do anything, if the cop
and the robber are located in the same copy). If the cop is not located in the base tree B, then similarly to
a robber playing RSB they move to the unique neighbor of Cs that lies closer to the base tree B than Cs.
We point out that the only time CSB differs from CS is when the two players are on the same copy of the
smaller tree T , and the only advantage of CSB over CS is that it is easier to analyse against RSB.

Figure 2. The trees X(4, 2) and X(5, 3).

The main result of this section shows that it depends on the values of ∆, δ, tc, and tr, which of the two
strategies RSA and RSB is better for the robber. We will give precise bounds on the tipsiness parameters
for which the robber is guaranteed to win playing either of the two strategies, see Theorems 4.4 and 4.6.
These bounds imply the following result.

Theorem 4.2. Consider the game on X(∆, δ) with ∆ ≥ 4. There is some t0 ∈ [0, δ
4(δ−1) ] such that

(1) if tr ≤ t0 and the robber wins against every cop strategy by playing RSA for some given value tc,
then they also win by playing RSB, and

(2) if tr > t0 and the robber wins against every cop strategy by playing RSB for some given value tc,
then they also win by playing RSA.

If δ = 2, then t0 = 1
2 . If 2δ ≥ ∆ + 1, then t0 = 0. Otherwise the value of t0 lies strictly between 0 and 1

2 and
can be determined by solving a quadratic equation.

We note that the restriction ∆ ≥ 4 only rules out the infinite binary tree X(3, 3) and the infinite comb
X(3, 2). For X(3, 3), Lemma 4.1 tells us when each player has a winning strategy. For X(3, 2), the robber
strategy RSA is winning if tc > tr by the same argument as in the proof of Lemma 3.2. If tc < tr, then
CS is easily seen to be winning by a slight modification of the argument in the proof of the second part of
Theorem 4.4: the cop will almost surely get to the same small tree as the robber, and once this happens
there is a positive probability that the cop will not leave this tree before catching the robber. In particular
the small cases for which Theorem 4.2 does not provide an answer are not especially difficult.

4.1. Analysis of RSA and RSB. The goal of this section is to provide conditions for when RSA and RSB
are winning on X(∆, δ). The main results of this section are Theorem 4.4 which tells us exactly when RSA
is winning and Theorem 4.6 which tells us in almost all cases whether RSB is winning.

We start by setting up the notation we use to analyse the game on X(∆, δ). Throughout our analysis, we
keep track of the projections of the cop’s and robber’s position to the base tree, in other words we consider
the auxiliary random process (C′

s
,R′

s
) where C′

s
is the vertex of B which is closest to Cs, and R′

s
is the

vertex of B which is closest to Rs. Further denote by Tr(n) the (random) time step at which the robber
makes their n-th move on the base tree B. Finally, we introduce random variables Fr(n) which take the
value 1 if the move at time Tr(n) increases the distance between the cop and the robber and −1 if it decreases
the distance. Analogously, define Tc(n) and Fc(n) for the cop. For a cop playing strategy CSB, we also
count a sober cop move during which they opt to stay at the same vertex as a move on the base tree.
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Our analysis of the game is based on the total change in distance between C′
s

and R′
s

up to time step s,
which is equal to

Ys :=
∑

n:Tr(n)<s

Fr(n) +
∑

n:Tc(n)<s

Fc(n).(2)

The basic idea behind our analysis is that if this value tends to infinity, then there is a positive probability
that the distance between C′

s
and R′

s
and thus also the distance between Cs and Rs never reaches zero.

Conversely, if the sum does not tend to infinity, then the distance between C′
s

and R′
s

is zero on a positive
proportion of the steps. If after infinitely many of these steps the distance between of two players to the
base tree B is bounded, then the cop almost surely wins the game because there is a positive probability
that the cop wins the game within some bounded number of moves.

In order to bound Ys it will be useful to bound the individual summands in Equation (2) by two auxiliary

sequences F̃r(n) and F̃c(n) of i.i.d. random variables. These random variables only depend on the outcome
of the spinner (that is, what kind of move happens), but not on the specific strategies employed by the cop

and the robber. For the definition of F̃r(n), imagine that the decision of what kind of move occurs in the

game at time s = Tr(n) is governed by a uniform random variable Ss on [0, r + tr(∆−1)
∆ ] as follows:

• If 0 ≤ Ss ≤ r, we have a sober robber move which will be a move along an edge of B because at
time s = Tr(n) the robber must be located in the base tree.

• If r < Ss ≤ r + tr(∆−2)
∆ , we have a tipsy robber move on B which increases the distance between the

cop and the robber.

• If Ss > r+ tr(∆−2)
∆ , we have a tipsy robber move on B which decreases the distance between the cop

and the robber if C′
s
6= R′

s
, but increases the distance if C′

s
= R′

s
.

All other potential moves (including all cop moves) cannot occur since the move at time Tr(n) must be a

robber move along an edge of B. The random variable F̃r(n) takes the value 1, if Ss ≤ r + tr(∆−2)
∆ , and −1

otherwise. We note that

P[F̃r(n) = 1] =
r + tr(∆−2)

∆
1
2 − tr

∆

=
1 − 4

∆ tr

1 − 2
∆ tr

,

and consequently

E[F̃r(n)] =
1 − 6

∆ tr

1 − 2
∆ tr

.

Clearly, the variables F̃r(n) are i.i.d., they only depend on the outcome of the spinner. If the robber plays

RSA or RSB, then Fr(n) ≥ F̃r(n) and equality holds if and only if C′
s
6= R′

s
at time step s = Tr(n).

Moreover, note that E[F̃r(n)] is larger than 0 unless ∆ = 3 and tr = 1
2 .

Analogously, we can define a sequence of i.i.d. random variables F̃c(n) taking values in {1,−1} with

Fc(n) ≥ F̃c(n) for any cop strategy: F̃c(n) takes the value −1 if a sober cop move occurs at time step

s = Tc(n), and is otherwise defined analogously to F̃r(n). We note that

P[F̃c(n) = 1] =
tc(∆−2)

∆
1
2 − tc

∆

and thus

E[F̃c(n)] = −
1 − 4∆−6

∆ tc

1 − 2
∆ tc

.

Moreover, Fc(n) = F̃c(n) if the cop plays CS or CSB and C′
s
6= R′

s
at time step s = Tc(n).

It follows from the above discussion that if the robber plays RSA or RSB, then

Ys ≥
∑

n:Tr(n)<s

F̃r(n) +
∑

n:Tc(n)<s

F̃c(n).(3)

This bound has the advantage that the summands are i.i.d.; if their expected values are positive, then it
immediately follows from Theorem 2.6 that there is a positive probability that neither of the two sums will
ever reach zero which implies that the robber has a positive probability of winning the game. In particular,
if the cop is too tipsy, then the robber will win playing either of the two strategies.
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Proposition 4.3. Consider the game on X(∆, δ). If tc >
δ

4δ−4 or tc >
∆

4∆−6 then the robber wins the game
playing either RSA or RSB against any cop strategy.

Proof. Note that E[F̃r(n)] > 0, so it suffices to show that there is a non-zero probability that contribution

of the sum of the F̃c(n) (in Equation (3)) is non-negative.
If tc >

δ
4δ−4 , then there is a positive probability that this sum is empty. Indeed, when the cop is not on

the base tree, the probability that the next cop move increases the distance between Cs and C′
s

is at least
2tc

δ−1
δ > 1

2 ; the factor 2 comes from the fact that we have to condition on the move being a cop move. Thus

by Theorem 2.6 the probability that the cop never gets to the base tree B is positive. If tc >
∆

4∆−6 , then a

straightforward calculation shows that E[F̃c(n)] > 0, and thus there is a positive probability that the sum

of the F̃c(n) is always larger than zero. �

We note that neither of the two bounds in Proposition 4.3 generally implies the other; which one is
stronger depends on the values of ∆ and δ.

Our next goal is to describe precisely when the robber can win by playing RSA. It is not surprising that
in this case the game essentially boils down to a game on the δ-regular tree (assuming that the cop is able
to get to the same copy of the δ-regular tree as the robber).

Theorem 4.4. If tc > min{ tr
δ−1 ,

∆
4∆−6}, then a robber playing RSA has a positive probability of winning,

regardless of the cop’s strategy. If tc ≤ min{ tr
δ−1 ,

∆
4∆−6}, then a cop playing CS almost surely wins against

a robber playing RSA, provided that tr < 1
2 , and against a robber playing RSB provided that tr < δ

4δ−4 .

Proof. If tc >
∆

4∆−6 , then by Proposition 4.3 there is a positive probability that the robber wins the game. If

tc >
tr
δ−1 , then (assuming ∆ > δ) the probability of increasing the distance between the cop and the robber

in any move is at least

r +
tr(δ − 1)

δ
+

tc(δ − 1)

δ
≥

1

2
− tr +

tr(δ − 1)

δ
+

tr
δ

+ ǫ =
1

2
+ ǫ,

so the distance can be bounded from below by a biased random walk on N0 which has a positive probability
of never reaching zero by Theorem 2.6.

Now assume that tc ≤ min{ tr
δ−1 ,

∆
4∆−6} and either tc < 1

2 and the robber plays RSA, or tc > δ
4δ−4 and

the robber plays RSB. Note that in both cases the probability that the robber moves away from the base
tree is larger than the probability that the robber moves towards the base tree. In particular, the robber
will almost surely eventually stay in one copy of the small tree which we denote by T0.

Clearly it is enough to show that the cop will almost surely eventually stay in T0 as well; in this case the
game reduces to a game on a δ-regular tree which the cop almost surely wins by Lemma 4.1.

We start by showing that if the cop is located in a different tree than T0, then they will almost surely
get to the root of T0 in B in finite time. To prove this, first note that tc ≤

δ
4δ−4 because tr ≤ 1

2 and δ ≥ 2.

Hence the probability that the cop moves towards the root of the δ-regular tree they are in (assuming that
the robber is in a different copy) is at least 1

2 , and Theorem 2.6 implies that unless the cop and the robber
eventually stay in the same copy of the δ-regular tree, the cop will almost surely return to the base tree B
infinitely often. Again by Theorem 2.6, if the probability of the cop moving toward T0 on a move in B is
greater than or equal to the probability of moving further away from T0, then the cop will almost surely

reach T0 eventually. This happens if and only if 1 − 2tc + 2tc
∆ ≥ (∆−2)

∆ 2tc, or equivalently tc ≤
∆

4∆−6 .
In order to show that the cop almost surely eventually remains in T0, it suffices to show that every time

the cop moves from B to the root of T0, the probability of them never visiting B again is at least some ǫ > 0.
We may condition on the event that the distance between Rs and B is at least k · s for every k, since

the probability of this event is positive by Theorem 2.9. In other words, without loss of generality we can
assume that

P[∀s > 0 : d(Rs, B) > k · s] = 1.

Denote by Ps the unique path connecting the root of T0 to Rs, and denote by C′′
s

the vertex closest to
Cs on this path. If Cs = C′′

s
, then the probability of increasing the distance between C′′

s
and B is c + tc

δ ,

the probability of decreasing this distance is tc
δ , and the probability of the distance remaining unchanged is

tc(δ−2)
δ . If Cs 6= C′′

s
then the distance can only change if Rs = C′′

s
, in which case the distance is at least
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k · s. Hence the distance between C′
s

and B is a random walk on N whose probability of moving away from
0 is strictly larger than its probability of moving towards 0, and thus it has a positive probability of never
returning to 0. �

In the remainder of this subsection we analyse RSB. The case tr > δ
4δ−4 where the robber is too tipsy

to get back to the base tree an infinite number of times is already covered in the previous theorem; we may
thus focus on tr ≤ δ

4δ−4 , and we first consider the case where this inequality is strict. We start by analyzing
the number of steps in between consecutive cop and robber moves on the base tree.

Lemma 4.5. Consider the game on X(∆, δ). If tr < δ
4δ−4 , then with the above notation, we have

E[Tr(n) − Tr(n− 1)] ≥ 2 ·
1 −

(

4δ−4
δ − 2

∆

)

tr
(

1 − 4δ−4
δ tr

) (

1 − 2
∆ tr

)

with equality if the robber plays RSB. Additionally, if the robber plays RSB, then Tr(n) − Tr(n − 1) has
finite variance.

Similarly, if tc <
δ

4δ−4 , then

E[Tc(n) − Tc(n− 1)] ≥ 2 ·
1 −

(

4δ−4
δ − 2

∆

)

tc
(

1 − 4δ−4
δ tc

) (

1 − 2
∆ tc

)

with equality if the cop plays CSB. Additionally, if the cop plays CSB, then Tc(n) − Tc(n − 1) has finite
variance.

Proof. We start by showing that RSB minimizes E[Tr(n) − Tr(n − 1)]. An easy coupling argument shows
that RSB minimizes the time it takes the robber to return to the base tree whenever they leave the base tree:
consider two games where in one the robber plays RSB and in the other they play an arbitrary strategy,
and assume that every sober or tipsy robber move in one game is also a sober or tipsy robber move in the
other. Then clearly the robber playing RSB is always at most as far away from B as the robber in the other
game. Moreover, when the robber is at a vertex of the base tree, then RSB maximizes the probability that
the next robber step will be along an edge of B.

For the remainder of the proof assume that the robber plays RSB. When the distance of the robber from

the base tree is larger than 0, then the probability of the robber moving away from the base tree is 2 tr(δ−1)
δ ,

when it is equal to 0, then the probability of the next move leading away from the base tree is 2 tr
∆ . The

factor 2 in both of these probabilities is due to the fact that we have to condition on the event that the move
is actually a robber move which has probability 1

2 . In particular, if Xs is a random walk on N started at

X0 = 1 with transition probabilities pi,i+1 := 2 tr(δ−1)
δ for i > 1 and p1,2 = 2 tr

∆ , then the random variable
U1 := min{s | Xs = 0} has the same distribution as the number of robber moves occurring between Tr(n−1)
and Tr(n).

Since 2 tr(δ−1)
δ < 1

2 , Proposition 2.8 implies that U1 has finite expectation and variance, and hence the
same is true for Tr(n) − Tr(n− 1). To determine E[U1], note that like in the proof of Proposition 2.8

E[U1] = 1 + 2
tr
∆

(E[U1] + E[U2]),

where U2 is the number of steps until a random walk with the same transition probabilities as above started
at X0 = 2 reaches Xs = 1 for the first time. By Theorem 2.6, we know that E[U2] = 1

1−4 tr(δ−1)
δ

, and solving

the above equation for E[T1] gives

E[U1] =
1 −

(

4δ−4
δ − 2

∆

)

tr
(

1 − 4δ−4
δ tr

) (

1 − 2
∆ tr

) .

Since on average every second move is a cop move, E[U1] = 1
2E[Tr(n)−Tr(n− 1)]. This completes the proof

of the first part.
For the second part note that if tc <

δ
4δ−4 , then the exact same arguments apply for the cop. �

Recall that C′
s

and R′
s

are projections of the cop’s and robber’s position to the base tree B. If the C′
s

is never equal to R′
s
, then the cop obviously never reaches the same path as the robber on X(∆, δ), and
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thus they cannot win the game. The next result shows that this is essentially the only obstruction to CSB
winning against RSB. We remark that a refinement of the argument given below shows that CS is also
winning against RSB in the second case. Indeed, we conjecture that if the cop has a strategy to win the
game on a tree, then they can always win the game by playing CS.

Theorem 4.6. Consider the game on X(∆, δ). Assume that tr ≤
δ

4δ−4 and tc ≤ min
{

δ
4δ−4 ,

∆
4∆−6

}

. If

(

1 − 4δ−4
δ tr

) (

1 − 6
∆ tr

)

1 −
(

4δ−4
δ − 2

∆

)

tr
−

(

1 − 4δ−4
δ tc

) (

1 − 4∆−6
∆ tc

)

1 −
(

4δ−4
δ − 2

∆

)

tc
> 0(4)

then the robber wins playing RSB against any cop strategy.
If the reverse inequality holds:

(

1 − 4δ−4
δ tr

) (

1 − 6
∆ tr

)

1 −
(

4δ−4
δ − 2

∆

)

tr
−

(

1 − 4δ−4
δ tc

) (

1 − 4∆−6
∆ tc

)

1 −
(

4δ−4
δ − 2

∆

)

tc
< 0(5)

then CSB is winning against a robber playing RSB; in particular RSB does not win against every cop
strategy.

Proof. We split the proof in the following cases:

(1) tr < δ
4δ−4 and tc < min

{

δ
4δ−4 ,

∆
4∆−6

}

, and (4) holds,

(2) tr < δ
4δ−4 and tc < min

{

δ
4δ−4 ,

∆
4∆−6

}

, and (5) holds,

(3) tr = δ
4δ−4 and tc < min

{

δ
4δ−4 ,

∆
4∆−6

}

, in this case inequality (5) holds, and

(4) tr < δ
4δ−4 and tc = min

{

δ
4δ−4 ,

∆
4∆−6

}

, in this case inequality (4) holds.

Note that we do not need to consider the case tr = δ
4δ−4 and tc = min

{

δ
4δ−4 ,

∆
4∆−6

}

, because in this case

neither of the two inequalities (4) and (5) is satisfied.
For the first two cases, we start by giving estimates on the number of summands in each of the sums in

the definition of Ys in Equation (2). For t ∈ {tr, tc}, let µ(t) := 2δ∆−(8δ∆−4δ−8∆)t
δ−(4(δ−1)t)(∆−2t) . Since we may assume

that the robber plays RSB, Lemma 4.5 implies that Tr(n)− Tr(n− 1) are i.i.d. random variables with finite
mean µ(tr) and finite variance. Thus by Theorem 2.5, for every ǫ > 0 we can find a constant k such that

P [n (µ(tr) − ǫ) < Tr(n) < n (µ(tr) + ǫ)] > 1 − e−kn

for every large enough n. Substituting n = s

µ(tr)±ǫ and using continuity of f(x) = 1
x at x = µ(tr), this

implies that for every ǫ > 0 we can find a constant k (different to the constant k above) such that

P

[

Tr

(

s

(

1

µ(tr)
− ǫ

))

< s < Tr

(

s

(

1

µ(tr)
+ ǫ

))]

> 1 − e−ks

for every large enough s. In other words, the probability that number of summands in the first sum in the
definition of Ys deviates by more than sǫ from its expected value s

µ(tr)
is less than e−ks.

If the cop plays CSB, then an analogous argument shows that for every ǫ there is a constant k such that

P

[

Tc

(

s

(

1

µ(tc)
− ǫ

))

< s < Tc

((

1

µ(tc)
+ ǫ

))]

> 1 − e−ks.

If we allow the cop to play an arbitrary strategy, then the value Tc(n)−Tc(n−1) will only increase compared
to a cop playing CSB, whence we still obtain one side of the above concentration result:

P

[

Tc

(

s

(

1

µ(tc)
− ǫ

))

< s

]

> 1 − e−ks,

in other words, the probability that the number of summands exceeds s

µ(tc)
by more than sǫ is less than

e−ks.
Now assume that we are in Case 1, and thus the bound in (4) holds. We claim that for any ǫ′ > 0 we can

find an ǫ > 0 such that the probability that the following inequality is violated for any given s is bounded
above by ae−bs for suitable a, b > 0. That is
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Ys

s
≥





∑

n:Tr(n)<s

F̃r(n)

s



 +





∑

n:Tc(n)<s

F̃c(n)

s



(6)

≥
max{n : Tr(n) ≤ s}

s

(

E[F̃r(1)] − ǫ
)

+
max{n : Tc(n) ≤ s}

s

(

E[F̃c(1)] − ǫ
)

(7)

≥

(

1

µ(tr)
− ǫ

)

(

E[F̃r(1)] − ǫ
)

+

(

1

µ(tc)
+ ǫ

)

(

E[F̃c(1)] − ǫ
)

(8)

≥
E[F̃r(1)]

µ(tr)
+

E[F̃c(1)]

µ(tc)
− ǫ′(9)

=
1

2
·

(

1 − 4δ−4
δ tr

) (

1 − 6
∆ tr

)

1 −
(

4δ−4
δ − 2

∆

)

tr
−

1

2
·

(

1 − 4δ−4
δ tc

) (

1 − 4∆−6
∆ tc

)

1 −
(

4δ−4
δ − 2

∆

)

tc
− ǫ′.(10)

Note that the inequality in (6) follows from the fact that Fr(n) ≥ F̃r(n), and Fc(n) ≥ F̃c(n), and the

inequality in (7) follows from Theorem 2.5. For the inequality in (8) we note that E[F̃r(1)]− ǫ > 0 whenever

ǫ is small enough and that E[F̃c(1)]−ǫ < 0 because tc <
∆

4∆−6 ; the inequality then follows from the bounds on

the number of summands discussed above. For the last inequality in (9) we note that none of the coefficients
are unbounded, and thus we can indeed find a suitable ǫ for any ǫ′.

If ǫ′ is small enough, then the expression in (10) is larger than 0. Since
∑

s≥1 ae
−bs < ∞, we conclude

that there is some s0 such that the probability that Ys > 0 for every s > s0 is positive. If the distance
between R′

0 and C′
0 is larger than s0, then this implies that there is a positive probability that R′

s
and C′

s

never coincide, and thus the robber wins the game with positive probability.
Next consider Case 2. For s > 0, we denote by K(s) the number of t ≤ s such that C′

t
= R′

t
. If the robber

plays RSB, then Fr(n) > F̃r(n) if and only if C′
s

= R′
s

at time s = Tr(n), and in this case Fr(n)− F̃r(n) ≤ 2.

Similarly, if the cop plays CSB, then Fc(n) > F̃c(n) if and only if C′
s

= R′
s

at time s = Tc(n), and in this

case Fc(n) − F̃c(n) ≤ 2. In particular,

Ys

s
≤





∑

n:Tr(n)<s

F̃r(n)

s



 +





∑

n:Tc(n)<s

F̃c(n)

s



 +
2K(s)

s
,

and a similar calculation as above yields that the inequality

Ys

s
≤

1

2
·

(

1 − 4δ−4
δ tr

) (

1 − 6
∆ tr

)

1 −
(

4δ−4
δ − 2

∆

)

tr
−

1

2
·

(

1 − 4δ−4
δ tc

) (

1 − 4∆−6
∆ tc

)

1 −
(

4δ−4
δ − 2

∆

)

tc
+ ǫ′ +

2K(s)

s
(11)

is satisfied with probability 1 − ae−bs. Since the distance between C′
s

and R′
s

is never negative, there is a
constant lower bound on Ys. Hence choosing ǫ′ sufficiently small and taking the limit s → ∞ in inequality
(11), we conclude that almost surely

lim inf
s→∞

K(s)

s
> 0.

In fact, it is not hard to see that lims→∞
K(s)
s

exists, but we will not need this.
Let L(n, s) denote the number of time steps t ≤ s for which C′

t
= R′

t
, and both Ct and Rt are at distance

at most n from C′
t
. We note that the distances between Rs and R′

s
and between Cs and C′

s
can be described

by positive recurrent biased random walks on N0, respectively. By Theorem 2.10, and the above estimate

on lim infs→∞
K(s)
s

there is an n0 ∈ N such that almost surely

lim inf
s→∞

L(n0, s)

s
> 0.

This in particular implies that L(n0, s) tends to infinity as s → ∞, and therefore there are almost surely
infinitely many time steps in which the distance between Cs and Rs is upper bounded by 2n0. Every time
this happens, the probability that the cop will win in the subsequent 2n0 steps is larger than the probability
that the cop wins by a sequence of random moves starting at distance 2n0 which in turn is lower bounded
by ( tc∆ )2n0 . Therefore the cop will almost surely eventually win the game.
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In Case 3, we first note that

lim
s→∞

∣

∣

∣

∣

∣

∣

∑

n:Tr(n)<s

F̃r(n)

s

∣

∣

∣

∣

∣

∣

= 0

because increasing tr also increases Tr(n). An analogous argument as in Case 2 shows that it will happen
infinitely many times that Cs = R′

s
, but unfortunately we cannot bound the distance between Rs and R′

s

in the same way as in Case 2. However, we claim that L(n0, s) will still tend to infinity as s goes to infinity.
To prove this claim it is enough to show that if d(C0,R

′
0) = 0, then there is a constant lower bound on

the probability that there is some finite s such that C′
s

= R′
s
, and both Cs and Rs are at distance at most

n from C′
s
. Consider the two random processes d(Cs,R

′
s
) and d(Rs,R

′
s
). As long as d(Rs,R

′
s
) > 0, these

random processes can be treated as independent random walks on N. Since d(Cs,R
′
s
) is positive recurrent

and d(C0,R
′
0) = 0, the probability that d(Cs,R

′
s
) < n0 is bounded from below by some constant for every

s > 0. This also holds at the (random) time step when d(Rs,R
′
s
) becomes smaller than n0 for the first time

which completes the proof of the claim. Hence L(n0, s) goes to infinity, and thus CSB is winning against
RSB in this case.

Finally consider Case 4. Note that a cop with tipsiness tc = min{ δ
4δ−4 ,

∆
4∆−6} − ǫ can pretend that

tc = min{ δ
4δ−4 ,

∆
4∆−6} by playing a strategy in which they make a random move with probability ǫ. By

Case 1, strategy RSB is winning against any cop strategy (and thus also against this specific strategy) if
tc = min{ δ

4δ−4 ,
∆

4∆−6} − ǫ for small enough ǫ. �

4.2. Comparison of the two strategies. The aim of this section is to compare the two strategies RSA
and RSB against one another. Throughout this section we will assume that tr < 1

2 because for tr = 1
2 all

robber moves are random, and thus there will not be any difference between the two robber strategies.
We first show that (apart from isolated cases) we may assume that 0 < tc < min{ δ

4δ−4 ,
∆

4∆−6} and that

0 < tr < δ
4δ−4 . Proposition 4.3 tells us that if tc > min{ δ

4δ−4 ,
∆

4∆−6} then the robber wins if they play each

of the two strategies RSA or RSB. Our first result tells us that if tr > δ
4δ−4 then the robber should always

choose strategy RSA over strategy RSB.

Proposition 4.7. If tr >
δ

4δ−4 and the cop has a winning strategy against a robber playing RSA, then they
also have a winning strategy against a robber playing RSB; in this case CS is winning against both RSA
and RSB.

Proof. If the cop has a winning strategy against a robber playing RSA, then by Theorem 4.4 we know that
tc ≤ min{ tr

δ−1 ,
∆

4∆−4}, which means that CS is winning against RSB provided that tr > δ
4δ−4 . �

Hence we can assume that 0 < tc ≤ min{ δ
4δ−4 ,

∆
4∆−6}, and that 0 < tr ≤ δ

4δ−4 . The next proposition
deals with the cases where equality holds in one of the two bounds.

Proposition 4.8. Consider the game on X(∆, δ), and assume that ∆ ≥ 4.

(1) If tc = 0, then CS is always a winning strategy for the cop.
(2) If tr = 0 and tc 6= 0, then both RSA and RSB are winning robber strategies.
(3) If tr = δ

4δ−4 and RSB is winning against every cop strategy, then so is RSA.

Proof. The first two statements follow from Proposition 2.7 by observing that the probability that the
distance between the cop and the robber increases is at most 1

2 in the first case, and strictly larger than 1
2 in

the second. For the third statement, recall that we are working under the assumption that tr < 1
2 and hence

δ ≥ 3. If RSA is not winning, then tc ≤
δ

4(δ−1)2 by Theorem 4.4. In particular, tc < 1
4 ≤ min{ δ

4δ−4 ,
∆

4∆−6}

and thus RSB is not winning against CSB by Theorem 4.6. �

The next lemma puts the winning conditions from Theorem 4.6 for a robber playing RSB in a more useful
form.

Lemma 4.9. Let ∆ ≥ 4. There is a function

f :

[

0,
δ

4 − 4δ

]

→

[

0,min

{

δ

4δ − 4
,

∆

4∆ − 6

}]
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such that RSB is winning against any cop strategy if f(tr) < tc ≤ min{ δ
4δ−4 ,

∆
4∆−6}, and CSB is winning

against RSB if 0 ≤ tc < f(tr).

This function is monotonically increasing and strictly convex, f(0) = 0, f( δ
4−4δ ) = min

{

δ
4δ−4 ,

∆
4∆−6

}

,

and f ′(0) = 2
∆−1 .

Proof. If we let G(x) = (1−ax)(1−bx)
(1−cx) then G′(x) = − b(1−ax)

1−cx − (a−c)(1−bx)
(1−cx)2 and G′′(x) = 2(a−c)(b−c)

(1−cx)3 provided

that x 6= c.
For fixed x, δ, and ∆ this implies that the expression

F (x, y) =

(

1 − 4δ−4
δ x

) (

1 − 6
∆x

)

1 −
(

4δ−4
δ − 2

∆

)

x
−

(

1 − 4δ−4
δ y

) (

1 − 4∆−6
∆ y

)

1 −
(

4δ−4
δ − 2

∆

)

y

is monotonically increasing for y in the interval
[

0,min
{

δ
4δ−4 ,

∆
4∆−6

}]

. It is not hard to check that F (x, 0) ≤

0 and F
(

x,min
{

δ
4δ−4 ,

∆
4∆−6

})

≥ 0 for x ∈
[

0, δ
4−4δ

]

. Hence the equation F (x, f(x)) = 0 defines a unique

function f(x). By Theorem 4.6 this function has the property that if f(tr) < tc ≤ min{ δ
4δ−4 ,

∆
4∆−6}, then

RSB is winning against any cop strategy, and if 0 ≤ tc < f(tr), then CSB is winning against RSB.
To see that f is monotonically increasing, recall that

f ′(x0) = −
Fx

Fy
,

where the partial derivatives are evaluated at the point (x0, f(x0)). The partial derivatives have the form
±G′ from above for suitable values of a, b, and c (depending on δ and ∆), and it is not hard to see that
Fx(x0, y0) is positive and Fy(x0, y0) is negative for all pairs

(x0, y0) ∈

(

0,
δ

4δ − 4

)

×

(

0,min

{

δ

4δ − 4
,

∆

4∆ − 6

})

.

To show convexity, recall that

f ′′(x0) =
−F 2

yFxx + 2FxFyFxy − F 2
xFyy

F 3
y

.

Note that the mixed second derivative Fxy is always zero and that the denominator F 3
y is always negative.

Moreover Fxx and Fyy have the form ±G′′ from above for suitable values of a, b, and c, and again it is not
hard to see that for all values of (x0, y0) in our range we have Fxx(x0, y0) ≥ 0 (with equality if δ = 2 and
∆ = 4, here we are using the assumption that ∆ ≥ 4), and Fyy(x0, y0) > 0.

Finally note that

F (0, 0) = F

(

δ

4δ − 4
,min

{

δ

4δ − 4
,

∆

4∆ − 6

})

= 0,

and thus f(0) = 0, and f( δ
4−4δ ) = min

{

δ
4δ−4 ,

∆
4∆−6

}

as claimed. Moreover, evaluating f ′(x0) = −Fx

Fy
at

x0 = f(x0) = 0 gives 2
∆−1 . �

We are now ready to prove Theorem 4.2. Before we do so, let us recall the statement of this theorem.

Theorem 4.2. Consider the game on X(∆, δ) with ∆ ≥ 4. There is some t0 ∈ [0, δ
4(δ−1) ] such that

(1) if tr ≤ t0 and the robber wins against every cop strategy by playing RSA for some given value tc,
then they also win by playing RSB, and

(2) if tr > t0 and the robber wins against every cop strategy by playing RSB for some given value tc,
then they also win by playing RSA.

If δ = 2, then t0 = 1
2 . If 2δ ≥ ∆ + 1, then t0 = 0. Otherwise the value of t0 lies strictly between 0 and 1

2 and
can be determined by solving a quadratic equation.

Proof. First note that if tr = 0, then by Proposition 4.8 the strategies RSA and RSB are both winning
against any cop strategy for tc > 0 and both losing against CS for tc = 0. If tr > δ

4δ−4 and RSB is winning
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for a given value tc, then by Proposition 4.7 so is RSA. In particular, if the theorem is true for tr ∈ (0, δ
4δ−4 ],

then it is true for tr ∈ [0, 1
2 ].

Throughout the rest of this proof, assume that 0 < tr ≤ δ
4δ−4 . Denote by f(x) the function provided by

Lemma 4.9, and let g(x) = x
δ−1 . Observe that f(0) = g(0) = 0. By Theorem 4.4, RSA is winning against

every possible cop strategy if and only if tc > g(tr), otherwise it loses against CS. By Lemma 4.9, RSB is
winning against every cop strategy if tc > f(tr) and losing against CSB if tc < f(tr).

If δ = 2, then δ
4δ−4 = 1

2 . By Lemma 4.9 we have that f(12 ) = min{ 1
2 ,

∆
4∆−6} and since ∆ ≥ 4 this is

strictly less than g(12 ) = 1
2 . By convexity of f this implies that f(x) < g(x) for x ∈ (0, 1

2 ) and thus if RSA
is winning against every cop strategy for a given value tc, then so is RSB.

Now assume that δ ≥ 3. In this case f( δ
4δ−4 ) > 1

4 ≥ g( δ
4δ−4 ). If 2δ ≥ ∆ + 1, then f ′(0) ≥ g′(0) and strict

convexity of f implies that f(x) > g(x) for every x ∈ (0, δ
4δ−4 ]. This in particular implies that if tr > 0

and RSB is winning against every cop strategy for a given value tc, then so is RSA. Finally, if 2δ < ∆ + 1,
then f ′(0) < g′(0), and consequently there is a unique t0 ∈ (0, δ

4δ−4 ] such that f(x) ≤ g(x) for x ≤ t0 and

f(x) > g(x) for x > t0. This implies that if tr ≤ t0 and RSA is winning against every cop strategy for a
given value tc, then so is RSB, and if tr > t0 and RSB is winning against every cop strategy for a given value
tc, then so is RSA.

Recall that f(x) is the unique solution to the equation F (x, f(x)) = 0, where

F (x, y) =

(

1 − 4δ−4
δ x

) (

1 − 6
∆x

)

1 −
(

4δ−4
δ − 2

∆

)

x
−

(

1 − 4δ−4
δ y

) (

1 − 4∆−6
∆ y

)

1 −
(

4δ−4
δ − 2

∆

)

y
.

Since t0 is a solution of f(x) = g(x), we can find its value by solving the equation F (x, x
δ−1 ) = 0 for x, which

gives a quadratic equation in x as claimed. �

In Figure 3 we compare the efficacy of the robber’s dualing strategies on X(∆, δ) for ∆ = 7 and δ ∈
{2, 3, 4, 5}. The dashed lines are at tc = δ

4δ−4 and tr = δ
4δ−4 , respectively; the dotted line is at tc = ∆

4∆−6 .

The red and blue lines are the graphs of the functions f and g from the proof of Theorem 4.2; if for tr < δ
4δ−4

the point (tr, tc) lies above the blue line, then strategy RSA is winning against every cop strategy, and if it
lies above the red line RSB is winning against every cop strategy.

5. Future Directions and Open Problems

It seems intuitively clear that on any tree, the cop’s optimal strategy is to always move in the direction
of the robber, but we were unable to provide a proof nor could we find a counterexample through the tools
we used in our arguments. Hence we pose the following problems, which might be solved via a different
perspective or with a different set of mathematical tools than those used in this manuscript.

Problem 5.1. Prove or provide a counterexample to the following statement: On any tree, the cop’s optimal
strategy is to always move in the direction of the robber.

Problem 5.2. Prove or provide a counterexample to the following statement: On any graph, if the cop has
a winning strategy, then they also have a winning strategy which is “monotone” in the sense that the cop
never purposefully increases the distance between them and the robber.

We conjecture that the statement in Problem 5.1 is true, and there is likely a counterexample to the
statement in Problem 5.2.

On the grid graph, we have shown that the cop’s choice of strategy has an impact on whether they win
when c > r, but that if the robber employs any strategy that increases the distance between them and the
cop, then they are equally likely to win when r > c. On the X(∆, δ) trees, the cop’s intuitive strategy is
to decrease the distance between them and the robber in each step, but the robber’s strategy depends on
conditions relating the proportion of sober cop and robber moves to ∆ and δ. These examples lead us to
ask, whether there any graphs that restrict the strategies of both players at the same time.

Problem 5.3. Are there graphs where the cop and robber each have multiple strategies they could employ
where each of these strategies is clearly better depending on specific conditions on c and r?
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Figure 3. Comparing the efficacy of the robber’s dualing strategies on X(∆, δ) for ∆ = 7
and δ ∈ {2, 3, 4, 5}.

Recently, Songsuwan, Jiarasuksakun, Tanghanawatsakul, and Kaemawichanurat calculated the expected
capture time of the game on the n-dimensional grid graph with the robber’s tipsiness being 1 and the cop’s
tipsiness being 0 [19]. We think that it might be possible to refine our proof techniques to calculate the
expected capture times for other tipsiness parameters as well.

Problem 5.4. Calculate the expected capture time on n-dimensional grid graphs for other tipsiness values.

In this paper, we have studied one of several interesting notions of tipsiness. A particularly interesting
generalization is a model where the cop and the robber become ‘more aware’ of each others’ presence when
their distance is small, that is, they are more likely to play according to their strategies when the opposing
player is nearby.

Problem 5.5. Study models where the tipsiness parameters increase with the distance between the cop and
the robber. What can be said about optimal strategies and capture times? Do the results depend on how
quickly the tipsiness parameters increase (compared to the dimension of the grid or to one another)?

In this manuscript we focus on infinite graphs, but there are also many interesting questions regarding
the game on finite graphs. A very natural question to ask is the ‘cost of drunkenness’: how does the capture
time depend on the tipsiness of either player?

Problem 5.6. On finite graphs, by how much can the expected capture time differ from the capture time
in the deterministic game? What is the best strategy for a sober robber against a drunk cop on a finite tree,
for instance a full binary tree of depth k? What about other tipsiness parameters for both players?
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