
ar
X

iv
:2

00
6.

02
08

9v
1 

 [
m

at
h.

C
O

] 
 3

 J
un

 2
02

0

COMBINATORIAL HOPF ALGEBRAS IN NONCOMMUTATIVE

PROBABILILITY

FRANZ LEHNER, JEAN-CHRISTOPHE NOVELLI AND JEAN-YVES THIBON

Abstract. We prove that the generalized moment-cumulant relations introduced
in [arXiv:1711.00219] are given by the action of the Eulerian idempotents on the
Solomon-Tits algebras, whose direct sum builds up the Hopf algebra of Word
Quasi-Symmetric Functions WQSym. We prove t-analogues of these identities
(in which the coefficient of t gives back the original version), and a similar t-
analogue of Goldberg’s formula for the coefficients of the Hausdorff series. This
amounts to the determination of the action of all the Eulerian idempotents on a
product of exponentials.

1. Introduction

The relation between moments mn = E(Xn) and classical cumulants Kn(X) of a
random variable X , encoded in the exponential generating functions

(1.1)
∑

n≥0

mn

tn

n!
= exp

(

∑

n≥1

Kn

tn

n!

)

is, up to a rescaling by factorials, essentially the same as the relation between com-
plete symmetric functions hn and the power sum symmetric functions pn

(1.2)
∑

n≥0

hnt
n = exp

(

∑

n≥1

pn
n
tn

)

.

Hence we can define a character on the Hopf algebra of symmetric functions Sym
by setting

(1.3) χX(hn) =
1

n!
E(Xn).

Then, the cumulants are given by

(1.4) Kn(X) = χX

(

pn
(n− 1)!

)

and the property that Kn(X + Y ) = Kn(X) + Kn(Y ) whenever X and Y are
independent random variables corresponds in this context to the fact that the power-
sums are primitive elements for the coproduct (2.4).
In a more general setting, with a sequence (Xi)i≥1 of random variables, one can

define multilinear moments

(1.5) mn := E(X1X2 · · ·Xn).
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Stochastic independence can then be algebraically reformulated in terms of subal-
gebras of the algebra X of random variables. A family (Xi)i∈I of subalgebras of X
is said to be independent if the factorization

(1.6) E(X1X2 · · ·Xn) =
∏

B∈π

E

(

∏

i∈B

Xi

)

for any partition π of [n] such that for each block B of π, the Xi for i ∈ B are in the
same subalgebra Xj(B) (and j(B) 6= j(B′) for B 6= B′). The multivariate classical
cumulants are then defined as

(1.7) Kn(X1, X2, . . . , Xn) =
∂

∂t1

∂

∂t2
· · ·

∂

∂tn

∣

∣

∣

∣

t=0

E et1X1+t2X2+···+tnXn

which coincides with (1.1) when X1 = X2 = · · · = Xn = X . These cumulants are
multilinear maps Kn(X1, . . . , Xn) whose fundamental property, generalizing (1.4),
is that mixed cumulants vanish in the sense that Kn(X1, X2, . . . , Xn) = 0 whenever
at least two independent subalgebras occur.
In noncommutative probability, the Xi belong to some noncommutative algebra

A, and new notions of independence arise, for which the factorization of the mo-
ments (1.6) is replaced by other identities. Each notion of independence gives rise
to appropriate version of cumulants, such that the vanishing mixed cumulants (or
some weaker condition as in the case of monotone independence) characterizes in-
dependence.
In order to give a unified treatment of all these independences, the notions of

exchangeability system [Leh04] and of spreadability system [HL17] have been intro-
duced. A spreadability system for a noncommutative probability space (A, ϕ) allows
to produce independent copies X(i) of the random variables, and to formulate in-

dependence in terms of identities satisfied by the moments ϕ(X
(i1)
1 X

(i2)
2 · · ·X

(in)
n ).

It is in particular assumed that this quantity depends only on the packed word
u = pack(i1i2 · · · in) (or ordered set partition [HL17]). This implies that for a spread-
ability system, any choice of a sequence (Xi) of random variables determines a linear
form on an appropriate Hopf algebra based on packed words, namely, WQSym∗,
the graded dual of Word Quasi-Symmetric functions, also known as quasi-symmetric
functions in noncommuting variables [NT06, BZ09, DHNT11]. WQSym is a non-
commutative version of the algebra of quasi-symmetric functions. As shown by
Hivert [Hiv00], the quasi-symmetric polynomials are actually the invariants of a very
peculiar action of the symmetric group Sn on polynomials in n variables, called the
quasi-symmetrizing action. This action can be extended to polynomials in noncom-
muting variables [DHNT11], and letting n tend to infinity, the algebra of invariants
acquires a Hopf algebra structure, just as in the case of symmetric polynomials.
It turns out that the homogenous component of degree n of its graded dual,

WQSym∗n, can be identified with the Solomon-Tits algebra of Sn, and that this
identification is compatible with that of Symn, the space of noncommutative sym-
metric functions of degree n, with the ordinary Solomon descent algebra. That is,
there is an embedding of Hopf algebras Sym →֒ WQSym∗ which is compatible
with the internal products.
The moment-cumulant relations of [HL17] actually describe the relation between

the natural basis Nu of WQSym∗ and its internal product with the Eulerian idem-
potents of the descent algebra Symn.
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We provide simple conceptual proofs of most of the identities of [HL17], and give
a complete description of the action of the Eulerian idempotents on WQSym∗.
As shown in [FPT16], the celebrated Goldberg formula for the coefficients of the
Hausdorff series

(1.8) H(a1, a2, . . .) = log(ea1ea2 · · · ) =
∑

w∈A∗

cww

amounts to a description of the action of the first Eulerian idempotent onWQSym∗.
Our results allow us to compute the coefficients of the expansion

(1.9) (ea1ea2 · · · )t =
∑

w∈A∗

cw(t)w

in which the Hausdorff series is the coefficient of t.

2. Background

In this section, we recall the basic definitions of the various Hopf algebras in-
volved in the sequel: ordinary (Sym) and noncommutative (Sym) symmetric func-
tions, word quasi-symmetric functions (WQSym) and word symmetric functions
(WSym).
Given a sequence (Xi) of random variables, the moments ϕ(X1 · · ·Xn) determine

a character of Sym. We shall see that the the structures introduced in [Leh04,
HL17] allow to extend this character to a linear map of WQSym (in the case of
spreadability systems) or WSym (in the case of exchangeability systems).

2.1. Ordinary symmetric functions. Let X = {xi|i ≥ 1} be an infinite set of
commuting variables. The complete homogeneous functions hn(X) and the elemen-
tary symmetric functions en(X) are

(2.1) hn(X) =
∑

i1≤i2≤···≤in

xi1xi2 . . . xin

that is, is the sum of all monomials of total degree n, and

(2.2) en(X) =
∑

i1<i2<···<in

xinxin−1 . . . xi1

is the sum of all products of n distinct variables. These functions are invariant
under permutation of the variables and both sequences freely generate the algebra
Sym(X) of symmetric functions

(2.3) Sym = K[h1, h2, . . .] = K[e1, e2, . . .].

We can thus define a coproduct

(2.4) ∆hn =

n
∑

k=0

hk ⊗ hn−k

which endows it with the structure of a graded Hopf algebra. Given a second
alphabet Y disjoint from X , and identifying a tensor product f ⊗ g with f(X)g(Y ),
the coproduct is given by ∆(f) = f(X + Y ), where by X + Y we denote the (still
countable) union of the alphabets X and Y . It can be shown that Sym is self-dual.
Its primitive elements are the power-sums pn =

∑

i x
n
i , which also generate Sym

over the rationals.
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For a partition µ = (1m12m2 · · ·nmn) of n, define

(2.5) pµ =

n
∏

i=1

pmi

i and zµ =

n
∏

i=1

imimi!.

Each homogeneous component Symn is endowed with a unique internal product ∗
by declaring the elements pµ

zµ
to be orthogonal idempotents.

2.2. Classical cumulants. The classical cumulants Kn of a random variable X are
related to its moments mn = E[Xn] by

(2.6)
∑

n≥0

mn

tn

n!
= exp

(

∑

n≥1

Kn

tn

n!

)

which differs from the relations between complete homogeneous symmetric functions
hn and power-sums pn by a simple rescaling:

(2.7)
∑

n≥0

hnt
n = exp

(

∑

n≥1

pn
n
tn

)

.

Identifying mn with n!hn, the cumulants Kn become identified with (n−1)!pn. A
random variable X determines a character χX of the algebra of symmetric functions,
by defining

(2.8) χX(hn) =
mn

n!
⇐⇒ χX(pn) =

Kn

(n− 1)!
.

A convenient symbolic notation for characters of Sym is that of virtual alphabets:
given a sequence of algebraic generators gn of Sym (such as hn, pn, en, . . .), one
denotes χ(gn) by gn(X), where the symbol X is called the virtual alphabet associated
with χ. Then, if η is another character whose virtual alphabet is Y, the convolution
χ ⋆ η := (χ⊗ η) ◦∆ is given by

(2.9) (χ ⋆ η)(f) = f(X+ Y).

On can thus associate with each random variable X a virtual alphabet X, such that
mn(X) = n!hn(X). If X and Y are independent, then

(2.10) χX+Y (hn) =
mn(X + Y )

n!
= hn(X+ Y) = (χX ⊗ χY )∆hn,

that is, χX+Y is the convolution of χX and χY . The additivity of cumulants on
independent variables corresponds to the fact that the power-sums are primitive
elements. This can be seen as another incarnation of the Hopf-algebraic version of
the umbral calculus [JR79].

Example 2.1 (The formula of Good and Cartier). Let Y = Ω = {1, ω, . . . , ωn−1}
be the alphabet of n-th roots of unity. These are the roots of the polynomial xn−1.
Using the factorization xn− 1 = (x− 1)(1+x+ · · ·+xn−1) we see that all the roots
ωk for 1 ≤ k ≤ n − 1 are roots of the second factor and therefore pk(Ω) = 0 for
1 ≤ k ≤ n− 1, whereas pn(Ω) = n. Thus we have

(2.11) hn(ΩX) =
∑

λ⊢n

pλ(Ω) pλ(X)

zλ
= pn(X).
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Identifying as above mn with n!hn, Kn becomes identified with (n − 1)!pn, and
we obtain the formula

(2.12) nKn = E[(X(1) + ωX(2) + · · ·+ ω(n−1)X(n))n],

known as Good’s formula in the mathematics literature [Goo75] and Cartier’s for-
mula for Ursell functions in the physics literature [Per75, Sim93].

2.3. Noncommutative symmetric functions. Let A = {ai|i ≥ 1} be an infinite
totally ordered set of noncommuting variables. We set

(2.13) Sn(A) =
∑

i1≤i2≤···≤in

ai1ai2 . . . ain

and

(2.14) Λn(A) =
∑

i1<i2<···<in

ainain−1 . . . ai1

and call them respectively noncommutative complete functions and noncommutative
elementary functions of A.
The Sn(A) freely generate a subalgebra of the formal power series over A which

is denoted by Sym(A) and called noncommutative symmetric functions [GKL+95].
The Sn(A) and Λn(A) have the simple noncommutative generating series

(2.15) σt(A) :=
∑

n≥0

tnSn(A) =

→
∏

i≥1

(1− tai)
−1

and

(2.16) λ−t(A) :=
∑

n≥0

(−t)nΛn(A) =
←
∏

i≥1

(1− tai) = σt(A)
−1

where we have set S0 = Λ0 = 1, and t is an indeterminate commuting with A. We
shall almost always forget about the alphabet A since the context is generally clear.
From the generators Sn, we can form a linear basis

(2.17) SI = Si1Si2 · · ·Sir

of the homogeneous component Symn, parametrized by integer compositions of n.
The dimension of Symn is thus 2n−1 for n ≥ 1.
The coproduct

(2.18) ∆Sn =

n
∑

k=0

Sk ⊗ Sn−k

endows Sym with the structure of a graded Hopf algebra. Since this coproduct
is clearly cocommutative, Sym cannot be self-dual. Its graded dual is QSym, the
algebra of quasi-symmetric functions [GKL+95]. The dual basis of SI is the quasi-
monomial basis MI of QSym.
The map Sn 7→ hn is a morphism of Hopf algebras Sym → Sym, dual to the

natural embedding of Sym into QSym.
Each homogeneous component Symn is endowed with an internal product ∗ for

which Symn is anti-isomophic to the Solomon descent algebra Σn of Sn. The basis
element SI is identified with the formal sum of all permutations whose descent
composition is coarser than I.
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Finally, the primitive elements of Sym span a free Lie algebra, generated by the
Φn defined by

(2.19)
∑

n≥1

Φn

n
= log

(

∑

n≥0

Sn

)

.

The ϕn := 1
n
Φn are idempotents for the internal product. These are the Solomon

idempotents, also called (first) Eulerian idempotents.

2.4. Cumulants in noncommutative probability. A noncommutative probabil-
ity space is a pair (A, ϕ) where A in a unital algebra and ϕ a linear form, (or more
generally a linear map A → B for some algebra B such that A is a B-module) such
that ϕ(1) = 1.
Elements of A are called random variables. To define moments in this context,

we need an infinite sequence (Xi)i≥1 of random variables. Then, the moments are

(2.20) mn := ϕ(X1X2 · · ·Xn).

Such a sequence determines a character ϕ̂ of Sym by setting

(2.21) ϕ̂(Sn) = mn

(we drop the factorials which are irrelevant in this context).
Cumulants are defined with respect to a notion of independence, leading to several

notions such as free, monotone, or boolean cumulants, and many others.
Attempts to give a unified treatment of all these notions have led to the intro-

duction [Leh04] of the notion of exchangeability systems, and later [HL17] of the
more general notion of spreadability systems. The interpretation of this formal-
ism in terms of combinatorial Hopf algebras requires the introduction of WQSym

(Word Quasi-Symmetric functions) and its dual WQSym∗. A spreadability system
determines an extension of the character ϕ̂ to WQSym∗, and the various notions
of independence reflect certain symmetries of this extension.

2.5. Word quasi-symmetric functions. The packed word u = pack(w) associ-
ated with a word w ∈ A∗ is obtained by the following process. If b1 < b2 < . . . < br
are the letters occuring in w, u is the image of w by the homomorphism bi 7→ ai.
We usually represent ai by i in the indexation of bases.
A word u is said to be packed if pack(u) = u. We denote by PW the set of packed

words. With such a word, we associate the “polynomial”

(2.22) Mu :=
∑

pack(w)=u

w .

For example, restricting A to the first five integers,

M13132 = 13132 + 14142 + 14143 + 24243

+ 15152 + 15153 + 25253 + 15154 + 25254 + 35354.
(2.23)

For a word w ∈ A∗ and a letter a ∈ A we denote by |w|a the number of occurences
of the a in w. The evaluation ev(w) is then the vector obtained from the sequence
(|w|a)a∈A by removing all zeros.
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Under the abelianization χ : K〈A〉 → K[X ], the Mu are mapped to the monomial
quasi-symmetric functions

(2.24) MI :=
∑

j1<j2<···<jr

xi1j1x
i2
j2
· · ·xirjr ,

where ev(u) = (i1, . . . , ir) is the evaluation vector of u.
The Mu span a subalgebra of K〈A〉, called WQSym for Word Quasi-Symmetric

functions, consisting in the invariants of the noncommutative version of Hivert’s
quasi-symmetrizing action [Hiv00, DHNT11].
Packed words can be naturally identified with ordered set partitions, the letter ai

at the jth position meaning that j belongs to block i. For example,

(2.25) u = 313144132 ↔ Π = ({2, 4, 7}, {9}, {1, 3, 8}, {5, 6}) .

Let Nu ∈ WQSym∗ be the dual basis of Mu. Define an internal product on
WQSym∗n by [NT06]

(2.26) Nu ∗Nv = Npack (uv)
,

where
(

u

v

)

denotes the word in biletters
(

ui

vi

)

, lexicographically ordered with priority
to the top letter. For example,

pack

(

1 2 1 1 3 1

2 2 1 3 1 1

)

= 241351

Then,

Proposition 2.2. (WQSym∗, ∗) is anti-isomorphic to the Solomon-Tits algebra.

Indeed, if one writes u = {s′1, . . . , s
′
k} and v = {s′′1, . . . , s

′′
l } as ordered set parti-

tions, then the packed word w = pack
(

u

v

)

corresponds to the ordered set partition
obtained from

(2.27) {s′1 ∩ s
′′
1, s
′
1 ∩ s

′′
2, . . . , s

′
1 ∩ s

′′
l , s
′
2 ∩ s

′′
1, . . . , s

′
k ∩ s

′′
l }.

Finally,

(2.28) SI =
∑

ev(u)=I

Nu

defines an embedding of Hopf algebras compatible with the internal product ∗, that
is, inducing the standard embedding of the descent algebra into the Solomon-Tits
algebra.

2.6. Spreadability systems and exchangeability systems. A spreadability sys-
tem for (A, ϕ) is a triple (U , ϕ̃, (I(i))), where (U , ϕ̃) is a B-valued noncommutative
probablility space, I(i) is a morphism A → U such that ϕ = ϕ̃ ◦ I(i) for all i, and,
setting X(j) := I(j)(X),

(2.29) ϕ̃(X
(i1)
1 X

(i2)
2 · · ·X(in)

n ) = ϕ̃(X
(j1)
1 X

(j2)
2 · · ·X(jn)

n )

whenever pack(i1 · · · in) = pack(j1 · · · jn).
Thus, for each sequence (Xi)i≥1 of random variables in A, a spreadability system

determines a linear map ϕ̂ : WQSym∗ → B by

(2.30) ϕ̂(Nu) := ϕ(X
(u1)
1 · · ·X(un)

n ).
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In [HL17], this is denoted by ϕπ(X1 · · ·Xn), where π is the ordered set partition
encoded by the packed word u.
The notion of S-independence [HL17] can be reformulated in terms of the internal

product of WQSym∗. A family of subalgebras Ai is S-independent if, when Xj ∈
Avj ,

(2.31) ϕ̂(Nu) = ϕ̂(Nu ∗Nv).

An exchangeability system is a spreadability system satisfying

(2.32) ϕ̂(Nσ(u)) = ϕ̂(Nu)).

for all permutations σ of the alphabet of u. In this case, ϕ̂ can be interpreted as a
character of WSym∗, an algebra based on set partitions, to be defined below.

2.7. Symmetric functions in noncommuting variables. Let A be an alphabet,
then every permutation σ ∈ S(A) gives rise to an automorphism on the free algebra
K〈A〉. Two words u = u1 · · ·un and v = v1 · · · vn are in the same orbit whenever
ui = uj ⇔ vi = vj . Thus, the orbits are in one-to-one correspondence with set
partitions into at most |A| blocks. Assuming as above that A is infinite, we obtain
an algebra based on all set partitions, defining the monomial basis by

(2.33) mπ(A) =
∑

w∈Oπ

w

where Oπ is the set of words such that wi = wj iff i and j are in the same block of
π.
One can introduce a bialgebra structure by means of the coproduct

(2.34) ∆f(A) = f(A′ + A′′)

where A′ + A′′ denotes the disjoint union of two mutually commuting copies of A.
Again, the coproduct of a monomial function is clearly

(2.35) ∆mπ =
∑

π′∨π′′=π

mstd(π′) ⊗mstd(π′′)

This coproduct is obviously cocommutative.
Let ≤ be the reverse refinement order on set partitions (π ≤ π′ means that π is

coarser than π′, i.e. that its blocks are union of blocks of π′)1.
The basis Φπ, defined by sums over initial intervals

(2.36) Φπ =
∑

π′≤π

mπ′

is multiplicative with respect to concatenation of set partitions and hence WSym

is freely generated by the elements Φπ such that π is irreducible, i.e., the coarsest
interval partition dominating π has only one block.
The graded dual of WSym is a commutative algebra, isomorphic to the algebra

ΠQSym defined in [HNT08, Sec 3.5.1]. Let Nπ be the dual basis of mπ in the
(commutative) graded dual WSym∗ ≃ ΠQSym and let φπ be the dual basis of Φπ.
Then,

(2.37) Nπ′ =
∑

π≥π′

φπ.

1We need this reverse order to be compatible with the usual conventions for symmetric functions.
We reserve the notation � for the usual order on set partitions.
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WSym∗ is a quotient of WQSym∗, defined by Nu ≡ Nv iff u = σ(v) for some
permutation σ of the alphabet of u (e.g., N121 ≡ N212). Equivalence classes are
parametrized by the set partitions corresponding to any of the set compositions
encoded by equivalent packed words. The internal product of WQSym∗ descends
to an internal product on WSym∗, which is given by the meet of the lattice of set
partitions:

(2.38) Nπ ∗Nτ = Nπ∧τ

where π ∧ τ is the coarsest partition which is finer than π and τ .
For an echangeability system, the notion of E-independence translates as

(2.39) ϕ̂(Nπ) = ϕ̂(Nπ ∗Nτ )

under the same hypotheses as in (2.31).
Endowed with this product, the homogenous component WSym∗n is known as

the Moebius algebra of the partition lattice Πn [Sol67, Gre73]. It has been shown by
Solomon that {φπ|π ∈ Πn} is a complete set of orthogonal idempotents of WSym∗n.
As a consequence, if π is not the trivial partition {12 . . . n},

(2.40) Nπ ∗ φ{12···n} = 0.

2.8. Noncommutative version of Good’s formula. Although (2.12) is essen-
tially trivial, it has a not-so-trivial noncommutative analogue in noncommutative
symmetric functions. It is proved in [KLT97, Prop. 8.6] that

(2.41) Sn(ΩA) = Kn(ω)

where Kn(ω) is Klyachko’s element, a famous Lie (quasi-) idempotent.
This fact leads to an interesting interpretation of [Leh04, Definition 2.1]. To

understand it, we have to follow the chain of morphisms

(2.42) Sym →֒ WQSym∗ ։ WSym∗ ≃ ΠQsym.

The first embedding i is given by

(2.43) i : SI 7→
∑

ev(u)=I

Nu

where Nu = M∗
u. The projection p onto WSym∗ is dual to the inclusion of WSym

into WQSym, and therefore given by Nu 7→ Nπ, where Nπ is dual to the monomial
basis of WSym, and π is the set partition underlying the set composition encoded
by u.
In [Leh04], cumulants for an exchangeability system are defined by a noncommu-

tative analogue of Good’s formula. We shall see that they can be interpreted as the
image of (n− 1)!Kn(ω) under the composition ξ = p ◦ i of these two maps.
Since ξ is valued in a commutative algebra, it factors through Sym(X), and all

noncommutative power sums have the same image. The choice of Klyachko’s element
is therefore arbitrary.
It remains to determine its image. Let Φπ =

∑

π≤τ Mτ be the power-sum basis of
WSym, and let φπ be its dual basis. Under the commutative image map

(2.44) χ : WSym(A) ։ Sym(X)
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given by f(A) 7→ f(X), we have

(2.45) Mπ(A) 7→
∏

i

mi(λ)! ·mλ(X)

where λ is the integer partition associated with π, mλ(X) is the monomial symmetric
function, mi(λ) is the multiplicity of the part i in λ, and

(2.46) Φπ(A) 7→ pλ(X).

Dually,

(2.47) χ∗(hλ) =
∏

i

mi(λ)!
∑

Λ(π)=λ

Nπ,

and

(2.48) χ∗(pλ) = zλ
∑

Λ(π)=λ

φπ.

The image of any Lie idempotent of Sym in WSym∗ is therefore the same as that
of ϕn = 1

n
Φn, which is

(2.49) ϕn =
∑

I�n

(−1)ℓ(I)−1

ℓ(I)
SI 7→

∑

|u|=n

(−1)max(u)−1

max(u)
Nu 7→

∑

π⊢[n]

(−1)ℓ(π)−1

ℓ(π)
ℓ(π)!Nπ.

Since this must also be equal to

(2.50) χ∗(
1

n
pn) = φ{1,2,...,n},

and since, by definition of the Moebius function of the lattice of partitions

(2.51) φ{1,2,...,n} =
∑

π⊢[n]

µ(π, 1̂n)Nπ

we recover the classical fact that

(2.52) µ(π, 1̂n) = (−1)ℓ(π)−1(ℓ(π)− 1)!

by merely contemplating a chain of morphisms.

2.9. Cumulants for exchangeability systems. An exchangeability system to-
gether with a sequence (Xi)i≥1 determines a linear form ϕ̂ on WSym∗

(2.53) ϕ̂(Nπ) := ϕ(X
(u1)
1 · · ·X(un)

n ).

where u is any packed word representing the set partition π.
The partitioned moments are

(2.54) ϕπ(X1 · · ·Xn) = ϕ̂(Nπ),

and the cumulants defined in [Leh04] are

(2.55) Kπ(X1, . . . , Xn) = ϕ̂(φπ).

By (2.37), we have [Leh04, Prop. 2.7]

(2.56) ϕπ(X1, . . . , Xn) =
∑

π≤σ

Kσ(X1, . . . , Xn).

The independence condition defined by (2.31) becomes, for exchangeability systems

(2.57) ϕ̂(Nπ) = ϕ̂(Nπ ∗Nσ) = ϕ̂(Nπ∧σ).
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This implies the vanishing of mixed cumulants: if π is a partition if [n] into two
nontrivial blocks b1, b2 such that {Xi|i ∈ b1} and {Xi|i ∈ b2} are independent, then
the cumulant

(2.58) Kn(X1, . . . , Xn) = ϕ̂(φ1n) = ϕ̂(Nπ ∗ φ1n) = 0

by (2.40).
Monotone independence is not a special case of E-independence, but can be recov-

ered from the notion of S-independence. In this case, the requirement that mixed
cumulants vanish is too strong, and is replaced by the condition that they should
be eigenfunctions of Rota’s dot multiplication by and integer:

(2.59) Ku(N.X1, . . . , N.Xn) = Nmax(u)Ku(X1, . . . , Xn)

where u is a packed word, and N.X = X(1)+ · · ·+X(N) is the sum of N independent
copies of X .
We shall see that the dot operation translates as multiplication of the alphabet

by N in the relevant Hopf algebras. The operator f(A) 7→ f(NA) is semisimple,
and its spectral projectors are know as the Eulerian idempotents.

3. Review of the Eulerian algebra

3.1. Basics. The Eulerian algebra is a commutative subalgebra of dimension n of
the group algebra of the symmetric group Sn, and in fact of its descent algebra
Σn. It was apparently first introduced in [BBMP69] under the name algebra of
permutors2. It is spanned by the Eulerian idempotents, or, equivalently, by the
sums of permutations having the same number of descents.
It is easier to work with all symmetric groups at the same time, with the help of

generating functions. Recall that the algebra of noncommutative symmetric func-
tions Sym is endowed with an internal product ∗, for which each homogeneous
component Symn is anti-isomorphic to Σn [GKL+95, Section 5.1].

The Eulerian idempotents E
[k]
n are the homogenous components of degree n in the

series E[k] defined by

(3.1) σt(A)
x =

∑

k≥0

xkE[k](A),

(see [GKL+95, Section 5.3]). We have

(3.2) E[k]
n ∗ E[l]

n = δklE
[k]
n , and

n
∑

k=1

E[k]
n = Sn,

so that the E
[k]
n span a commutative n-dimensional ∗-subalgebra of Symn, denoted

by En and called the Eulerian subalgebra.

3.2. Noncommutative Eulerian polynomials. The noncommutative Eulerian
polynomials are defined by [GKL+95, Section 5.4]

(3.3) An(t) =
n
∑

k=1

tk
(

∑

|I|=n
ℓ(I)=k

RI

)

=
n
∑

k=1

A(n, k) tk ,

2 A self-contained and elementary presentation of the main results of [BBMP69] can be found
in [GKL+95].
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where RI is the ribbon basis [GKL+95, Section 3.2] The following facts can be found
(up to a few misprints3) in [GKL+95]. The generating series of the An(t) is

(3.4) A(t) :=
∑

n≥0

An(t) = (1− t) (1− t σ1−t)
−1 ,

where σ1−t =
∑

(1− t)nSn.

Let A∗n(t) = (1− t)−n An(t). Then,

(3.5) A∗(t) :=
∑

n≥0

A∗n(t) =
∑

I

(

t

1− t

)ℓ(I)

SI .

This last formula can also be written in the form

(3.6) A∗(t) =
∑

k≥0

(

t

1− t

)k

(S1 + S2 + S3 + · · · )k

or

(3.7)
1

1− t σ1(A)
=
∑

n≥0

An(t)

(1− t)n+1
.

Let S [k] = σ1(A)
k be the coefficient of tk in this series. In degree n,

(3.8) S [k]
n =

∑

I�n,ℓ(I)≤k

(

k

ℓ(I)

)

SI =

n
∑

i=1

kiE[i]
n .

This is another basis of En. Expanding the factors (1 − t)−(n+1) in the right-hand
side of (3.7) by the binomial theorem, and taking the coefficient of tk in the term of
weight n in both sides, we get

(3.9) S [k]
n =

k
∑

i=0

(

n+ i

i

)

A(n, k − i) .

Conversely,

(3.10)
An(t)

(1− t)n+1
=
∑

k≥0

tk S [k]
n ,

so that

(3.11) A(n, p) =

p
∑

i=0

(−1)i
(

n+ 1

i

)

S [p−i]
n .

The expansion of the E
[k]
n on the basis A(n, i), which is a noncommutative analog

of Worpitzky’s identity (see [Gar90] or [Lod89]) is

(3.12)
n
∑

k=1

xk E[k]
n =

n
∑

i=1

(

x+ n− i

n

)

A(n, i) .

Indeed, when x is a positive integer N ,

(3.13)

n
∑

k=1

Nk E[k]
n = Sn(NA) =

∑

I�n

FI(N)RI(A)

3 Eqs. (93) and (97) of [GKL+95] should be read as (3.11) and (3.12) of the present paper.
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where FI are the fundamental quasi-symmetric functions, and for a composition
I = (i1, . . . , ir) of n,

(3.14) FI(N) =

(

N + n− r

n

)

.

4. Adams operations of Sym and their substitutes

On any bialgebra H with multiplication µ and comultiplication ∆, one can define
the Adams operations

(4.1) Ψk(x) = µk ◦∆
k(x)

where ∆k is the iterated coproduct with values in H⊗k and µk the multiplication
map H⊗k → H. In other terms, Ψk is the kth convolution power of the identity.
On ordinary symmetric functions, these operations act by multiplication by k of

the alphabet, and are therefore algebra morphisms. However, on noncommutative
symmetric functions, the Ψk are not anymore multiplicative, and therefore of lesser
interest.
One can replace them by the algebra morphism ψk : f(A) 7→ f(kA), which is

diagonalized by the Eulerian idempotents.
Recall that, by definition,

(4.2) σ1(kA) = σ1(A)
k,

and that for any f ∈ Sym,

(4.3) f(kA) = f(A) ∗ σ1(kA) = f(A) ∗
∑

r≥1

krE[r].

Thus, a simultaneous eigenbasis of the ψk is for example

(4.4) KI := SI ∗ E[ℓ(I)]

which satisfy

(4.5) KI(kA) = kℓ(I)KI(A).

The basis KI is actually multiplicative: if I = (i1, . . . , ir),

KI = [kr]SI ∗ σ1(A)
k = [kr]µr[(Si1 ⊗ · · · ⊗ Sir) ∗r (σ1(kA)⊗ · · · ⊗ σ1(kA)](4.6)

= (Si1 ∗ E
[1]) · · · (Sir ∗E

[1]) = Ki1 · · ·Kir .(4.7)

Of course, Si ∗ E
[1]
i = E

[1]
i = 1

i
Φi, so that KI is just a scaled version of the classical

basis ΦI .
Since

(4.8) σ1(kA) = [1 + (S1 + S2 + S3 + · · · )]k =
∑

I

(

k

ℓ(I)

)

SI ,

we have the simple closed form

(4.9) SI(kA) =
∑

J≥I

βk(J, I)S
J ,

where

(4.10) βk(J, I) :=
∏

p

(

k

ℓ(Jp)

)

,
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where J = (J1J2 · · ·Jr) is a concatenation of compositions Jp of weight ip (by defi-
nition of the refinement order).
Applying [GKL+95, Prop. 4.9], we get the expression

(4.11) KI =
∑

J≥I

(−1)ℓ(J)−ℓ(I)

ℓ(J, I)
SJ ,

where ℓ(J, I) =
∏r

p=1 ℓ(Jp).

5. Extension to WQSym∗

The identification of Symn with the (opposite) descent algebra of Sn can be
refined as follows.
We have seen that WQSym∗ can be identified with the (opposite) Solomon-Tits

algebra. The dual basis Nu = M∗
u of the monomial basis of WQSym has the

internal product rule [NT06]

(5.1) Nu ∗Nv = Npack (uv)
,

and the embedding of the Solomon algebra into the Solomon-Tits algebra is given
by the Hopf embedding of Sym into WQSym∗

(5.2) SI 7→
∑

ev(u)=I

Nu.

For example, S21 = N112 +N121 +N211.
In particular, Sn(kA) and the Eulerian idempotents can be interpreted as elements

of WQSym∗n, and one can define a new basis

(5.3) Ku := Nu ∗ E
[r]
n (r = ℓ(ev(u)) = max(u))

which will be a simultaneous eigenbasis for the modified Adams operations ψk(F ) :=
F ∗ (σ1)

k.
The closed expressions given in Sym can be readily extended toWQSym∗ thanks

to the following lemma.

Lemma 5.1. Define a right action of Sn on WQSym∗n by

(5.4) Nu · σ := Nuσ, where uσ = uσ(1)uσ(2) · · ·uσ(n).

Then, for any I � n,

(5.5) Nuσ ∗ S
I = (Nu ∗ S

I) · σ.

Proof – If SI contains Nv, it contains the Nvτ for all permutations τ , and

(5.6) pack

(

uτ

v

)

= pack

(

u

vτ−1

)

· τ.

For example, with u = 111122, v = 212211, τ = 451623, we have uτ = 121211,
vτ−1 = 211212, pack

(

121211
212211

)

= 232411, pack
(

111122
211212

)

= 211234, and 211234τ =
232411.
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This implies4 that (f · σ) ∗ g = (f ∗ g) · σ for all f ∈ WQSym∗n, g ∈ Symn and
σ ∈ Sn.
Hence,

(5.7) ψk(Nu) =
∑

v≥u

βk(v, u)Nv,

where βk(v, u) := βk(ev(v), ev(u)), and

(5.8) Ku =
∑

v≥u

(−1)ℓ(ev(v))−ℓ(ev(u))

ℓ(ev(v), ev(u))
Nv,

where the order on packed words u, v is the reverse refinement order on the corre-
sponding set compositions σ, π.
Given a spreadability system and a sequence (Xi) of random variables, and defin-

ing the linear map ϕ̂ as above by ϕ̂(Nu) = ϕu(X1, . . . , Xn), the cumulants are given
by

(5.9) Ku(X1, . . . , Xn) = ϕ̂(Ku)

and we recover the relations between moments and cumulants of [HL17, Th. 4.7
and 4.8].
By construction,

(5.10) Ku ∗ Sn(NA) = N ℓ(ev(u))Ku

which is [HL17, Th. 4.14]. Indeed, according to [HL17, Definition 4.1], ϕπ(N.X1, . . . , N.Xn) =
ϕ̂(Nu ∗ Sn(NA)).
Adapting the argument given at the end of [DHNT11], one can prove the following

extension of the “splitting formula” of [GKL+95]:

Proposition 5.2. If f1, f2, . . . , fr ∈ WQSym∗ and g ∈ Sym, then

(5.11) (f1f2 · · ·fr) ∗ g = µr[(f1 ⊗ · · · ⊗ fr) ∗r ∆
rg].

The same argument as in (4.6) proves then the following product rule for the Ku:

(5.12) NuNv =
∑

w

cwu,vNw ⇒ KuKv =
∑

w

cwu,vKw.

That is, Nu 7→ Ku is an algebra automorphism.

6. Partial cumulants

The defining formula (2.56) of the cumulants can be inverted using the Möbius
function (2.52), but neither this nor the formula of Cartier and Good (2.12) are
suitable for the efficient calculation of cumulants of higher orders. In the case of
exchangeability systems recursive formulas are available which are more adequate
for this purpose; see [Leh04, Proposition 3.9]. In the classical case, the recursion
reads as follows:

(6.1) K(X1, X2, . . . , Xn) = EX1X2 · · ·Xn −
∑

A$[n]
1∈A

K|A|(Xi : i ∈ A)E
∏

j∈Ac

Xj

4 Incidentally, this also proves the existence of the descent algebra. If one denotes by φ the dual
of the inclusion map FQSym → WQSym, which is given by φ(Nu) = Fstd(u), then φ(SI ∗Nv) =

φ(SI) · std(v), so that φ(SI ∗Nv) = φ(SI) ∗ φ(Nv).
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and in the univariate case it specifies to the familiar formula [RS00]

(6.2) κn = mn −

n−1
∑

k=1

(

n− 1

k − 1

)

κkmn−k.

In the free case it specifies to the free Schwinger-Dyson equation [MS13] and from
the point of view of combinatorial Hopf algebras this has been recently considered
under the name of “splitting process” [EFP16].
Turning to our general setting we note that already in the case of monotone proba-

bility we lack a simple recursive formula; however Hasebe and Saigo [HS11a, HS11b]
found a good replacement in terms of differential equations. This was generalized
to spreadability systems in terms of partial cumulants introduced in [HL17, Section
6] which are the images by ϕ̂ of some interesting elements of WQSym∗ which we
shall study in this section.
We start with the analogous questions in Sym, which are simpler and imply easily

the general results in WQSym∗.
Let T = (t1, . . . , tr) be a sequence of binomial elements (scalars), so that the

noncommutative symmetric functions of tjA are defined by

(6.3) σ1(tjA) := σ1(A)
tj

and the analogs of the formal multivariate moments [HL17, Eq. (6.2)] are

(6.4) SI(T ;A) := Si1(t1A) · · ·Sir(trA).

The (generic) cumulants are thus

(6.5) KI =
∂r

∂t1∂t2 · · ·∂tr

∣

∣

∣

∣

T=(0,...,0)

SI(T ;A)

Imitating [HL17, Def. 6.1], we define the partial cumulants as

(6.6) K
(t1,...,tj−1,1,tj+1,...,tr)
I;j :=

∂

∂tj

∣

∣

∣

∣

tj=0

SI(T ;A).

Recall that σ1 = exp(φ), where φ =
∑

n≥1
1
n
Φn = E[1]. Therefore,

(6.7)
∂

∂t

∣

∣

∣

∣

t=0

σ1(A)
t = φ,

so that

(6.8)
∂

∂tj

∣

∣

∣

∣

tj=0

SI(T ;A) = Si1(t1A) · · ·Sij−1
(tj1A)φijSij+1

(tj+1A) · · ·Sir(trA),

and inserting

(6.9) φn =
∑

H�n

(−1)ℓ(H)−1

ℓ(H)
SH =:

∑

H�=n

µ̃(H, (n))SH ,

we obtain the analog of [HL17, Prop. 6.2]

(6.10) K
(t1,...,tj−1,1,tj+1,...,tr)
I;j =

∑

K�ij

SI′HI′′((T ′, 1ℓ(H), T ′′);A)µ̃(H, (n)),

where T ′ = (t1, . . . , tj−1), T
′′ = (tj+1, . . . , tr) and 1p means (1, . . . , 1) (p times).
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Now,

(6.11)
∂

∂tj
SI(T ;A)

is the homogeneous part of degree n in

Si1(t1A) · · ·Sij−1
(tj−1A)

∂

∂tj
etjφSij+1

(tj+1A) · · ·Sir(trA)(6.12)

= Si1(t1A) · · ·Sij−1
(tj−1A)φσ

tj
1 Sij+1

(tj+1A) · · ·Sir(trA)(6.13)

= Si1(t1A) · · ·Sij−1
(tj−1A)σ

tj
1 φSij+1

(tj+1A) · · ·Sir(trA),(6.14)

the last two expressions being respectively equal to

(6.15)

ij
∑

a=1

K
(t1,...,tj−1,1,tj ,...,tr)

(i1,...,ij−1,a,ij−a,ij+1,...,ir);j

and

(6.16)

ij
∑

a=1

K
(t1,...,tj−1,tj ,1,...,tr)

(i1,...,ij−1,ij−a,a,ij+1,...,ir);j+1

These relations are then extended to WQSym∗ by defining Nu(T ) in such a way
that

(6.17) SI(T ;A) =
∑

ev(u)=I

Nu(T ),

which implies that (cf. [HL17, Th. 4.5])

(6.18) Nu(T ) =
∑

v≥u

βT (v, u)Nv.

Example 6.1. With I = (2, 2, 1) we have

S221(T ;A) =

(

t1S2 +

(

t1
2

)

S11

)(

t2S2 +

(

t2
2

)

S11

)

t3S1

(6.19)

= t1t2t3S
221 + t1

(

t2
2

)

t3S
2111 +

(

t1
2

)

t2t3S
1121 +

(

t1
2

)(

t2
2

)

t3S
11111,(6.20)

so that

K
(t1,1,t3)
(221);2 =

(

t1S2 +

(

t1
2

)

S11

)

(S2 −
1

2
S11)t3S1(6.21)

= t1t3S
221 −

1

2
t1t3s

2111 +

(

t1
2

)

t3S
1121 −

1

2

(

t1
2

)

t3S
11111.(6.22)

Similarly,

(6.23) S2111(T ;A) =

(

t1S2 +

(

t1
2

)

S11

)

t2t3t4S
111

and

(6.24) K
(t1,t2,1,t4)
(2111);3 =

(

t1S2 +

(

t1
2

)

S11

)

t2t4S
111.
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We have indeed

K
(t1,1,t3)
(221);2 +K

(t1,t2,1,t3)
(2111);3 = t1t3S

221 + t1t3(t2 −
1

2
)S2111 +

(

t1
2

)

t3S
1121 +

(

t1
2

)

(t2 −
1

2
)t3S

11111

=
∂

∂t2
S221(T ;A).(6.25)

In WQSym∗, this would translate for the set composition π = 24|15|3 ↔ u = 21312
as
(6.26)

N21312(T ;A) = t1t2t3N21312+ t1

(

t2
2

)

t3N21413+

(

t1
2

)

t2t3N31423+

(

t1
2

)(

t2
2

)

t3N31524,

and

(6.27) N21413(T ;A) = t1t2t3t4N21413 +

(

t1
2

)

t2t3t4N31524,

and the partial cumulants K
(t1,1,t3)
24|15|3;15, K

(t1,t2,1,t4)
24|1|5|3;5 would be respectively

(6.28) K
(t1,1,t3)
21312;2 = t1t3N21312 −

1

2
t1t3N21413 +

(

t1
2

)

t3N31423 −
1

2

(

t1
2

)

t3N31524

(6.29) K
(t1,t2,1,t4)
21413;3 = t1t2t4N21413 +

(

t1
2

)

t2t4N31524

7. Left and right products with the Eulerian idempotents

We have seen that the cumulant basis is given by the internal products Nu ∗E
[r]

where r = ℓ(ev(u)) = max(u).
The aim of this section is to compute the internal products

(7.1) Nu ∗ E
[k] and E[k] ∗Nu

for arbitrary u and k.
Let u be a packed word. Recall that v is said to refine u if for all i < j, vi >

vj ⇐⇒ ui ≥ uj and vi = vj =⇒ ui = uj. In this case, we write v ≥ u or v ∈ Ref(u).
This is the usual notion of refinement on set compositions: each block of u is a union
of consecutive blocks of v.
We shall say that v is a weak refinement of u, and write v � u or v ∈ WRef(u), if

for all i < j, vi = vj =⇒ ui = uj. On set compositions, this means that each block
of u is a union of blocks of v.
For example,

Ref(122) = {122, 123, 132},

WRef(122) = {122, 211, 123, 132, 213, 231, 312, 321}.
(7.2)

Thus, the word w = pack
(

u

v

)

is finer than u and is such that wi = wj =⇒ vi = vj .
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We shall compute the generating functions

Uv(t) = σt
1 ∗Nv =

∑

r

trE[r] ∗Nv =
∑

u

(

t

max(u)

)

Nu ∗Nv(7.3)

=
∑

w∈WRef(v)





∑

u∈U(v,w)

(

t

max(u)

)



Nw,(7.4)

where

(7.5) U(v, w) =

{

u| pack

(

u

v

)

= w

}

and

Vu(t) = Nu ∗ σ
t
1 =

∑

r

trNu ∗ E
[r] =

∑

v

(

t

max(v)

)

Nu ∗Nv(7.6)

=
∑

w≥u





∑

v∈V (u,w)

(

t

max(v)

)



Nw,(7.7)

where

(7.8) V (u, w) =

{

v| pack

(

u

v

)

= w

}

.

When convenient, we shall freely identify packed words with their corresponding
set compositions without further notice.

7.1. A closed formula for Uv(t). The pairs (v, w) such that U(v, w) is nonempty
are those such that w ∈ WRef(v).

Proposition 7.1. Define a set composition u0 = u0(v, w) as the one obtained by
merging two consecutive blocks p′, p′′ of w if the blocks of v containing p′ are strictly
to the left of those containing p′′, and iterating the process until no further blocks
can be merged.
Then, U(v, w) is the interval

(7.9) U(v, w) = [u0, w] (compositions finer than u0 and coarser than w).

For example, let us compute U(13211, 15342). The corresponding set compositions
are 145|3|2 and 1|5|3|4|2. To construct u0, one can merge the second and third blocks
of w, and also the fourth and the fifth ones, which yields u0 = 1|35|24. Therefore,

(7.10) U(13211, 15342) = [13232, 15342] = {13232, 14232, 14342, 15342}.

To compute U(13211, 24315), the corresponding set compositions are 145|3|2 et
4|1|3|2|5, we obtain u0 = 4|123|5, so that

(7.11) U(13211, 24315) = [22213, 24315] = {22213, 23214, 23314, 24315}.

Finally, with U(13211, 13214), the set compositions are 145|3|2 et 14|3|2|5, u0 =
1234|5, and

(7.12) U(13211, 13214) = [11112, 13214] = {11112, 12113, 12213, 13214}.

Proof – It follows from the definition of pack
(

u

v

)

that if two elements i, j are in the
same block of w, then, they must also be in the same block in u and in v, and
otherwise i is in a block strictly left to the block of j in v if and only if either i is
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in a block left to the block of j in u, or i and j are in the same block of u, and the
block of i if left to the block of j in v.
Thus, any u ∈ U(v, w) must be obtained by merging some consecutive parts in w,

so that u ≤ w. Moreover, to get w as pack
(

u

v

)

, one can only merge blocks satisfying
the constraints mentioned in the definition of u0, so that u ≥ u0.

So, U(v, w) is the interval [u0, w]. This interval is clearly a boolean lattice. More-
over, if we set a0 = max(u0) and a = max(w), the number of elements of this lattice
such that max(u) = k is

(

a−a0
a−k

)

, so that

(7.13)
∑

u∈U(v,w)

(

t

max(u)

)

=
a
∑

k=a0

(

a− a0
a− k

)(

t

k

)

=

(

t+ a− a0
a

)

,

and finally

(7.14) Uv(t) =
∑

w

(

t+max(w)− a0(v, w)

max(w)

)

Nw

where a0(v, w) = max(u0(v, w)).
In particular, the coefficient of Nw in E[1] ∗Nv is the coefficient of tNw in Uv(t),

which is

(7.15) (−1)a0−1
(a− a0)!(a0 − 1)!

a!
= (−1)a0−1B(a− a0 + 1, a0)

where B is the Beta function. This is formula (7.3) of [HL17] for the Weisner
coefficients.

7.2. A closed formula for Vu(t). Let us now describe V (u, w). Since the packing
process commutes with the right action of the symmetric group (see (5.6)), we
can apply to u the smallest permutation σ such that uσ is nondecreasing (i.e., σ =
std(u)−1), so that pack

(

uσ

vσ

)

= wσ. We can therefore assume that u is nondecreasing.

Proposition 7.2. Let w(i) = pack(wj1wj2 · · ·wjp), where {j1, . . . , jp} = {j|uj = i}.
Then,

(7.16)
∑

v∈V (u,w)

Mv = Mw(1)Mw(2) · · ·Mw(max(u)).

Proof – Note first that no relation is imposed between the letters of v corresponding
to different letters of u. The only order constraints are among places where u has
identical letters, and these are the same as in the corresponding letters of w. This is
precisely the definition of the convolution on packed words, describing the product
of the M basis.

Since the map Mu 7→
(

t

u

)

is a character of WQSym,

(7.17)
∑

v∈V (u,w)

(

t

max(v)

)

=

max(u)
∏

i=1

(

t

max(w(i))

)

.

We have therefore

(7.18) Vu(t) =
∑

w≥u

max(u)
∏

i=1

(

t

max(w(i))

)

Nw.
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For example, take u = 1122 and w = 2133. We have w(1) = 21 et w(2) =
pack(33) = 11. The product is

(7.19) M21M11 = M2111 +M2122 +M2133 +M3122 +M3211,

and the set of v is

(7.20) V (1122, 2133) = {2111, 2122, 2133, 3122, 3211}.

We can then see that

(7.21) 2

(

t

2

)

+ 3

(

t

3

)

=
t2(t− 1)

2
=

(

t

2

)(

t

1

)

,

as claimed.

7.3. Mixed cumulants. The mixed cumulants described in Section 7 of [HL17]
correspond to the elements Ku ∗Nv = Nu ∗ E

[max(u)] ∗Nv of WQSym∗.
We shall compute the generating series

(7.22) Nu ∗ σ
t
1 ∗Nv =

∑

r

Nu ∗ E
[r] ∗Nv.

This amounts to computing

(7.23)
∑

u′≥u

max(u)
∏

i=1

(

t

max(u′(i))

)

Nu′ ∗Nv.

Let us compute the coefficient of Nw in (7.23). First, the packed words having a
nonzero coefficient in this expansion are those finer than u, which are weakly finer
than v. Let w be such a word. The coefficient of Nw is obtained by summing the
coefficients of all u′ ≥ u such that pack

(

u′

v

)

= w. The set of those u′ is therefore the
set of packed words which are finer than u and than u0(v, w), and that are coarser
than w.
This set is an intersection of boolean lattices, hence also a boolean lattice. More-

over, the subwords of u consisting of identical letters cannot interfere with each other,
so that this lattice is in fact the product of the lattices obtained by restricting v and
w to positions where u has identical letters.
Thus, the result is obtained by applying (7.14) on each set of positions where u

has identical letters since these pieces are independent and N1k = Sn is neutral for
∗.

The result is therefore

(7.24) Nu ∗ σ
t
1 ∗Nv =

∑

w∈W (u,v)

max(u)
∏

i=1

(

t+max(w(i))− a(v(i), w(i))

max(w(i))

)

Nw,

where a is as previously defined, and W (u, v) is the set of packed words finer than u
which have equal letters only at positions where u has equal letters, and v(i) et w(i)

are the subwords of v and w corresponding to the positions of the letter i in u.

Example 7.3. Let u = 11122 and v = 12234.
Take w = 23145. We form the packed words of the restrictions of v and w to the

positions where u has equal letters, which gives for the first block v(1) = 122 and
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w(1) = 231, with a contribution of
(

t+1
3

)

for this factor (since u
(1)
0 = 221) and for the

second, v(2) = 12 et w(2) = 12, hence a contribution of
(

t+1
2

)

(since u
(2)
0 = 11).

For w = 21354, we have respective contributions of
(

t+1
3

)

and
(

t

2

)

since u
(1)
0 = 212

and u
(2)
0 = 21.

For w = 31245, we have respective contributions of
(

t

3

)

and
(

t+1
2

)

since u
(1)
0 = 312

and u
(2)
0 = 11.

For w = 31254, we have respective contributions of
(

t

3

)

and
(

t

2

)

since u
(1)
0 = 312

and u
(2)
0 = 21.

Finally, for w = 12243, we have respective contributions of
(

t+1
2

)

and
(

t

2

)

since

u
(1)
0 = 111 and u

(2)
0 = 21.

8. Miscellaneous remarks

We have already noticed

(8.1) pack
(u · σ

v · σ

)

= pack
(u

v

)

· σ

for any permutation σ.
Taking the smallest permutations sorting u (σ = std(u)−1), we can restrict to the

case where u is nondecreasing. With a second permutation, we can restrict to the
case where v is nondecreasing on positions where u has equal letters. Moreover, if

(8.2) pack

(

u

v1

)

= pack

(

u

v2

)

,

then

(8.3) pack

(

u′

v1

)

= pack

(

u′

v2

)

for all u′ finer than u. In the latter argument, it is thus possible to restrict to the
case where u is a shifted concatenation of packed words, one per block of equal
letters of u.

9. A generalization of Goldberg’s formula

The product of exponentials

(9.1) g = ea1ea2 · · · =
∑

u packed

1

u!
Mu(A), (u! :=

∏

i

|u|i!)

is naturally an element of the completion ŴQSym of WQSym. It is grouplike
for the coproduct of WQSym, which in this case coincides with the coproduct of
K〈〈A〉〉. The Hausdorff series

(9.2) H(a1, a2, . . .) = log g =
∑

u

cuMu

is thus also an element of ŴQSym. The coefficient cu can be computed by Gold-
berg’s formula, of which new proofs respectively based on arguments from combi-
natorial Hopf algebras and of noncommutative probability have been recently given
in [FPT16] and [HL17].
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The homogeneous component Hn of H is the image of gn by the first Eulerian

idempotent e
[1]
n , aka Solomon’s idempotent. More generally, the image of gn by e

[k]
n

is the coefficient of tk in gt. Define polynomials cu(t) by

(9.3) gt = (ea1ea2 · · · )t =:
∑

u

cu(t)Mu(A).

Since g is grouplike, we can, as in [FPT16], define an injective morphism of Hopf
algebras

ϕ : Sym −→ WQSym(9.4)

Sn 7−→ gn(9.5)

Then, gt = ϕ(σt
1) and

cu(t) = 〈Nu, ϕ(σ
t
1)〉 = 〈ϕ†(Nu), σ

t
1〉(9.6)

=
∑

I

(

t

ℓ(I)

)

〈ϕ†(Nu), S
I〉(9.7)

where ϕ† : WQSym∗ → QSym is the adjoint map, and 〈·, ·〉 is the duality bracket.
Now, recall that the coproduct of Nu is given by [NT06]

(9.8) ∆Nu =
∑

u=u1·u2

Npack(u1) ⊗Npack(u2)

(deconcatenation). We can omit the packing operation in this formula if we make
the convention that Nw = Nu if u = pack(w). Then, since ϕ, and hence also ϕ† are
morphisms of Hopf algebras, for a composition I = (i1, . . . , ir),

(9.9) 〈ϕ†(Nu), S
I〉 =

r
∏

k=1

〈ϕ†(Nuk
), Sik〉

where u = u1u2 · · ·ur with |uk| = ik for all k. Moreover, this is nonzero only if all
the uk are nondecreasing, in which case the result is 1/(u1! · · ·ur!).
Let u = u1 · · ·ur be the minimal factorization of u into nondecreasing words (i.e.,

such that the last letter of each ui is strictly greater than the first one of ui+1), and
let I = (|u1|, . . . , |ur|).
Let also J = (j1, . . . , js) be the composition obtained by factoring u into maximal

blocks of identical letters,

(9.10) u = bj11 b
j2
2 · · · bjss .

Then, it is worth noticing that cu(t) is the (t,E) specialization of
(9.11)

cu(X ;A) =
∑

K≥I

MK(X)SK∨J =
∑

H≥J

(

∑

K∨J=H

MK(X)

)

SH(A) ∈ QSym⊗ Sym,

where ∨ denotes the join in the lattice of compositions of n. For a binomial element t,
MK(t) =

(

t

ℓ(K)

)

, and the (virtual) exponential alphabet E is defined by Sk(E) = 1
k!
.

The set {K|K ∨ J = H} is a boolean lattice: it is the interval [I ∨ L,H ] where
Des(L) = Des(H)\Des(J). Therefore,

(9.12) cu(t) =
∑

H≥J

(

t+ ℓ(J)− ℓ(I)

ℓ(H)

)

SH(E).



24 F. LEHNER, J.-C. NOVELLI, AND J.-Y. THIBON

For example, with u = 113223, we have I = 33, J = 2121,

cu(X,A) =(M33 +M213 +M321 +M2121)S
2121

+ (M123 +M1113 +M1221 +M11121)S
11121

+ (M312 +M3111 +M2112 +M21111)S
21111

+ (M1212 +M12111 +M11112 +M111111)S
111111(9.13)

whose (t,E)-specialization reduces, by binomial convolution, to
(9.14)
(

t + 2

4

)

1

2!1!2!1!
+

(

t+ 2

5

)

1

1!1!1!2!1!
+

(

t+ 2

5

)

1

2!1!1!1!1!
+

(

t+ 2

6

)

1

1!1!1!1!1!1!

This is the image of the polynomial

(9.15)

[

t(2t2 + t)

2

]2

=: E2121(t)

under the linear substitution tk 7→
(

t+2
k

)

.

Define a linear map Fs : t
k 7→

(

t+s

k

)

, and associate to a composition J the product
of normalized Eulerian polynomials

(9.16) EJ(t) :=

ℓ(J)
∏

k=1

tEjk(t, t+ 1)

jk!

as in Goldberg’s formula [Reu93, Theorem 3.11], where

(9.17) En(x, y) =
∑

σ∈Sn

xd(σ)yn−d(σ),

and d(σ) is the number of descents of σ.

Theorem 9.1. The t-Goldberg coefficient cu(t) is

(9.18) cu(t) = Fs−r(E
J(t)),

where r = ℓ(I), s = ℓ(J), and I, J are the compositions recording respectively the
lengths of the nondecreasing runs and of the maximal blocks of identical letters of u.

The coefficient of t in Fs−r(t
k) is

(−1)k−s+r−1 (s− r)!(k − s + r − 1)!

k!
= (−1))k−s+r−1B(s− r + 1, k − s+ r)

=

∫ 0

−1

tk · tr−1(1 + t)s−r
dt

ts

(9.19)

(since k ≥ s and r ≥ 1), which applied to (9.18) yields the classical form of Gold-
berg’s formula:

(9.20) cu = [t]cu(t) =

∫ 0

−1

tr−1(1 + t)s−r
s
∏

k=1

Ejk(t, t+ 1)

jk!
dt.

Note that r − 1 is the number of descents of u, and s− r its number of rises.
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10. Mixed cumulants and Goldberg coefficients

It remains to explain the occurrence of Goldberg coefficients in the expansion of
mixed cumulants on the cumulant basis.
As before, we shall work with the t-analogues.
Let u be a packed word. Define as above two compositions I(u) and J(u) recording

the lengths of the maximal nondecreasing factors and of the maximal blocks of
identical letters of u. For example,

(10.1) I(31121) = (1, 3, 1) and J(31121) = (1, 2, 1, 1).

Note that J(u) ≥ I(u).
Following [HL17], with a pair of words such that v � u, we associate their refine-

ment word m(u, v) defined as follows: |m(u, v)| = max(v), and mi = uj whenever
vj = i. For example,

(10.2) m(12113, 41223) = 2131, m(111123, 353241) = 31121.

We can now reformulate (7.14) as

(10.3) Uv(t) = σt
1 ∗Nv =

∑

w∈WRef(v)
m=m(v,w)

(

t + ℓ(J(m))− ℓ(I(m))

|J(m)|

)

Nw.

For example,

U112(t) =

(

t+ 1

2

)

N112 +

(

t

2

)

N221 +

(

t+ 1

3

)

N123 +

(

t+ 1

3

)

N132

+

(

t+ 1

3

)

N213 +

(

t

3

)

N231 +

(

t+ 1

3

)

N312 +

(

t

3

)

N321.

(10.4)

Computing U1122(t), one finds a sum of 38 terms, corresponding to the packed words
of which the first two or the last two letters can be identical. There are 7 different
coefficients in this expansion, given below together with their associated words:

(

t + 2

4

)

: {1324, 1342, 3124, 3142}

(

t + 1

4

)

: {1234, 1243, 1423, 1432, 2134, 2143, 2314, 2341, 2413,

2431, 3214, 3241, 4123, 4132, 4213, 4231}
(

t + 1

3

)

: [1123, 1132, 1233, 1322, 2133, 2213, 2231, 3122]

(

t + 1

2

)

: {1122}

(

t

4

)

: {3412, 3421, 4312, 4321}

(

t

3

)

: {2311, 3211, 3312, 3321}

(

t

2

)

: {2211}

(10.5)
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Let us now establish the equivalence of (7.14) and (10.3). We have to prove that
for all v and w such that w ∈ WRef(v) :

(10.6)

(

t+max(w)− a0(v, w)

max(w)

)

=

(

t + ℓ(J(m))− ℓ(I(m))

|J(m)|

)

.

First of all, it is clear, by definition, that |J(m)| = max(w). Moreover, max(w) −
a0(v, w) is the number of blocks of w (regarded as a set composition) whose all
elements are all strictly to the left in v of all elements of the next block. This
amounts precisely to merging two parts of J(m) whenever the corresponding values
in m values are in increasing order. Thus, max(w)− a0(v, w) = ℓ(J(m))− ℓ(I(m)).
Consider now the expansion of Uv(t) on the basis Kw. Recall the transition

matrices between N and K.

(10.7) Kv =
∑

w∈Ref(v)

(−1)max(w)−max(v)

πev(m(u, v))
Nw,

where πev(m) =
∏

i |m|i.
Notice that by definition

(10.8) Kv = [tmax(v)]Nv ∗ σ
t
1.

Indeed, to obtain the correct power of t, one must select in each
(

t

M

)

the coefficient

of t, which is (−1)M−1

M
.

In the other direction,

(10.9) Nv =
∑

w∈Ref(v)

1

πev(m(u, v))!
Kw,

where πev(m)! =
∏

i |m|i!.
Ths yields for the expansion of Uv(t) on the basis K

(10.10) Uv(t) =
∑

x∈WRef(v)

cm(v,x)(t)Kx,

where cm(v,x)(t) is defined in Eq. (9.12).
Indeed, to go from the expression of Uv on the Nw to its expression on the Kx,

notice that the Nw contributing to a given Kx are those such that w ≤ x and
w � v. This is a boolean lattice, an interval [x0, x] where x0 is obtained by merging
consecutive blocks of x whenever these blocks are contained in a block of v.
We must therefore evaluate

(10.11)
∑

w∈[x0,x]

1

πev(m(w, x))!

(

t+ ℓ(J(m(v, w)))− ℓ(I(m(v, w)))

|J(m(v, w))|

)

.

For a w ∈ [x0, x], it is easy to compute m(v, w). The set of those m(v, w) is the
set of words obtained from m(v, x) by replacing blocks ir of consecutive identical
letters by smaller blocks ip, 1 ≤ p ≤ r. On this set, ℓ(J(m)) − ℓ(I(m)) is con-
stant, H = ev(m(w, x)) runs over the set of compositions finer than ev(m(x0, x)),
1/ev(m(w, x))! = SH(E) and |J(m(v, w))| = max(w) = ℓ(H).
For example, let v = 111123 and x = 356241. Then, x0 = 244231. The contribu-

tion to Kx in Uv(t) come from the four words

(10.12) {244231, 245231, 355241, 356241}.
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Their words m(v, w) are respectively 3121, 31211, 31121 and 311211. The m(w, x)
are 122344, 122345, 123455 and 123456. The sum of all contributions is

(10.13)
1

4

(

t+ 1

4

)

+
1

2

(

t+ 1

5

)

+
1

2

(

t + 1

5

)

+

(

t + 1

6

)

.

This is the same as cu = c311211(t). Indeed, I(u) = (1, 3, 2) et J(u) = (1, 2, 1, 2), so
that we get

(10.14)
∑

H≥1212

(

t+ 1

ℓ(H)

)

SH(E)

which yields the same expression as (10.13).
Finally, one can give the general formula for Nu ∗ σt

1 ∗ Nv on the Kw. This is
immediate, since the transition from N to K does not change the structure of the
product. We get

(10.15) Nu ∗ σ
t
1 ∗Nv =

∑

w∈W (u,v)

max(u)
∏

i=1

cm(i)(t)Kw,

where cu(t) are the t-Goldberg coefficients, and m(i) = m(v(i), w(i)).
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[FPT16] Löıc Foissy, Frédéric Patras, and Jean-Yv es Thibon, Deformations of shuffles and

quasi-shuffles, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 1, 209–237.
[Gar90] Adriano M. Garsia, Combinatorics of the free Lie algebra and the symmetric group,

Analysis, et cetera, Academic Press, Boston, MA, 1990, pp. 309–382.
[GKL+95] Israel M. Gelfand, Daniel Krob, Alain Lascoux, Bernard Leclerc, Vladimir S. Retakh,

and Jean-Yves Thibon, Noncommutative symmetric functions, Adv. Math. 112 (1995),
no. 2, 218–348.

[Goo75] I. J. Good, A new formula for cumulants, Math. Proc. Cambridge Philos. Soc. 78
(1975), no. 2, 333–337.
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no. 4, 1160–1170.



28 F. LEHNER, J.-C. NOVELLI, AND J.-Y. THIBON

[JR79] S. A. Joni and G.-C. Rota, Coalgebras and bialgebras in combinatorics, Stud. Appl.
Math. 61 (1979), no. 2, 93–139, reprinted in Contemp. Math. 6 (1982), 1–47.

[KLT97] D. Krob, B. Leclerc, and J.-Y. Thibon, Noncommutative symmetric functions. II.

Transformations of alphabets, Internat. J. Algebra Comput. 7 (1997), no. 2, 181–264.
[Leh04] Franz Lehner, Cumulants in noncommutative probability theory. I. Noncommutative

exchangeability systems, Math. Z. 248 (2004), no. 1, 67–100.
[Lod89] Jean-Louis Loday, Opérations sur l’homologie cyclique des algèbres commutative s, In-
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