
ar
X

iv
:2

11
1.

06
75

2v
1 

 [
m

at
h.

C
O

] 
 1

2 
N

ov
 2

02
1

EXPANSION IN SUPERCRITICAL RANDOM SUBGRAPHS OF THE HYPERCUBE AND ITS

CONSEQUENCES

JOSHUA ERDE∗, MIHYUN KANG∗ AND MICHAEL KRIVELEVICH‡

NOVEMBER 15, 2021

ABSTRACT. It is well-known that the behaviour of a random subgraph of a d-dimensional

hypercube, where we include each edge independently with probability p, undergoes a phase

transition when p is around 1
d

. More precisely, standard arguments show that just below this

value of p all components of this graph have order O(d) with probability tending to one as

d → ∞ (whp for short), whereas Ajtai, Komlós and Szemerédi [Largest random component

of a k-cube, Combinatorica 2 (1982), no. 1, 1–7; MR0671140] showed that just above this

value, in the supercritical regime, whp there is a unique ‘giant’ component of order Θ
(

2d
)

. We

show that whp the vertex-expansion of the giant component is inverse polynomial in d . As

a consequence we obtain polynomial in d bounds on the diameter of the giant component

and the mixing time of the lazy random walk on the giant component, answering questions of

Bollobás, Kohayakawa and Łuczak [On the diameter and radius of random subgraphs of the

cube, Random Structures and Algorithms 5 (1994), no. 5, 627–648; MR1300592] and of Pete [A

note on percolation on Z
d : isoperimetric profile via exponential cluster repulsion, Electron.

Commun. Probab. 13 (2008), 377–392; MR2415145]. Furthermore, our results imply lower

bounds on the circumference and Hadwiger number of a random subgraph of the hypercube

in this regime of p which are tight up to polynomial factors in d .

1. INTRODUCTION

Percolation is a mathematical process, initially studied by Broadbent and Hammersley

[17] to model the flow of a fluid through a porous medium whose channels may be randomly

blocked. The underlying mathematical model is simple: given a graph G , usually some sort

of lattice-like graph, the percolated subgraph Gp is the random subgraph of G obtained by

retaining each edge of G independently with probability p. For a more detailed introduction

to percolation theory see, e.g., [15, 33, 44].

In this paper we are concerned with percolation on the hypercube. The d-dimensional

hypercube Qd is the graph with vertex set V
(

Qd
)

= {0,1}d and in which two vertices are adja-

cent if they differ in exactly one coordinate. Throughout this paper we will write n := 2d for

the order of the hypercube and we note that |E
(

Qd
)

| = nd
2 . The hypercube is a ubiquitous

object in graph theory and combinatorics, arising naturally in many contexts, in particular

due to its interpretation as the Hasse diagram of the partial order on [d ] := {1,2, . . . ,d} given

by the subset relation.
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The random subgraph Qd
p of the hypercube was first studied by Sapoženko [60] and by

Burtin [6], who showed that Qd
p has a threshold for connectivity at p = 1

2
; for a fixed con-

stant p < 1
2 , whp1 Qd

p is disconnected, whereas for p > 1
2 , whp Qd

p is connected. This result

was strengthened by Erdős and Spencer [25] and by Bollobás [8], who determined the prob-

ability of connectivity of Qd
p when p is close to 1

2
. Bollobás [10] also showed that p = 1

2
is

the threshold for the existence of a perfect matching in Qd
p . Very recently, answering a long-

standing open problem, Condon, Espuny Díaz, Girão, Kühn and Osthus [19] showed that

p = 1
2 is also the threshold for the existence of a Hamilton cycle in Qd

p .

Motivated by results from the binomial random graph model, it was conjectured by Erdős

and Spencer [25] that the component structure of Qd
p should undergo a phase transition at

p = 1
d

: it is relatively easy to see, by a coupling with a branching process, that when p = 1−ǫ
d

for ǫ> 0, whp all components of Qd
p have order O(d), but they conjectured that when p = 1+ǫ

d
,

whp Qd
p contains a unique ‘giant’ component L1

(

Qd
)

, whose order is linear in n = 2d . This

conjecture was confirmed by Ajtai, Komlós and Szemerédi [2].

Theorem 1.1 (Ajtai, Komlós and Szemerédi [2]). Let ǫ > 0 and let p = 1+ǫ
d

. Then there is a

constant γ> 0 such that whp Qd
p contains a component of order at least γn.

These results were later extended to a wider range of p, describing more precisely the com-

ponent structure of Qd
p when p = 1+ǫ

d
with ǫ= o(1) by Bollobás, Kohayakawa and Łuczak [12],

by Borgs, Chayes, van der Hofstad, Slade and Spencer [16] and by Hulshof and Nachmias [41],

with the correct width of the critical window in this model being only recently identified by

van der Hofstad and Nachmias [39]. McDiarmid, Scott and Withers [56] also give a descrip-

tion of the component structure of Qd
p for fixed p ∈

(

0, 1
2

)

, when p is quite far from the critical

window, but still below the connectivity threshold. For a more detailed background on the

phase transition in this model, see the survey of van der Hofstad and Nachmias [38].

In this paper we are interested in the typical structural properties of the giant component

L1 of Qd
p in the supercritical regime, where p = 1+ǫ

d
for some fixed ǫ > 0. Our main result,

from which we will be able to deduce a lot of structural information about L1, concerns its

expansion properties, in particular vertex-expansion. Informally, a graph has good vertex-

expansion if all sufficiently small vertex sets have a large vertex boundary, expressing a kind

of discrete isoperimetric inequality. The notion of graph expansion seems to be quite a fun-

damental one to the study of graphs, demonstrating a deep link between the geometric and

structural properties of a graph, its algebraic spectrum and also the mixing time of the ran-

dom walk on the graph. For these reasons and more, graph expansion has turned out to have

fundamental importance in many diverse areas of discrete mathematics and computer sci-

ence. For a comprehensive introduction to expander graphs, see the survey of Hoory, Linial

and Widgerson [40]. In particular, notions of expansion have turned out to be a powerful

tool in the study of random structures. See, for example, the survey paper of Krivelevich [47].

In order to motivate our results and methods, let us discuss briefly what is known in a

simpler model of percolation, the binomial random graph. The binomial random graph

G(d +1, p), introduced by Gilbert [32], is a percolated subgraph of the complete graph Kd+1,

where we retain each edge with probability p. As a particularly simple model of percola-

tion, where the underlying graph G lacks the geometric structure of Zd or Qd , the binomial

random graph has been extensively studied. A particularly striking feature of this model is

the phase transition that it undergoes at p = 1
d

, exhibiting vastly different behaviour when

p = 1−ǫ
d

to when p = 1+ǫ
d

(where ǫ is a positive constant).

1Throughout the paper, all asymptotics will be considered as d →∞ and so, in particular, whp (with high

probability) means with probability tending to one as d →∞.
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More precisely, it follows from results of Erdős and Rényi [24] that when p = 1−ǫ
d

for a fixed

ǫ > 0, whp every component of G(d + 1, p) has order at most O(logd) and is either a tree

or unicyclic, whereas when p = 1+ǫ
d

, whp G(d + 1, p) contains a unique ‘giant component’

L1

(

G(d +1, p)
)

of order Ω(d), whose structure is quite complex. We note that this is only

a very broad picture of the phase transition in this model, and much more precise results

are known, in particular extending these results into the weakly supercritical regime where

ǫ= o(1) and ǫ3d →∞, see, for example, the works of Bollobás [9] and Łuczak [55]. However

this is not the focus of our paper.

Much subsequent work has focused on the structural properties of the giant component

L1 = L1(G(d + 1, p)) in the supercritical regime. For example, a well-known result of Ajtai,

Komlós and Szemerédi [1] shows that in this regime whp L1 contains a path of length Ω(d),

from which it is easy to deduce that the circumference, the length of the largest cycle, of L1 is

of order Ω(d). Fountoulakis, Kühn and Osthus [27] showed that whp the Hadwiger number,

the size of the largest complete minor, of L1 is of order Ω(
p

d). Chung and Lu [18] showed

that whp L1 has diameter O(log d) and this result was later strengthened, in particular de-

termining the correct leading constant, by work of Fernholz and Ramachandran [26] and

of Riordan and Wormald [59]. Benjamini, Kozma and Wormald [4] and Fountoulakis and

Reed [29] showed that whp the mixing time of the lazy random walk on L1 is O
(

(logd)2
)

and

Berestycki, Lubetzky, Peres and Sly [5] showed that if we start the lazy random walk from a

uniformly chosen vertex of L1, then whp the mixing time is O(logd) (for definitions related

to mixing time see Section 4.1). We note that this is just a small subset of the results known

about the supercritical random graph, chosen judiciously for comparison to our results later.

For more general background on the theory of random graphs, see [11, 30, 42].

A lot of structural information about the giant component of G(d+1, p), including many of

the results mentioned above, can be deduced as consequences of its expansion properties.

Indeed, it is known that the expansion properties of a graph can be linked to various struc-

tural graph properties, for example its diameter and circumference, and furthermore there

are well-known links between expansion and mixing times of Markov chains. See Sections 2

and 4.1 for more precise statements.

Given a graph G and a subset S ⊆ V (G) we write NG (S) for the external neighbourhood

of S in G , that is, the set of vertices in V (G) \ S which have a neighbour in S and we write

Sc :=V (G) \ S and eG (S,Sc) for the number of edges between S and Sc in G .

Definition 1.2. We say a graph G is an α-expander if |NG (S)| ≥ α|S| for every S ⊆ V (G) such

that |S| ≤ |V (G)|
2 , where α is the expansion ratio.

Similarly we say a graph G is an α-edge-expander if eG (S,Sc) ≥ α|S| for all S such that
∑

v∈S dG (v)≤ |E (G)|.
It can easily be seen that G(d + 1, p) is whp not an expander in the supercritical regime,

since the graph is likely not connected. In fact, standard results imply that even the 2-core,

the largest subgraph of minimum degree at least two, of the giant component of G(d +1, p)

does not have constant vertex- or edge-expansion, since it typically contains logarithmically

long bare paths, paths in which each internal vertex has degree two. However, it was shown

by Benjamini, Kozma and Wormald [4] that in the supercritical regime whp the giant com-

ponent of G(d +1, p) is a decorated expander, which roughly means that it has a linear sized

subgraph which is an α-edge-expander for some constant α > 0, and the deletion of this

subgraph splits the giant component into logarithmically small pieces. It is not hard to show

that in the supercritical regime the existence of a linear sized subgraph which is an α-edge-

expander implies the existence of one which is an α′-expander for some α′ > 0, the existence

of which was also shown by Krivelevich [46] using general considerations of expansion in

locally sparse graphs. We also note that the work of Ding, Lubetzky and Peres [20] gives a
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particularly simple model contiguous to the giant component in the supercritical regime,

which implies that whp the kernel of the giant component, the graph obtained by contract-

ing all bare paths in the 2-core, is an α-expander for some fixed α > 0, and from which it is

possible to determine the likely expansion properties of the giant component and its 2-core.

Then, using these connections between the structural properties of a graph and its expan-

sion mentioned previously, many properties of the giant component of G(d + 1, p) can be

deduced as consequences of the results of Benjamini, Kozma and Wormald [4], of Krivele-

vich [46] and of Ding, Kim, Lubetzky and Peres [20].

More recently, random subgraphs Gp of an arbitrary graph G of large minimum degree

δ(G) ≥ d have been studied. It has been observed that some of the complex behaviour which

occurs whp in G(d +1, p) once we pass the critical point of p = 1
d

also occurs whp in Gp in

the same regime of p. For example, when p = 1+ǫ
d

for ǫ > 0, it has been shown that whp Gp

contains a path or cycle of length at least linear in d , see [22, 50, 51]. Furthermore, for this

range of p it has been shown by Frieze and Krivelevich [31] that whp Gp is non-planar and

by Erde, Kang and Krivelevich [23] that in fact, whp Gp has Hadwiger number Ω̃
(p

d
)

.2

Whilst the model G(d + 1, p) shows that these results are optimal when G can be an ar-

bitrary graph, for specific graphs, and in particular for G = Qd , they may be far from the

truth. Indeed, it is plausible that circumference and Hadwiger number of Qd
p could be ex-

ponentially large in d in the supercritical regime. Furthermore, since the host graph G can

be chosen arbitrarily, we cannot hope to prove much about global properties of Qd
p , such as

the diameter or mixing time, by considering the far more general model of arbitrary random

subgraphs Gp .

The main aim of this paper is to show that whp the giant component of Qd
p in the super-

critical regime has good expansion properties. Given constants α,β > 0 and a statement A,

we will write ‘Let α≪β. Then A holds’ to indicate that there is some fixed, implicit function

f such that A holds for all α≤ f (β).

Theorem 1.3. Let ǫ > 0, let p = 1+ǫ
d

and let L1 be the largest component of Qd
p . Then there

exists a constant β> 0 such that whp L1 is a βd−5-expander.

Furthermore, we show that whp the giant component of Qd
p contains an almost spanning

subgraph with much better expansion.

Theorem 1.4. Let 0 < α ≪ ǫ, let p = 1+ǫ
d

and let L1 be the largest component of Qd
p . Then

there exist a constant β > 0 and a subgraph H of L1 of size at least (1−α)|V (L1)| such that

whp H is a βd−2(logd)−1-expander.

We will be able to deduce certain structural consequences from the vertex-expansion of

the giant component which are almost optimal, up to polynomial factors in d .

The first consequence will be a bound on the mixing time of the lazy random walk on the

giant component L1 of Qd
p . Answering a well-known question (see, e.g., Pete [57] and van

der Hofstad and Nachmias [39]), we show that whp the mixing time of this random walk is

polynomial in d .

Theorem 1.5. Let ǫ> 0, let p = 1+ǫ
d

and let L1 be the largest component in Qd
p . Then whp the

mixing time of the lazy random walk on L1 is O
(

d 11
)

.

Next, we consider the diameter of the giant component in Qd
p . Previously, Bollobás, Ko-

hayakawa and Łuczak [13] considered the diameter of a random Qd -process. Although their

2The notation Ω̃ (·) here is hiding a polylogarithmic factor in d .
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results mainly concern the structure of Qd
p close to the connectivity threshold, they asked

whether the diameter of any component in a typical Qd -process is ever superpolynomial in

d .

In fact, since then it has been shown that the diameter of components in the regime close

to the critical window can grow even exponentially large in d . Hulshof and Nachmias [41]

show that in the weakly subcritical regime, when n− 1
3 ≪ ǫ = o(1) and p = 1−ǫ

d
, whp the

maximal diameter of a component in Qd
p is (1+ o(1))ǫ−1 log

(

ǫ3n
)

, although they mention

that this is not achieved by the largest component, which they conjecture to have diame-

ter Θ

(

ǫ−1
√

log
(

ǫ3n
)

)

. Heydenreich and van der Hofstad [37] mention that their methods

also show that the diameter of the largest component of the critical percolated hypercube is

Θp

(

n
1
3

)

and it is also stated by van der Hofstad and Nachmias [39] that in the weakly super-

critical regime, when n− 1
3 ≪ ǫ= o(1) and p = 1+ǫ

d
, whp the diameter of the giant component

in Qd
p is (1+o(1))ǫ−1 log

(

ǫ3n
)

.

Hence, the question of Bollobás, Kohayakawa and Łuczak [13] perhaps only makes sense

once we are quite far from the critical window. In this range, we give a polynomial bound on

the likely diameter of the giant component.

Theorem 1.6. Let ǫ > 0 and let p = 1+ǫ
d

. Then whp the largest component L1 of Qd
p has

diameter O
(

d 3
)

.

Finally, we also consider the circumference and the Hadwiger number of Qd
p .

Theorem 1.7. Let ǫ> 0 and let p = 1+ǫ
d

. Then whp the circumference of Qd
p is

Ω
(

nd−2(logd)−1
)

.

Theorem 1.8. Let ǫ> 0 and let p = 1+ǫ
d

. Then whp the Hadwiger number of Qd
p is

Ω
(p

nd−2(logd)−1
)

.

We note that, since whp
∣

∣

∣E
(

Qd
p

)∣

∣

∣=O(n) when p = O
(

1
d

)

and the Hadwiger number h(G)

of a graph G satisfies
(h(G)

2

)

≤ |E (G)|, it follows that both of these results are optimal up to

polynomial terms in d . We note further that a bound on the likely circumference of Qd
p was

also obtained in concurrent work by Haslegrave, Hu, Kim, Liu, Luan and Wang [36], who

showed the likely existence of a cycle of length Ω
(

nd−32
)

using different methods.

The paper is structured as follows. In Section 2 we collect some lemmas which will be

useful in the rest of the paper. Then in Section 3 we prove our main results (Theorems 1.3

and 1.4) on the likely expansion of the giant component of Qd
p . In Section 4 we use our

main result to prove Theorems 1.5–1.8, and then finally in Section 5 we mention some open

problems and avenues for further research.

2. PRELIMINARIES

For real numbers x, y, z we will write x = y ± z to mean that y − z ≤ x ≤ y + z.

If G is a graph and X is either a subgraph of G , or a subset of V (G), then we will write G−X

for the induced subgraph of G on V (G) \ V (X ) or V (G) \ X , respectively. Given a k ∈N and a

subset S ⊆V (G), we will write N k
G

(S) for the kth external neighbourhood of S in G , that is, the

set of vertices in Sc := V (G) \ S which are at distance at most k from S in G . When k = 1, or

when the graph is clear from context, we will omit the subscript or superscript, respectively.

Given (not necessarily disjoint) subsets A,B ⊆V (G) we will write eG (A,B) for the number of
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edges in G with one endpoint in A and the other in B and we write eG (S)= eG (S,S). We say a

subset S ⊆V (G) is connected (in G) if G[S] is connected.

Throughout the paper, unless the base is explicitly mentioned, all logarithms will be the

natural logarithm. We will also omit floor and ceiling signs for ease of presentation.

We will want to use a more explicit form of Theorem 1.1. It is stated in [2] that a careful

treatment of their proof gives the following result, which also appears explicitly in the work

of Bollobás, Kohayakawa and Łuczak [14, Theorem 32].

Theorem 2.1 ([2]). Let 0 < c ≪ δ, let p = 1+δ
d

and let γ := γ(δ) be the survival probability of

the Po(1+δ) branching process. Then whp there is a unique component L1 of order at least

cn in Qd
p and |V (L1)| = (γ±c)n.

The following simple lemma, which is a slight adaptation of a result in [49], allows us to

decompose a tree into roughly equal sized parts.

Lemma 2.2. Let T be a tree such that ∆(T ) ≤ C1, all but r vertices of T have degree at

most C2 ≤ C1 and |V (T )| ≥ ℓ, for some C1,C2,ℓ,r > 0. Then there exist disjoint vertex sets

A1, . . . , As ⊆V (T ) such that

• V (T ) =
⋃s

i=1
Ai ;

• T [Ai ] is connected for each 1 ≤ i ≤ s;

• T [Ai ] has diameter at most 2ℓ;

• ℓ≤ |Ai | ≤C1ℓ for each 1 ≤ i ≤ r ; and

• ℓ≤ |Ai | ≤C2ℓ for each r < i ≤ s.

Proof. We choose an arbitrary root w for T . For a vertex v in a rooted tree S, let us write Sv

for the subtree of S rooted at v .

We construct the vertex sets Ai inductively. Let us start by setting T (0) = T . Given a tree

T (i ) rooted at w such that |V (T (i )) | ≥ ℓ, let vi be a vertex of maximal distance from w such

that
∣

∣V
(

T (i )vi

)∣

∣≥ ℓ. We take Ai+1 =V
(

T (i )vi

)

and let T (i +1) = T (i )−T (i )vi
. We stop when

|V (T (i )) | < ℓ, and in that case we add V (T (i )) to the final Ai . Finally, let us re-order the sets

Ai so that they are non-increasing in size.

We claim that the sets A1, A2, . . . , As satisfy the conclusion of the lemma. Indeed, the first

two properties are clear by construction. Note that each Ai is the union of the vertices of

T (i )x over all children x of vi , together with a connected set of size at most ℓ which contains

vi , and by our choice of vi , |T (i )x | < ℓ for every child x of vi .

In particular, it follows that every vertex in Ai is at distance at most ℓ from vi , and so T [Ai ]

has diameter at most 2ℓ, and the third property holds. Furthermore, if vi 6= w , then vi has

d(vi )− 1 children and so, it follows that |Ai+1| ≤ (d(vi )− 1)(ℓ− 1)+ℓ≤ d(vi )ℓ. Similarly, if

vi = w , then we note that Ai+1 =V (T (i )) and so |Ai+1| ≤ d(w)(ℓ−1)+1≤ d(w)ℓ. Therefore,

since all but r vertices of T have degree at most C2, the fourth and fifth properties also hold.

�

We will also need the following bound on the number of subtrees of a graph.

Lemma 2.3 ([7, Lemma 2]). Let G be a graph with maximum degree ∆, let v ∈ V (G) and let

t (v,k) be the number of rooted trees in G which have root v and k vertices. Then

t (v,k) ≤
kk−2

∆
k−1

(k −1)!
≤ (e∆)k−1.

The following theorem allows us to deduce the existence of a long cycle from vertex-

expansion properties of a graph. For wider context on properties of expanding graphs, see

the survey of Krivelevich [47].
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Theorem 2.4 ([48, Theorem 1]). Let k ≥ 1, t ≥ 2 be integers. Let G be a graph on more than k

vertices satisfying

|N (W )| ≥ t , for every W ⊆V (G) with
k

2
≤ |W | ≤ k.

Then G contains a cycle of length at least t +1.

Furthermore, the next theorem allows us to deduce the existence of a large complete mi-

nor in a graph without any small separators. It is easy to see that graphs with good vertex-

expansion do not contain any small separators, and in fact it is known (see [47, Section 5])

that the converse is true, in the sense that graphs without small separators must contain

large induced subgraphs with good vertex-expansion.

Theorem 2.5 ([43, Theorem 1.2]). Let G be a graph with N vertices and with no Kt -minor.

Then V (G) contains a subset S of size O
(

t
p

N
)

such that each connected component of G−S

has at most 2
3 N vertices.

Given a discrete random variable X taking values in X the entropy of X is given by

H(X ) :=
∑

x∈X

−p(x) log2(p(x)),

where p(x) =P(X = x). We will need only two basic facts about the entropy function.

Lemma 2.6.

(i) H(X ) ≤ log2(|X |) with equality iff X is uniformly distributed,

(ii) H(X1, X2, . . . , Xd ) ≤
∑d

i=1 H(Xi ),

where the joint entropy H(X1, X2, . . . , Xd ) is the entropy of the random vector (X1, X2, . . . , Xd ).

For proofs of these facts, and more background on discrete entropy, see, e.g., [3, Chapter

15].

We will use the following Chernoff type bounds on the tail probabilities of the binomial

distribution, see, e.g., [3, Appendix A].

Lemma 2.7. Let N ∈N, let p ∈ [0,1] and let X ∼ Bin(N , p).

(i) For every positive a with a ≤ Np

2 ,

P
(∣

∣X −N p
∣

∣> a
)

< 2 exp

(

−
a2

4N p

)

.

(ii) For every positive b,

P
(

X > bN p
)

≤
( e

b

)bNp
.

In particular, the following two simple consequences of Lemma 2.7 in our setting will be

useful. The first bounds the number of high degree vertices in Qd
p for small p.

Lemma 2.8. Let c > 0 be a constant and let p = c
d

. Then whp Qd
p contains at most nd−4

vertices of degree at least logd .

Proof. For any fixed vertex v ∈ V
(

Qd
)

, the degree of v in Qd
p is distributed as Bin(d , p), and

so by Lemma 2.7 (ii) we have that

P

(

dQd
p

(v)≥ logd
)

≤
(

e(1+c)

logd

)logd

≤ d− log logd
2 .

7



It follows that the expected number of vertices in Qd
p with degree at least logd is at most

nd− log logd
2 . Hence, by Markov’s inequality, whp there at most nd−4 vertices with degree at

least logd . �

We note that the above argument is suboptimal and with a little more care, the bound on

the degree of the exceptional vertices could be improved from logd to
C logd

loglogd
for some suit-

ably large constant C . However, for ease of presentation we have not attempted to optimise

any logarithmic factors in our proofs.

The second consequence of Lemma 2.7 allows us to find large matchings in random sub-

sets of edges in Qd
p .

Lemma 2.9. Let δ > 0 be a constant, let p = δ
d

and let F ⊆ E (Qd ) be such that |F | ≥ t . Then

there exists a constant c > 0 such that Fp contains a matching of size at least ctd−1 with

probability at least 1−exp
(

−ctd−1
)

.

Proof. We note that we can assume that |F | = t . Let us consider the number of maximal

matchings in Fp of size ℓ.

There are clearly at most
(|F |
ℓ

)

potential maximal matchings of size ℓ, and given a matching

M of size ℓ in F , in order for it to be a maximal matching in Fp its edges have to appear in

Fp , which happens with probability pℓ, and also there can be no other edges in Fp which are

disjoint from M . Since there are at most 2ℓd edges which share a vertex with edges in M ,

there is a set of |F |−2ℓd edges which do not appear in Fp , which happens with probability at

most (1−p)|F |−2ℓd . Hence, by the union bound, the probability that Fp contains a maximal

matching of size ℓ is at most
(

|F |
ℓ

)

(

δ

d

)ℓ (

1−
δ

d

)|F |−2ℓd

.

In particular, as long as c ≪ δ, we can bound the probability q that Fp contains a maximal

matching of size ℓ≤ ctd−1 from above by

q ≤
ctd−1
∑

ℓ=1

(

t

ℓ

)

(

δ

d

)ℓ (

1−
δ

d

)t−2ℓd

≤
ctd−1
∑

ℓ=1

(

et

ℓ

)ℓ (

δ

d

)ℓ (

1−
δ

d

) t
2

≤ exp

(

−
δt

2d

) ctd−1
∑

ℓ=1

(

eδt

ℓd

)ℓ

,

since in this range of ℓ we have that t −2ℓd ≥ t
2

. However, since c ≪ δ, it can be seen that the

ratio of the consecutive terms
(

eδt
ℓd

)ℓ
is at most 1

2 , and so the sum is dominated by the final

term. Hence we can bound

q ≤ 2 exp

(

−
δt

2d

)(

eδ

c

)ctd−1

≤ 2 exp

(

ct

d
log

(

eδ

c

)

−
δt

2d

)

≤ 2 exp
(

−ctd−1
)

.

�

We note that the conclusion of Lemma 2.9 is optimal up to a constant factor. Indeed, whp,

for example by Lemma 2.7, there will only be O
(

td−1
)

edges in Fp .

We will use the following well-known result on edge-isoperimetry in the hypercube, origi-

nally due to Harper [34], see also Lindsey [54], Bernstein [6], and Hart [35].

Theorem 2.10 ([6, 34, 35, 54]). For any A ⊆V
(

Qd
)

with |A| ≤ 2d−1,

e(A, Ac) ≥ |A|(d − log2 |A|).

Finally we will use use the following lemma which bounds the likely number of edges

spanned by connected subsets in Qd
p .
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Lemma 2.11. Let δ > 0 be a constant and let p = δ
d

. Then there exists a constant C := C (δ)

such that whp every subset S ⊆ V (Qd ) such that |S| ≥ d and Qd
p [S] is connected satisfies

eQd
p

(S) ≤C |S|.

Proof. Note that, if S ⊆ V (Qd ) has size |S| =: k, then, since Qd is d-regular, it follows from

Theorem 2.10 that eQd (S) ≤ k log2 k

2 .

Let us bound from above the probability that there exists a subset of V (Qd
p ) of size k which

is connected and spans at least C k many edges. Such a subset must span a tree, which we

can specify by choosing a vertex and one of the at most (ed)k−1 trees of size k containing that

vertex, using Lemma 2.3 to bound this quantity. This tree is contained in Qd
p with probability

pk−1.

If we let S be the vertex set of this tree, then by the above comment eQd (S) ≤ k log2 k

2 . In

order for eQd
p

(S) ≥ C k there must be a set of C k − (k −1) ≥ (C −1)k further edges of Qd in S

which appear in Qd
p , which happens with probability at most p(C−1)k .

Hence, writing C ′ =C−1 for ease of presentaiton, by the union bound, the probability that

such a set of size k ≥ d exists is at most

n
∑

k=d

n(ed)k−1pk−1

(

k log2 k

2

C ′k

)

pC ′k ≤
n
∑

k=d

2k (eδ)k−1

(

eδ log2 k

2C ′d

)C ′k

≤
n
∑

k=d

(

2
1

C ′ (eδ)
1+ k−1

kC ′

4C ′

)C ′k

= o(1),

as long as C ′ =C −1 is sufficiently large in terms of δ.

�

3. EXPANSION IN THE GIANT COMPONENT

We begin by establishing some likely properties of the giant component of Qd
p which will

be useful in our proof.

The first says that whp the second largest component of Qd
p in the supercritical regime is

only of linear size in d . We note that it is mentioned already in [2] that such a result can be

shown using methods of Komlós, Sulyok and Szemerédi from [45], however a proof can be

found in [12, Theorem 31].

Lemma 3.1 ([12, Theorem 31]). Let 0 < δ < 1 and let p = 1+δ
d

. Then there exists a constant

K1 := K1(δ) > 0 such that the second largest component in Qd
p has order at most K1d .

We will also use the following consequence of Lemma 3.1.

Lemma 3.2. Let 0 < δ1 < 1 and δ2 ≪ δ1, let q1 = 1+δ1

d
and q2 = δ2

d
and let L′

1 and L1 be the

largest components in Q1 :=Qd
q1

and Q2 :=Q1∪Qd
q2

, respectively. Given a vertex v ∈V (L′
1), let

Cv be the set of vertices which are contained in some component of L1−L′
1 which is adjacent

to v in Q2. Then there exists a constant K2 := K2(δ1) > 0 such that whp |Cv | ≤ K2d for every

v ∈V (L′
1).

Proof. We first note that by, Lemma 3.1, there exists a constant K1 := K1(δ1) such that whp

every component of Q1 except L′
1 has order at most K1d . Let K2 ≫ δ−1

1 .

Suppose that there is some vertex v ∈ V (L′
1) such that |Cv | ≥ K2d . We note that Cv ∪ {v}

is connected in Q2, and Cv is the disjoint union of some set {C1, . . . ,Cr } where each Ci is the

9



vertex set of some component of Q1, each of which has size at most K1d . It follows that there

must be some subset Ĉ ⊆Cv such that Ĉ ∪ {v} is connected in Q2, K2d ≤ |Ĉ | ≤ (K1+K2)d and

Ĉ is the union of some subset of {C1,C2, . . . ,Cr }.

In particular, there is some spanning tree T of Ĉ ∪{v}, all of whose edges are present in Q2,

such that no edge in the edge-boundary of V (T ) \ {v} is present in Q1.

Let us bound the probability that such a tree of size k exists in Q2 for each

K2d +1 ≤ k ≤ (K1 +K2)d +1.

We can fix such a tree T by choosing a root vertex v and choosing one of the at most (ed)k−1

possible rooted trees of size k with root v in Qd , where we have bounded the number of

possible trees by Lemma 2.3.

Now, T has k −1 edges and by Theorem 2.10 there are at least (k −1)(d − log2(k −1)) edges

in the edge-boundary of V (T ) \ {v}. Note that each edge is in Q2 with probability at most

(q1 +q2) and each edge is not in Q1 with probability (1−q1), and that that, whilst these two

events are not necessarily independent, they are clearly negatively correlated.

It follows by the union bound that the probability that such a tree of size k exists in Q2 is

at most

n(ed)k−1
(

q1 +q2

)k−1 (

1−q1

)(k−1)(d−log2(k−1))
.

In particular, the probability that such a tree exists for k ∈ I := [K2d +1,(K1+K2)d +1] is at

most

n
∑

k∈I

(e(1+δ1 +δ2))k−1

(

1−
1+δ1

d

)(1−o(1))(k−1)d

≤ n
∑

k∈I

exp
(

(k −1)
(

1+ log(1+δ1 +δ2)− (1−o(1))(1+δ1)
))

≤ n
∑

k∈I

exp

(

−
(k −1)δ2

1

5

)

= o(1),

where we used that log(1+δ1+δ2) ≤ δ1−
δ2

1

4 for all δ1 ∈ (0,1), sinceδ2 ≪ δ1 and that K2dδ2
1 ≫ d ,

since K2 ≫ δ−1
1 . �

The next lemma says that whp the giant component of Qd
p is in some sense ‘dense’ in the

hypercube Qd .

Lemma 3.3. Let δ> 0 and let p = 1+δ
d

. Then there exists a constant c > 0 such that whp every

vertex in Qd is at distance at most two from at least cd 2 vertices in the largest component L1

of Qd
p .

Proof. Let us choose some constant c ′ ≪ δ. Fix an arbitrary vertex v ∈V
(

Qd
)

, which without

loss of generality we may assume to be the origin. Let k = c ′d and let d ′ = d −k = (1− c ′)d .

We define s =
(k

2

)

pairwise disjoint subcubes of dimension d ′ at distance at most two from v

given by fixing some pair of 1s in the first k coordinates and varying the last d ′ coordinates.

Let these cubes be Q(1), . . . ,Q(s) and let vi be the vertex in Q(i ) at distance two from v .

Now, since c ′ ≪ δ, p is still supercritical in Qd ′
and so, by Theorem 2.1 and the fact that

Qd is transitive, there is some constant α > 0 such that probability that vi is contained in

the largest component of Q(i )p is at least α, and these events are independent for different i .

Hence, by Lemma 2.7, with probability at least 1−exp
(

−c ′s
)

at least αs
2

of the vi are contained

in the largest component of Q(i )p .
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Furthermore, again by Theorem 2.1 and Lemma 2.7, whp each Q(i )p contains a compo-

nent whose order is Ω
(

2d ′
)

and again these events are independent for different i , and hence

with probability at least 1−exp
(

−c ′s
)

at least (1−α
4 )s of the Q(i )p contain a component whose

order is Ω
(

2d ′
)

.

It follows that with probability at least 1−2 exp(−c ′α) at least αs
4

:= cd 2 of the vi are con-

tained in a component in Q(i )p whose order is Ω
(

2d ′
)

. Hence v is within distance two of at

least cd 2 vertices lying in components in Qd
p whose order is Ω

(

2d ′
)

with probability at least

1−2 exp(−c ′s) = 1−o
(

n−1
)

.

Then, by the union bound, whp every vertex in Qd is within distance two of at least cd 2

many vertices lying in components in Qd
p whose order is Ω

(

2d ′
)

. However, by Lemma 3.1,

whp there is a unique component L1 in Qd
p whose order is superlinear in d , and so whp

every vertex in Qd is within distance two of at least cd 2 vertices in L1. �

With these results in hand, let us briefly sketch the strategy to prove Theorem 1.3 about

the vertex-expansion properties of the giant component of Qd
p , where p = 1+ǫ

d
. We will use

a sprinkling argument, viewing Qd
p as the union of two independent random subgraphs Qd

q1

and Qd
q2

where we have chosen q1 = 1+δ1

d
and q2 = δ2

d
such that (1− q1)(1− q2) = 1−p and

δ2 ≪ δ1. Note that, in particular, δ1 is approximately ǫ, and so q1 still lies in the supercritical

regime. Let us denote by L′
1 and L1 the largest components in Q1 :=Qd

q1
and Q2 := Q1 ∪Qd

q2
,

respectively, noting that Q2 ∼Qd
p .

Given a partition of V (L′
1) into two disjoint subsets A,B such that |A|, |B | ≥ t , it is relatively

easy to show that whp there is a large family of vertex-disjoint A-B-paths of length at most 5

in Qd
q2

. Indeed, by Lemma 3.3 every vertex in Qd is within distance two of L′
1 and so we can

extend A,B to a partition of V (Qd ) into two pieces A′ ⊇ A and B ′ ⊇ B such that every vertex in

A′ is within distance two of A and every vertex in B ′ is within distance two of B . By Theorem

2.10 there are many edges in Qd between A′ and B ′ and each such edge can be extended to

an A-B-path in Qd of length at most 5. Very naively, we can thin this family of paths out to a

vertex-disjoint family using the fact that ∆(Qd ) = d whilst retaining an Ω(d−6) proportion of

them. Furthermore, after sprinkling we expect about an Ω(d−5) proportion of these paths to

be contained in Qd
q2

. Then, as long as t is large enough, the Chernoff bound will imply that

whp there is a large vertex-disjoint family of A-B-paths of length at most 5 in Qd
q2

.

In fact, our actual argument will be a bit more precise, to enable us to find a larger family

of paths. However, the probability of failure in these arguments will not be small enough to

deduce from a union bound that this holds for all such partitions of V (L′
1).

Instead, we can use Lemma 2.2, with ℓ being some small power of d , to split L′
1 into a

collection C of connected pieces each having polynomial size in d . If these pieces are large

enough, then there will be sufficiently few partitions of C into two pieces that the probability

bound from the argument above will be effective, and we can deduce that whp whenever we

partition C into two parts there will be a large family of vertex-disjoint paths between them

in Qd
q2

.

Furthermore, by Lemma 3.2 we may assume that for any vertex v ∈V (L′
1) there are only a

small number of vertices contained in the components of R := L1 −L′
1 which are adjacent to

v in Q2.

Suppose then that S is some subset of V (L1). We split S into three pieces:
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• S1 is the set of vertices which lie in components of R ;

• S2 is the set of vertices which are contained in pieces C ∈ C such that C ∩S 6= ; and

C \ S 6= ;;

• S3 is the set of vertices which are contained in pieces C such that C ⊆ S.

If S1 is large, then since each vertex in L′
1 is only adjacent in Q2 to components in R with

a small total volume, we can greedily choose a large disjoint family {C (x) : x ∈ X } of compo-

nents of R which all meet S, each of which is adjacent in Q2 to a unique vertex x ∈ L′
1.

For each x ∈ X , either x ∈ S, or there is some vertex in the neighbourhood of S in C (x)∪{x}.

In particular, either S has a large neighbourhood, or S ∩V (L′
1) = S2 ∪S3 is large.

Similarly, if S2 is large then, since each piece in C is small, S2 contains vertices in many

pieces of C , and for each such piece C we have that C \ S 6= ;. However, since each piece

C ∈C is connected in Q1, each piece such that C ∩S2 6= ; contains some vertex in the neigh-

bourhood of S, and so the neighbourhood of S is large.

Hence, we may assume that S3 is large and S2 is small. In this case, we look at the partition

of C given by pitting the pieces contained in S3 against the rest. By the above argument whp

there is a large family of vertex-disjoint paths between these two partition classes and, since

S2 is small, not many of these meet S2. Every path which does not meet S2 starts in S3 ⊆ S

and ends in Sc , and so contains some vertex in the neighbourhood of S. Hence, in every case

we can conclude that S has a large neighbourhood.

Let us begin by proving the following result, which guarantees the likely existence of a large

family of vertex-disjoint paths between the two parts of any fixed non-trivial partition of

V (L′
1). Note that, since there are subsets A of V (Qd ) whose edge-boundary in Qd is as small

as |A|(d−log2 |A|), for example subcubes, we cannot hope to guarantee the likely existence of

a family of paths from A to Ac in the random subgraph Qd
p with p =O

(

1
d

)

of size larger than

O
(

|A|
(

1− log2 |A|
d

))

. Hence, the following lemma is optimal up to a multiplicative constant.

Lemma 3.4. Let δ,c > 0, let q = δ
d

, let L ⊆ Qd be such that every vertex in Qd is at dis-

tance at most two from at least cd 2 vertices in L and let A ∪B = V (L) be a partition of V (L)

with min{|A|, |B |} = t . Then there exists a constant c ′ > 0 such that there exists a family of

c ′t
(

1− log2 t

d

)

vertex-disjoint A-B-paths of length at most five in Qd
q with probability at least

1−exp
(

−c ′t
(

1− log2 t

d

))

.

Proof. Throughout the proof we will introduce a sequence of constants c1,c2,c3, . . . under the

assumption that each ci is sufficiently small in terms of the preceding c j , δ and c.

Let s := t (d − log2 t ) and let us define

N̂ (A) =
{

v ∈V
(

Qd
)

: v 6∈ A and
∣

∣

∣NQd (v)∩ A
∣

∣

∣≥ c1d
}

,

and similarly

N̂ (B) =
{

v ∈V
(

Qd
)

: v 6∈B and
∣

∣

∣NQd (v)∩B
∣

∣

∣≥ c1d
}

.

We first note that we may assume that there are at most c6s edges between A and B in

Qd , since otherwise, by Lemma 2.9, with probability at least 1−exp
(

−c7sd−1
)

there will be a

matching of size at least c7sd−1 between A and B in Qd
q . In particular, we can assume that

|B ∩ N̂ (A)| ≤ c5sd−1 and |A∩ N̂ (B)| ≤ c5sd−1. (1)

By assumption every vertex in Qd is at distance at most two from at least cd 2 vertices in

L. Hence, we can partition the vertices of Qd into two disjoint subsets A′ and B ′ such that
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A ⊆ A′ and B ⊆ B ′, each vertex in A′ \ A is within distance two of at least cd2

2 vertices in A and

each vertex in B ′ \ B is within distance two of at least cd2

2
vertices in B .

Since |A′|, |B ′| ≥ min{|A|, |B |} = t , it follows from Theorem 2.10 that there is a set F of s

edges between A′ and B ′. Then, at least one of the following four cases happens:

i) At least s
4 edges of F have an endpoint in A;

ii) At least s
4 edges of F have an endpoint in A′∩ N̂ (A);

iii) At least s
4 edges of F have an endpoint in A′∩ N̂ (B);

iv) At least s
4

edges of F have an endpoint in A0, where A0 = A′ \ (A∪ N̂ (A)∪ N̂ (B)).

We will see that case iv) is the most complicated case, so let us assume for now that cases

i)–iii) do not hold. We will indicate briefly how to deal with the other cases at the end. If we

let F ′ ⊆ F be a set of s
4 edges, each of which has an endpoint in A0, then again at least one of

the following four cases happens:

I) At least s
16

edges of F ′ have an endpoint in B ;

II) At least s
16

edges of F ′ have an endpoint in B ′∩ N̂ (B);

III) At least s
16 edges of F ′ have an endpoint in B ′∩ N̂ (A);

IV) At least s
16 edges of F ′ have an endpoint in B0, where B0 = A′ \ (A∪ N̂ (A)∪ N̂ (B)).

Again we will assume for now that that cases I)–III) do not hold.

We will construct our family of paths using a sequence of matchings: the first M1 between

A′ and B ′; then M2 and M3 joining some subset of the endpoints of M1 to N̂ (A) and N̂ (B), re-

spectively; and then finally M4 and M5 joining some subset of the endpoints of these match-

ings to A and B , respectively. See Figure 1.

A′ B ′

A B

N̂ (A) N̂ (B)

M4 M2 M1 M3 M5

FIGURE 1. The sequence of matchings M1–M5, with one of the paths resulting

from the concatenation highlighted in bold. Note that, unlike in the diagram,

it may be the case that N̂ (A) meets B ′, or N̂ (B) meets A′.

Let F1 ⊆ F ′ be a set of s
16 edges whose endpoints lie in A0 and B0. Then, by Lemma 2.9,

with probability at least 1−exp
(

−c2sd−1
)

there is a matching M1 contained in (F1)q of size

at least c2sd−1. Let A1 ⊆ A0 and B1 ⊆ B0 be the endpoints of this matching.

Since each vertex in A1 is within distance two in Qd of at least cd2

2 vertices in A, ∆(Qd ) = d ,

and no vertex in A1 is in A or N̂ (A), it follows that we can fix, for each vertex ui ∈ A1, a star Ti
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in Qd rooted at ui with c1d leaves, such that each leaf is adjacent in Qd to at least c1d vertices

in A and no leaf is in A, and so each leaf is in N̂ (A). Note that, since each edge in these stars is

from A1 ⊆ A′ to N̂ (A) and B0 ⊆ B ′ is disjoint from A′∪ N̂ (A), it follows that none of the edges

in these stars lie in F1, each edge of which meets B0.

Let C1 be the set of vertices which are leaves in some star Ti and let F2 be the set of edges

between A1 and C1 contained in these stars. Then F2 ∩F1 =; and |F2| = |A1|c1d = c1c2s.

Then, again by Lemma 2.9, with probability at least 1−exp
(

−c3sd−1
)

there is a matching

M2 contained in (F2)q of size at least c3sd−1. Let A2 ⊆ A1 be the endpoints of this matching

in A1 and let B2 be the set of vertices in B1 joined to a vertex in A2 via the matching M1. We

now make a similar argument for the vertices in B2.

Namely, since each vertex in B2 is within distance two in Qd of at least cd2

2 vertices in B ,

∆(Qd ) = d , and no vertex in B2 is in B or adjacent to B , it follows that we can fix, for each

vertex vi ∈ B2 a star T ′
i

in Qd rooted at vi with c1d leaves, such that each leaf is adjacent in

Qd to at least c1d vertices in B and no leaf is in B , and so each leaf is in N̂ (B). Note that, as

before, since each edge in these stars is from B2 ⊆ B ′ to N̂ (B) and A0 ⊆ A′ is disjoint from

B ′∪N̂ (B), none of the edges in these stars lie in F1 or F2, each edge of which has an endpoint

in A0.

Hence, if we let D1 be the set of vertices which are leaves in some star T ′
i

and consider

the set of edges F3 between B2 and D1 contained in these stars, then F3 ∩ (F1 ∪F2) = ; and

|F3| = |B2|c1d = c1c3s. Again, by Lemma 2.9, we can conclude that with probability at least

1−exp
(

−c4sd−1
)

there is a matching M3 contained in (F3)q of size at least 2c4sd−1.

By combining the matchings M1, M2 and M3, we obtain a family of vertex-disjoint paths

P
′ = {P1, . . . ,Pr } of size 2c4sd−1, where each Pi has one endpoint xi ∈C1, which by construc-

tion of C1 is adjacent in Qd to c1d vertices in A, and a second endpoint yi ∈ D1, which simi-

larly is adjacent in Qd to c1d vertices in B . Let C2 ⊆C1 and D2 ⊆ D1 be the sets of endpoints

of P
′.

We note that the set of edges between C2 and A and the set of edges between D2 and B

do not intersect with the set of edges F1 ∪F2 ∪F3 which we already exposed. Indeed, every

edge in F1 ∪ F2 has an endpoint in A0, which by construction is disjoint from C2 ⊆ N̂ (A),

D2 ⊆ N̂ (B), A and B . Similarly every edge in F1 ∪F3 has an endpoint in B0, which is again

disjoint from C2,D2, A and B . However, the set of edges between C2 and A might intersect

with the set of edges between D2 and B .

To deal with this, let I1 be the set of i such that some edge from xi ∈ C2 to A coincides

with an edge from D2 to B . Then, since A∩B =;, it follows that xi ∈B . However, since each

xi ∈C2 ⊆ N̂ (A), it follows that {xi : i ∈ I1} ⊆ N̂ (A)∩B and hence |I1| ≤ |N̂ (A)∩B | ≤ c5sd−1 by

(1).

Similarly, if we let I2 be the set of i such that some edge from yi ∈ D2 to B coincides with

an edge from C2 to A, then we can conclude that |I2| ≤ c5sd−1.

Hence, if we let P = {Pi : i ∈ [r ] \ (I1 ∪ I2)} and let C3 and D3 be the endpoints of these

paths, then |P | ≥ c4sd−1. Then, there is a set F4 of at least |P |c1d = c8s edges between C3

and A and by construction F4 ∩ (F1 ∪F2 ∪F3) =;. Hence, by Lemma 2.9, with probability at

least 1−exp
(

−c9sd−1
)

there is a matching M4 of size c9sd−1 in (F4)q between C3 and A. Let

D4 ⊆ D3 be the endpoints of the paths in P whose other endpoint is an endpoint of an edge

in M4.

As before, there is a set F5 of at least c10s edges between D4 and B , and by construc-

tion F5 ∩ (F1 ∪F2 ∪F3 ∪F4) =;. Therefore, again by Lemma 2.9, with probability at least

1−exp
(

−c11sd−1
)

there is a matching M5 of size c11sd−1 in (F5)q between D4 and B .

14



In particular, by combining the matchings M1, M2, M3, M4 and M5 we can construct a fam-

ily of c11sd−1 vertex-disjoint A-B-paths in Qd
q .

Note that, throughout the argument we assumed a finite number of whp events occurred,

and in each case the probability of failure was at most exp
(

−c11sd−1
)

, and so the conclusion

holds with probability at least 1−exp
(

−c12sd−1
)

. In particular it follows that the claim holds

with c ′ = c12.

If one of the cases i)–iii) or I)–III) holds, then we can avoid building some of the matchings

Mi . For example, if case ii) holds, then instead of building M2 and M4 we can instead build

a large matching directly from A0 to A before building M1, M3 and M5. Similarly, if case i)

holds, then we only need to build M1, M3 and M5. If neither case i) nor ii) hold, but case

iii) holds, then A′ must contain at least s
4d

vertices of N̂ (B), and so there is a set of at least
c4s
4 edges from A′ to B , using which we can build a matching of size c5s using Lemma 2.9.

We can then extend this matching to a family of A-B-paths using matchings M2 and M4 as

before. Similar arguments work when one of the cases I)–III) holds.

In fact, some possibilities are already excluded by our earlier assumptions, for example we

can assume i) and I) do not simultaneously hold since we are assuming there are at most c6s

edges between A and B . �

At this point we have all the necessary tools to prove the following theorem, which clearly

implies Theorem 1.3.

Theorem 3.5. Let 0 < α ≪ ǫ, let p = 1+ǫ
d

and let L1 be the largest component of Qd
p . Then

there exists a constant β> 0 such that whp:

(a) every subset S ⊆V (L1) satisfying |S| ≤ |V (L1)|
2 is such that

∣

∣

∣NQd
p

(S)
∣

∣

∣≥β|S|
(

1−
log2 |S|

d

)2

d−3 ≥βd−5;

(b) every subset S ⊆V (L1) satisfying αn ≤ |S| ≤ |V (L1)|
2

is such that
∣

∣

∣NQd
p

(S)
∣

∣

∣≥β|S|d−2(logd)−1.

Proof. Throughout the proof we will introduce a sequence of constants c1,c2,c3, . . . under the

assumption that each ci is sufficiently small in terms of the preceding c j , ǫ and α.

We will argue using a sprinkling argument. Let c2 ≪ c1 ≪ α, let q2 = c2

d
and let q1 =

p−q2

1−q2
.

Note that, since c2 ≪ ǫ it follows that q1 is still supercritical. Furthermore, if we let γ and γ1

be the survival probabilities of the Po(1+ǫ) and Po(d q1) branching processes, respectively,

then since c2 ≪ c1 we may assume that

γ−γ1 ≤ c1. (2)

We will generate independently two random subgraphs Qd
q1

and Qd
q2

and let Q1 := Qd
q1

and

Q2 :=Q1 ∪Qd
q2

, so that Q2 ∼Qd
p .

Let us first note a few likely properties of the graphs Q1 and Q2. Firstly, it follows from

Lemma 2.8 that

whp Q1 contains at most nd−4 vertices of degree at least logd . (3)

Furthermore, if we let L′
1 and L1 be the largest components in Q1 and Q2, respectively, then

by Theorem 2.1

whp |V (L1)| = (γ±c3)n and |V (L′
1)| = (γ1 ±c3)n. (4)

Note that (2) and (4) imply that |V (L′
1)| ≥ (γ−c1 −c3)n ≥ 3

4 |V (L1)|.
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Given a vertex v ∈ V (L′
1), let Cv be the set of vertices which are contained in some com-

ponent of L1 −L′
1 which is adjacent to v in Q2. Then, by Lemma 3.2 there exists a constant

K2 := K2(d q1 −1) > 0 such that

whp |Cv | ≤ K2d for every vertex in v ∈V (L′
1), (5)

where we may assume that K −1
2 := c4 ≪ c3. Note, in particular, that (5) implies that every

component in L1 −L′
1 has size at most K2d .

Moreover, by Lemma 3.3,

whp every vertex in Qd is at distance at most two from at least c5d 2 vertices in L′
1. (6)

In what follows, we will assume that (2)–(6) hold.

We want to split L′
1 into a disjoint family of relatively small, connected pieces, however in

order to treat the cases (a) and (b) we will need to use slightly different families. Given s ∈N,

let us write

b(s) := 1−
log2 s

d
.

• For case (a), for each 1 ≤ s ≤ |V (L1)|
2 we use Lemma 2.2 to split L′

1 into a family C (s)

of vertex-disjoint connected subgraphs, which we will refer to as pieces, such that all

pieces have size between c−1
8 b(s)−1d and c−1

8 b(s)−1d 2.

• Similarly, for case (b) we use (3) and Lemma 2.2 to split L′
1 into a family C

′ of con-

nected pieces such that at most nd−4 of the pieces in C
′ have size between c−1

8 d and

c−1
8 d 2 and the rest have size between c−1

8 d and c−1
8 d logd .

We now state two very similar claims about the existence of certain path families, whose

proofs we defer to the end of this proof. The first will be useful for case (a).

Claim 3.6. Whp for any 1 ≤ t ≤ 2s ≤ |V (L1)| and any partition of C (s) into two sets {CA,CB },

where A :=
⋃

CA and B :=
⋃

CB , with min{|A|, |B |} = t , there is a family of at least c7tb(t )

vertex-disjoint A-B-paths of length at most five in Qd
q2

.

The second, which follows by a similar argument, will be useful for case (b).

Claim 3.7. Whp for any partition of C
′ into two sets {C ′

A,C ′
B }, where A :=

⋃

C
′
A and B :=

⋃

C
′
B ,

with min{|A|, |B |} = t ≥ αn
4

there is a family of at least c7td−1 vertex-disjoint A-B-paths of

length at most five in Qd
q2

.

Let us further assume that Qd
q2

satisfies the conclusions of Claims 3.6 and 3.7. We will

subsequently be able to deduce the claimed expansion properties deterministically.

Let S ⊆V (L1) be an arbitrary subset of size s ≤ |V (L1)|
2 and let S1 := S ∩V (R) be the vertices

of S which lie in R := L1 −L′
1.

In order to deal with case (a) let us further split S ∩V (L′
1) into two parts as follows:

• S2 is the set of vertices which are contained in pieces C ∈C (s) such that S∩C 6= ; and

S \C 6= ;;

• S3 is the set of vertices which are contained in pieces C ∈C (s) such that C ⊆ S.

Similarly, to deal with case (b) we further split S ∩V (L′
1) into two parts as follows:

• S ′
2 is the set of vertices which are contained in pieces C ∈C

′ such that S ∩C 6= ; and

S \C 6= ;;

• S ′
3 is the set of vertices which are contained in pieces C ∈C

′ such that C ⊆ S.
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Case (a) :

Suppose first that |S1| ≥ s
2

. Then, by (5) we can choose some subset X ⊆ V (L′
1) of size

at least c4s
2d

together with a disjoint family {C (x) : x ∈ X } of components of R such that x is

adjacent to C (x) in Q2 for each x ∈ X and each C (x) meets S.

For each x ∈ X either x ∈ S, or there is some vertex in C (x)∪ {x} which lies in the neigh-

bourhood of S. In particular, it follows that either
∣

∣NQ2(S)
∣

∣≥ c4s
4d

or

|S2 ∪S3| = |S ∩V (L′
1)| ≥ min

{ s

2
,

c4s

4d

}

=
c4s

4d
.

Suppose then that |S2| ≥ c4c7sb(s)
16d

. Since each piece in C (s) has size at most c−1
8 b(s)−1d 2 it

follows that S2 contains vertices in at least c4c7c8sb(s)2

16d3 many pieces of C . Since each such piece

contains at least one vertex in the neighbourhood of S, it follows that
∣

∣NQ2(S)
∣

∣≥ c4c7c8sb(s)2

16d3 .

On the other hand, if |S2 ∪S3| ≥ c4s
4d

and |S2| ≤ c4c7sb(s)
16d

then |S3| ≥ c4s
8d

. Let

CA = {C ∈C : C ⊆ S} and CB =C \CA,

and let A :=
⋃

CA and B :=
⋃

CB . Then |A| = |S3| ≥ c4s
8d

, and by (2) and (4)

|B | ≥ |V (L′
1)|− |S| ≥ |V (L′

1)|−
|V (L1)|

2
≥

|V (L1)|
4

≥
c4s

8d
.

Hence, by Claim 3.6 there is family of
c4c7sb

( c4s

8d

)

8d
≥ c4c7sb(s)

8d
vertex-disjoint A-B-paths in Qd

q2
.

Since at most |S2| ≤ c4c7sb(s)
16d

of these paths can meet S2, the rest of these paths go from A ⊆ S

to B \ S2 ⊆ Sc , and so each path contributes a vertex to the neighbourhood of S. It follows

that
∣

∣NQ2(S)
∣

∣≥ c4c7sb(s)
16d

. In particular, in all cases
∣

∣NQ2 (S)
∣

∣=
∣

∣NQ2 (S)
∣

∣≥ c9sb(s)2d−3.

Case (b) :

We first note that, by (4) and (2)

|S1| ≤ |V (R)| ≤ |V (L1)|− |V (L′
1)| ≤ (γ+c3 −γ1 +c3)n ≤ (c1 +2c3)n

and hence |S ′
2 ∪S ′

3| ≥ |S|− |S1| ≥ αn
2

.

If |S ′
2| ≥

c7αn
8d

then, since at most nd−4c−1
8 d 2 = c−1

8 nd−2 vertices lie in pieces of C
′ of size

larger than c−1
8 d logd , it follows that S ′

2 contains vertices in at least c8c7αn

16d2 logd
many pieces of

C
′. Since each piece contains at least one vertex in the neighbourhood of S it follows that

∣

∣NQ2(S)
∣

∣≥ c8c7αn

16d2 logd
.

On the other hand, if |S ′
2| ≤

c7αn
8d

and |S ′
2 ∪S ′

3| ≥
αn
2 , then |S ′

3| ≥
αn
4 . Let

CA = {C ∈C
′ : C ⊆ S} and CB =C

′ \CA ,

and let A :=
⋃

C
′
A and B :=

⋃

C
′
B . Then |A| = |S ′

3| ≥
αn
4

and by (4)

|B | ≥ |V (L′
1)|− |S| ≥ |V (L′

1)|−
|V (L1)|

2
≥

|V (L1)|
4

≥
αn

4
.

Hence, by Claim 3.7 there is a family of c7αn
4d

many vertex-disjoint A-B-paths in Qd
q2

. Since

at most |S ′
2| ≤

c7αn
8d

of these paths can meet S ′
2, the rest of these paths go from A ⊆ S to B \

S ′
2 ⊆ Sc , and so each path contributes a vertex to the neighbourhood of S. It follows that

∣

∣NQ2(S)
∣

∣≥ c7αn
8d

. In particular, in both cases
∣

∣NQ2(S)
∣

∣=
∣

∣NQ2(S)
∣

∣≥ c9nd−2(logd)−1.

The conclusion of the theorem then follows with β= c9.
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Proof of Claim 3.6. Let us fix an s and such a partition {CA,CB }, where min{|A|, |B |} = t ≤ 2s.

Note that, since each piece in C (s) has size at least c−1
8 b(s)−1d , it follows that

t ≥ c−1
8 b(s)−1d =: tmin and s ≥

tmin

2
=: smin.

Let us suppose that CA contains k pieces of C , where

k1 := c8tb(s)d−2 ≤ k ≤ c8tb(s)d−1 := k2.

Note that there are at most
(

|C |
k

)

≤ nk

partitions of this form. Since A ∪B = V (L′
1), by Lemma 3.4 the probability that such a parti-

tion does not satisfy the conclusion of the claim is at most exp(−c7tb(t )), and so by the union

bound the probability that some partition does not satisfy the conclusion of the lemma is at

most
|V (L1)|

2
∑

s=smin

2s
∑

t=tmin

k2
∑

k=k1

exp(−c7tb(t ))nk ≤
|V (L1)|

2
∑

s=smin

2s
∑

t=tmin

(k2 −k1)exp(−c7tb(t ))nk2

≤
|V (L1)|

2
∑

s=smin

2s
∑

t=tmin

c8tb(s)d−1 exp(−c7tb(t ))nc8tb(s)d−1

≤
|V (L1)|

2
∑

s=smin

2s
∑

t=tmin

exp
(

−
c7

2
tb(t )

)

≤
|V (L1)|

2
∑

s=smin

2 exp
(

−
c7

2
tminb(tmin)

)

= o(1),

where in the above we used that, since b(s) ≤ 2b(2s)≤ 2b(t ),

c8tb(s)d−1nc8tb(s)d−1

≤ exp(c8tb(s)) ≤ exp

(

c7tb(t )

2

)

,

and that c7

2
tminb(tmin) ≥ c7tmin

8
≥ d . �

Proof of Claim 3.7. Let us fix such a partition
{

C
′
A,C ′

B

}

where min{|A|, |B |} = t ≥ αn
4 . Since

there are at most c8nd−1 pieces in C
′, there are at most

2c8nd−1

many partitions of C
′. Since A∪B =V (L′

1) and 1− log2 t

d
≥ d−1, by Lemma 3.4 the probability

that such a partition does not satisfy the conclusion of the claim is at most exp
(

−c7td−1
)

,

and so by the union bound the probability that any partition does not satisfy the conclusion

of the lemma is at most

∑

t≥αn
4

exp
(

−c7td−1
)

2c8nd−1

≤
∑

t≥αn
4

exp

(

−
c7td−1

2

)

= o(1).

�

�

Remark 3.8. The restriction to subsets of size at most |V (L1)|
2

in Theorem 3.5 is mostly for ease

of presentation. It is relatively simple to see that subsets of V (L1) of size up to (1−2α)|V (L1)|
will have similar expansion properties.
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Indeed, let S be any subset of V (L1) such that |V (L1)|
2 ≤ |S| ≤ (1− 2α)|V (L1)| and whose

boundary satisfies |N (S)| ≤β|S|d−2(logd)−1 ≤αn. It follows that W := V (L1) \ (S ∪ N (S)) is

such that αn ≤ |W | ≤ |V (L1)|
2

and N (W ) ⊆ N (S).

In particular, under the conclusion of Theorem 3.5 (b),

|N (S)| ≥ |N (W )| ≥β|W |d−2(logd)−1 ≥
αβ

1−2α
|S|d−2(logd)−1 ≥β|S|d−5. (7)

Proof of Theorem 1.3. The claim follows immediately from Theorem 3.5 (a). �

We note that it is relatively easy to see with a similar argument that Claims 3.6–3.7 im-

ply that whp the subset V (L′
1) ⊆ V (L1) has good expansion properties, in fact slightly better

than the expansion we have for the whole giant component L1, although this expansion may

happen ‘outside’ of V (L′
1).

Lemma 3.9. Let δ,ǫ> 0, let q1 = 1+ǫ
d

and let q2 = δ
d

. Let L′
1 be the largest component of Qd

q1

and let Q2 :=Qd
q1
∪Qd

q2
. Then whp every subset S ⊆V (L′

1) of size |S| ≤ |V (L′
1)|

2 is such that

∣

∣

∣N 5
Q2

(S)∩V (L′
1)

∣

∣

∣≥β|S|
(

1−
log2 |S|

d

)2

d−2.

Remark 3.10. As with Theorem 3.5, there will be somewhat stronger expansion if we addi-

tionally assume that |S| ≥αn.

Proof of Lemma 3.9. We sketch the argument below, without keeping careful track of the

constants.

Given a subset S ⊆ V (L′
1), we can consider the partition S = S2 ∪ S3 as in the proof of

case (a) of Theorem 3.5. Each piece C ∈ C (s) containing a vertex of S2 also contains a ver-

tex in NQ2(S)∩V (L′
1), and so, since each piece in C (s) has size O(b(s)−1d 2), we are done if

|S2| =Ω (sb(s)). Hence, we may assume that |S2| = o (sb(s)) and so |S3| =Ω(s).

If we let CA be the set of pieces of C (s) contained in S and CB be the rest, where A :=
⋃

CA

and B :=
⋃

CB , then, as before, |A| = |S3| =Ω(s) and |B | =Ω(s) and so by Claim 3.6 whp there

is a family of Ω (sb(s)) vertex-disjoint A-B-paths of length at most five in Qd
q2

. Since at most

|S2| = o (sb(s)) of them have an endpoint in S ′
2, there are Ω (sb(s)) of them with an endpoint

in V (L′
1) \ S. In particular, in both cases

∣

∣

∣N 5
Q2

(S)∩V (L′
1)

∣

∣

∣=Ω
(

sb(s)2d−2
)

.

�

In a supercritical random graph G(d + 1, p) with p = 1+ǫ
d

the giant component itself will

likely not be an α-expander for any constant α > 0. Indeed, let the 2-core of a graph G be

the maximal subgraph of G of minimum degree at least two. Standard results imply that it is

likely that there are logarithmically sized pendant trees attached to the 2-core of G(d +1, p),

and also that that the 2-core of G(d +1, p) typically contains logarithmically long bare paths,

both of which lead to logarithmically large sets whose neighbourhoods have constant size.

However, the results of Benjamini, Kozma and Wormald [4] and Krivelevich [46] imply that

whp the giant component contains a linear sized subgraph which is an α-expander. In the

case of Qd
p is it a simple consequence of Theorem 3.5, using some ideas of Krivelevich [47],

that we can also pass to a linear sized subset of the giant component with a significantly

better expansion ratio than that guaranteed for the whole of L1 by Theorem 3.5.
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Proof of Theorem 1.4. Let α′ ≪ ǫ and let us assume that the conclusion of Theorem 3.5 and

(7) holds with this α′ for some constant β′. Note that, by Theorem 2.1 there is some con-

stant γ= γ(ǫ) such that whp |V (L1)| = (1+o(1))γn. By (7) whp every set S ⊆ V (L1) such that

α′n ≤ |S| ≤ (1−2α′)|V (L1)| is such that

|NL1 (S)| ≥
α′β′

1−2α′ |S|d
−2(logd)−1 =: t |S|.

Let U ⊆ V (L1) be a set of maximal cardinality such |U | < α′n and |NL1 (U )| < t |X | and let

H := L1−X . Note that |V (H)| ≥ (1− 2α′

γ
)|V (L1)|. Suppose that there is some subset W ⊆V (H)

with |W | ≤ |V (H)|
2 and |NH (W )| < t |W |. Then, in particular,

|NL1 (U ∪W )| ≤ |NL1 (U )|+ |NH (W )| ≤ t |U ∪W |.

By construction, |U ∪W | ≤α′n + |V (H)|
2 ≤ (1−2α′)|V (L1)|, since |V (L1)| = (1+o(1))γn and

α′ ≪ ǫ. However, by maximality of U it follows that |U ∪W | ≥α′n. Hence U ∪W contradicts

our assumption on the expansion of L1.

It follows that H is a t-expander, and so the conclusion of the theorem follows with α= 2α′

γ

and β= α′β′

1−2α′ . �

4. CONSEQUENCES OF EXPANSION IN THE GIANT COMPONENT

4.1. Mixing time of the lazy random walk. Given a graph G = (V ,E ), the lazy simple random

walk on G is a random walk on V which remains at the same vertex with probability 1
2

in

each time step, and otherwise moves to a uniformly chosen random neighbour of its current

position. The stationary distribution π of the lazy random walk is given by π(v) = dG (v)
2|E | for

each v ∈V . For a subset S ⊆V let us write π(S) =
∑

v∈S π(v) and let

πmin = min{π(v) : v ∈V }.

The edge measure Q of the random walk is given by

Q(x, y) := π(x)P (x, y) and Q(A,B) =
∑

x∈A,y∈B

Q(x, y),

where P is the transition matrix of the lazy random walk, so that

Q(x, y) =
{

1
4|E | if x y ∈ E ;

0 otherwise .

The bottleneck ratio of a subset S ⊆V (G) is defined to be

Φ(S) =
Q(S,Sc )

π(S)
=

eG (S,Sc)

2dG(S)
,

where dG (S) =
∑

v∈S dG (v) is the total degree of S. The bottleneck ratio of the random walk,

sometimes known as the Cheeger constant of G , is given by

Φ(G) := min
S : π(S)≤ 1

2

Φ(S).

Note that, for a k-regular graph G ,Φ(G) ≥α is equivalent to G being an f (α,k)-edge-expander

for some function f (α,k).

Let P t (v, ·) denote the distribution on V given by starting the lazy random walk at v ∈ V

and running for t steps, and let us define

d(t ) := max
v∈V

dT V

(

P t (v, ·),π
)

20



to be the maximal distance (over v ∈ V ) between P t (v, ·) and the stationary distribution π,

where we measure this distance in terms of the total variation distance. That is, given two

random variables X and Y distributed on the same finite set Z we have

dT V (X ,Y ) =
1

2

∑

z∈Z

∣

∣P(X = z)−P(Y = z)
∣

∣.

The mixing time of the lazy random walk is then defined as

tmix := min

{

t : d(t ) ≤
1

4

}

.

See [53] for more background on mixing time of Markov chains.

It is relatively easy to use our result on the vertex-expansion of the giant component L1 of

Qd
p to show that the likely value of the Cheeger constant of L1 is Ω

(

d−6
)

. Again, with a more

careful argument we can improve this result somewhat.

Lemma 4.1. Let ǫ > 0, let p = 1+ǫ
d

and let L1 be the largest component in Qd
p . Then whp

Φ(L1) =Ω
(

d−5
)

.

Proof. Let α≪ ǫ be a positive constant and let γ be the survival probability of the Po(1+ǫ)

branching process. Note that, since L1 is connected, by Theorem 2.1 whp

dL1(V (L1)) ≥ 2(|V (L1)|−1) ≥ (2+o(1))γn.

Let us further assume that the conclusions of Theorem 3.5 and (7) hold with this α for some

constant β. Note that, for every subset S ⊆V (L1) we have that

eQd
p

(S) = eL1(S) and eQd
p

(S,Sc) = eL1(S,Sc).

We first note that it is unlikely that any very large subset of V (L1) has small total degree.

Indeed, suppose S ⊆ V (L1) is such that |S| ≥ (1−2α)|V (L1)| and dL1(S) ≤ dL1
(V (L1))

2
. Then it

follows that Sc is such that |Sc | ≤ 2α|V (L1)| ≤ 2αn and dL1(Sc) ≥ dL1
(V (L1))

2 ≥ (1+o(1))γn.

However, dQd (X ) = d |X | = eQd (X , X c )+2eQd (X ) for any X ⊆ V (Qd ). Hence, if |X | ≤ 2αn,

then max{eQd (X , X c ),2eQd (X )} ≤ 2αdn and so eQd
p

(X , X c ) and eQd
p

(X ) are both stochastically

dominated by Bin
(

2αdn, p
)

. Therefore, it follows by Lemma 2.7 (ii) that

P

(

dQd
p

(X ) ≥
γ

2
n

)

≤ 2

(

4eα(1+ǫ)

γ

)

γn
2

.

Hence, by the union bound, the probability that there exists any set S as above is at most

2

(

n

2αn

)

(

4eα(1+ǫ)

γ

)
γn
2

≤ 2
( e

2α

)αn
(

4eα(1+ǫ)

γ

)
γn
2

= o(1),

since α≪ ǫ.

In particular, whp

Φ(L1) = min

{

Φ(S) : S ⊆V (L1) and dL1(S)≤
dL1(V (L1))

2

}

≥ min{Φ(S) : S ⊆V (L1) and |S| ≤ (1−2α)n} .

Next, we note that it is sufficient to consider the bottleneck ratio of connected subsets

of V (L1). Indeed, let S be an arbitrary subset of V (L1) with |S| ≤ (1 − 2α)|V (L1)| and let
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C1,C2, . . . ,Ct be the connected components of L1[S]. Then, for each i , eL1(Ci ,C c
i

) = eL1(Ci ,Sc )

and hence

eL1(S,Sc) =
t

∑

i=1

eL1(Ci ,C c
i ) and dL1(S) =

t
∑

i=1

dL1(Ci ).

It follows that

Φ(S) =
eL1(S,Sc )

2dL1(S)
=

∑t
i=1 eL1(Ci ,C c

i
)

2
∑t

i=1 dL1(Ci )
≥ min

i

{

eL1(Ci ,C c
i

)

2dL1(Ci )

}

= min
i

{Φ(Ci )}.

Finally, let us bound the bottleneck ratio of connected subsets of V (L1). We note that,

by Lemma 2.11, there is a constant C such that whp every subset S ⊆ V (Qd ) which is con-

nected in Qd
p satisfies |S| ≤ d , or eQd

p
(S) ≤ C |S|. Let S be a connected subset of V (L1) with

|S| ≤ (1−2α)|V (L1)|.
Suppose first that |S| ≤ d . Then, since L1 is connected, eQd

p
(S,Sc ) ≥ 1 and hence

Φ(S) =
eL1(S,Sc )

2dL1(S)
≥

1

2d |S|
=Ω

(

d−2
)

.

Suppose then that d ≤ |S| ≤ (1−2α)|V (L1)|, but dQd
p

(S) ≤ 4C |S|. By Theorem 3.5 and (7),

we have that eQd
p

(S,Sc) ≥β|S|d−5 and hence

Φ(S) =
eL1(S,Sc)

2dL1(S)
≥

β|S|d−5

8C |S|
=Ω

(

d−5
)

.

Finally, if d ≤ |S| ≤ (1− 2α)|V (L1)|, and hence eQd
p

(S) ≤ C |S|, and dQd
p

(S) ≥ 4C |S|, then it

follows that

eQd
p

(S,Sc) = dQd
p

(S)−2eQd
p

(S) ≥
dQd

p
(S)

2
and hence

Φ(S) =
eL1(S,Sc)

2dL1(S)
≥

1

4
.

Hence, we can conclude that

Φ(L1) = min{Φ(S) : |S| ≤ (1−2α)|V (L1) and S connected} =Ω
(

d−5
)

.

�

We can relate the mixing time of the lazy random walk on L1 to its Cheeger constant using

the following theorem from Levin, Peres and Wilmer [53]. This theorem is a consequence of

an important theorem of Sinclair and Jerrum [61] and of Lawler and Sokal [52], which bounds

the Cheeger constant in terms of the spectral gap.

Theorem 4.2 ([53, Theorem 17.10]). The mixing time of a lazy random walk on a graph G

satisfies the inequality

tmix ≤
2

Φ(G)2
log

(

4

πmin

)

.

Theorem 1.5 is then an immediate consequence of Lemma 4.1 and Theorem 4.2

Proof of Theorem 1.5. We note that whp |E (Qd
p )| ≤ n and so πmin ≥ 1

2n
. Hence, by Lemma 4.1

and Theorem 4.2, whp

tmix ≤
2

Φ(L1)2
log

(

4

πmin

)

=O
(

d 11
)

.

�
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4.2. Diameter. It is immediate from Theorem 3.5 that whp the giant component of Qd
p in

the supercritical regime has diameter O
(

d 6
)

. However, with a more careful argument we can

improve this crude estimate.

Proof of Theorem 1.6. We argue as in the proof of Theorem 3.5, using the same terminology.

In particular we take q1, q2,L′
1, L1, b(s), C (s) and constants β,c1,c2, . . . as in the proof.

Note, by Lemma 2.2, for each 1 ≤ s ≤ |V (L1)|
2 each piece in C (s) has diameter at most

r (s) := 2c−1
8 b(s)−1d . Also, as before it follows from Lemma 3.2 that

whp every component of R := L1 −L′
1 has order at most c−1

4 d . (8)

Furthermore, by Claim 3.6, whp for any 1 ≤ t ≤ 2s ≤ |V (L1)| and any partition of C (s) into

two sets {CA,CB }, where A :=
⋃

CA and B :=
⋃

CB , with min{|A|, |B |} = t there is a family of at

least c7b(t )t vertex-disjoint A-B-paths of length at most five in Qd
q2

. Let us assume that both

of these likely events hold.

Let v be an arbitrary vertex in L′
1 and let S(0)= {v}. We recursively define a sequence of ver-

tex sets S(i ) as follows: given S(i ), let ti := |S(i )| and let S ′(i ) be the union of all pieces of C (ti )

which contain vertices in S(i ). If t ′
i

:= |S ′(i )| ≥ min
{ |V (L′

1)|
2

,2ti

}

, then we let S(i +1) = S ′(i ),

otherwise by the above assumption there is a family of at least c7t ′
i
b(t ′

i
) paths of length at

most five in Qd
q2

between S ′(i ) and its complement in V (L′
1). In this case, we let S(i +1) be

S ′(i ) together with the endpoints of these paths.

We note that, since the diameter of each piece of C (ti ) is at most r (ti ), we have that

S(i +1) ⊆ N
r (ti )+5
Q2

(Si ). (9)

Since f (t ) = tb(t ) is an increasing function of t for t ≤ n
2 , it follows that, for each i ≥ 0 with

ti ≤
|V (L′

1)|
2 , we have

ti+1 ≥ min{t ′i +c7t ′i b(t ′i ),2ti } ≥ ti (1+c7b(ti )) . (10)

So, let us analyse the growth rate of the sequence (xi ) defined recursively as x0 = 1 and

xi+1 = xi · (1+c7b(xi )).

We claim that

for any 0 < ǫ≤
1

2
, if 2(1−2ǫ)d ≤ xi ≤ 2(1−ǫ)d , then xi+2c−1

7 d ≥ 2(1−ǫ)d .

Indeed, for any x j ≤ 2(1−ǫ)d we have that b(x j ) ≥ ǫ and hence

xi+2c−1
7 d ≥ min

{

2(1−ǫ)d , xi (1+c7ǫ)2c−1
7 d

}

≥ min
{

2(1−ǫ)d ,2(1−2ǫ)d eǫd
}

≥ 2(1−ǫ)d ,

using that (1+α) ≥ e
α
2 for any 0 ≤α≤ 1

2 .

It follows that for any ǫ> 0 there are at most 2c−1
7 d many i such that 2(1−2ǫ)d ≤ ti ≤ 2(1−ǫ)d .

Note that, if 2(1−2ǫ)d ≤ ti ≤ 2(1−ǫ)d , then r (ti ) ≤ 2c−1
8 ǫ−1d .

Hence, if we let I j =
{

i : 2(1−2− j )d ≤ ti ≤ 2(1−2−( j+1))d
}

for each j = 0,1, . . . jmax, where jmax is

minimal such that 2(1−2−( jmax+1))d > |V (L1)|
2 , then |I j | ≤ 2c−1

7 d for each j and so

∑

i : ti ≤
|V (L1)|

2

(r (ti )+5) ≤
jmax
∑

j=0

∑

i∈I j

(r (ti )+5) ≤
jmax
∑

j=0

∑

i∈I j

(

2c−1
8 2 j+1d +5

)

=O

(

d 2
jmax
∑

j=0

2 j+1

)

=O
(

d 3
)

.
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In particular, by (9) there is some constant C such that for each v ∈V (L′
1)

∣

∣

∣NCd3

Q2
(v)∩V (L′

1)
∣

∣

∣>
|V (L′

1)|
2

,

and so the distance between any two vertices in L′
1 in Q2 is at most 2C d 3.

Finally, by (8) every vertex in L1 is at distance at most c−1
4 d from a vertex in L′

1 and hence

the diameter of L1 is at most

2C d 3+2c−1
4 d =O

(

d 3
)

.

�

4.3. Long cycles and large minors.

Proof of Theorem 1.7. Letα≪ ǫ and let L1 be the largest component of Qd
p . Then by Theorem

3.5 (b) whp every S ⊆V (L1) such that αn ≤ |S| ≤ |V (L1)|
2 satisfies

∣

∣

∣NQd
p

(S)
∣

∣

∣≥βnd−2(logd)−1.

Hence, applying Theorem 2.4 with k = |V (L1)|
2

and t = βnd−2(logd)−1, we can conclude

that L1 contains a cycle of length Ω
(

nd−2(logd)−1
)

.

�

Proof of Theorem 1.8. Let α≪ ǫ and let L1 be the largest component of Qd
p . Again by Theo-

rem 3.5 (b) whp every S ⊆V (L1) such thatαn ≤ |S| ≤ |V (L1)|
2 satisfies

∣

∣

∣NQd
p

(S)
∣

∣

∣≥βnd−2(logd)−1.

If L1 does not contain a Kt -minor, then by Theorem 2.5 there is some constant C > 0 such

that V (L1) contains a subset X of size at most C t
p
|V (L1)| ≤ C t

p
n, such that each compo-

nent of G −X has order at most 2|V (L1)|
3

. It follows that there is some subset S ⊆V (L1), which

is the union of some components of G − X , such that |V (L1)|
3 ≤ |S| ≤ |V (L1)|

2 and NQd
p

(S) ⊆ X ,

and so by Theorem 3.5 (b)

βnd−2(logd)−1 ≤
∣

∣

∣NQd
p

(S)
∣

∣

∣≤ |X | ≤C t
p

n.

It follows that t ≥ β
p

n

Cd2 logd
=Ω

(p
nd−2(logd)−1

)

. �

5. DISCUSSION

Theorem 1.3 gives a good bound on the likely expansion of the giant component of Qd
p in

the supercritical regime, although it is unlikely to be optimal in terms of its dependence on

d . It would be interesting to determine the optimal expansion ratio.

However, perhaps this is not quite the right question to ask. As explained in the introduc-

tion, in the case of G(d +1, p), whp the giant component itself is not an α-expander for any

constant α > 0, but whp contains a linear sized subgraph which is. Analogously, it seems

likely that there should be a large subgraph of the giant component of Qd
p which will have a

significantly better expansion ratio than that of the giant component itself.

Question 5.1. For what α = α(d) is it true that whp Qd
p contains a subgraph of size Ω(n)

which is an α-expander?

As we saw in Theorem 1.4, we can take α(d) = d−2(logd)−1. We note that some inverse

polynomial power of d is still necessary in the expansion ratio here.

Claim 5.2. Let δ> 0, let α ∈ (0,1) and let p = δ
d

. Then there exists a C =C (δ,α) such that whp

there are no subsets W ⊆V (Qd ) of size at least αn such that Qd
p [W ] is a C

d
-expander.
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Proof. We first note that for any i ∈ [d ] there are n
2 edges ‘in direction i ’ in Qd , that is, between

two vertices which differ in the i th coordinate. Hence, it is a simple consequence of Lemma

2.7 that there is some C ′=C ′(δ) > 0 such that whp for any i ∈ [d ] there are less than C ′n
d

edges

in direction i .

We will show that there is some β > 0 such that for any subset W ⊆ V (Qd ) of size at least

αn there is some i ∈ [d ] such that

W 0
i := {v ∈W : vi = 0} and W 1

i := {v ∈W : vi = 1}

both have size at least αβn. By our assumption on the number of edges in direction i ,

∣

∣

∣N
(

W
j

i

)∣

∣

∣<
C ′n

d
<

C ′
∣

∣

∣W
j

i

∣

∣

∣

αβd
, for j ∈ {0,1}.

However, since there is some j ∈ {0,1} such that
∣

∣

∣W
j

i

∣

∣

∣ ≤ |W |
2 , it follows that Qd

p [X ] is not a

C ′

αβd
-expander, and so the claim holds with C = C ′

αβ
.

A simple way to show the existence of β is using the language of discrete entropy. Let X

be a uniformly random chosen element of W and let Xi be the projection of X to the i th

coordinate. Note that Xi ∼ Ber(pi ) where pi is the proportion of v ∈ W with vi = 1, i.e.,

pi =
|W 1

i
|

|W | .

Then, by Lemma 2.6 (i), H(X ) = log2(|W |) ≥ d + logα≥ d
2

and, by Lemma 2.6 (ii),

H(X ) ≤
d
∑

i=1

H(Xi ) =
d
∑

i=1

h(pi ) ≤ d max
i

h(pi )

where h(x) = −x log2 x − (1− x) log2(1− x) is the binary entropy function. In particular, it

follows that maxi h(pi ) ≥ 1
2

. However, since h is symmetric around 1
2

and increasing on [0, 1
2

],

we can conclude that there is some δ such that min{pi ,1−pi } ≥β. Hence
∣

∣

∣W
j

i

∣

∣

∣= |W | ·P(Xi = j ) ≥β|W | ≥αβn, for j ∈ {0,1},

as claimed. �

As consequences of the expansion properties of the giant component, we deduced bounds

on its mixing time, diameter, circumference and Hadwiger number which are almost opti-

mal, up to some polynomial factors in d . However, it seems unlikely that any of these results

are optimal in terms of their dependence in d .

For the diameter and the mixing time it is not clear what the ‘correct’ answer should be. It

seems likely, but it is not immediate, that Qd
p should have larger diameter and mixing time

than Qd does. For the diameter it might be that O(d) is the correct order of growth. However,

whilst the mixing time of the lazy random walk on Qd is known to be O(d logd), see, e.g.,

[53], it can be shown that the largest component L1 of Qd
p whp contains bare paths of length

Ω(d). In particular, since we expect a lazy random walk starting in the middle of such a path

to take at least Ω(d 2) steps before reaching either endpoint, it follows that whp the mixing

time of the lazy random walk on L1 is Ω
(

d 2
)

.

In the case of G(d +1, p), Benjamini, Kozma and Wormald [4] used their description of the

structure of the giant component as a decorated expander to give a Θ
(

(logd)2
)

bound on

the mixing time of the lazy random walk on the giant component in the supercritical regime.

Roughly, the idea here is that the lazy random walk mixes quickly, in time O(logd), inside

the expanding subgraph, but it might end up making detours of length Ω
(

(logd)2
)

inside

the decorations. If a similar description of the giant component of Qd
p were to hold, then

we might hope that the expanding subgraph has expansion ratio α which is a small inverse
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power of d , and these decorations have size O(d), see Lemma 3.2, in which case perhaps a

more reasonable hope would be that the mixing time of the lazy random on the giant com-

ponent is either dominated by the mixing time on the α-expanding subgraph, which would

be of order something like α−2, or by the length of the detours in the decorations, of order

something like d 2. Note that, by Claim 5.2, both of these terms must be Ω(d 2).

Question 5.3. Let ǫ> 0, let p = 1+ǫ
d

and let L1 be the largest component of Qd
p .

• How large is the likely diameter of L1?

• What is the likely mixing time of the lazy random walk on L1?

In the context of Bollobás, Kohayakawa and Łuczak’s [13] question about when the diame-

ter of the largest component of Qd
p is superpolynomial in d , it would be interesting to know if

our results can be extended partially into the weakly supercritical regime, for example when

ǫ= o(1) is significantly larger than d−1 which was the regime considered in [12].

In terms of the circumference and the Hadwiger number of Qd
p there are more natural

conjectures to make, analogous to the case of G(d +1, p), which is that whp Qd
p contains a

cycle whose length is linear in n and a complete minor of size Ω(
p

n). However it seems

unlikely that it is possible to prove such sharp results simply by considering the expansion

properties of the giant component. In particular, we note that it may be the case that it is

easier to show the likely existence of a linear length path, than that of a cycle.

Question 5.4. Let ǫ> 0 and p = 1+ǫ
d

.

(1) Is it the case that whp Qd
p contains a path of length Ω(n)?

(2) Is it the case that whp Qd
p contains a cycle of length Ω(n)?

(3) Is it the case that whp Qd
p contains a complete minor of order Ω

(p
n

)

?

Furthermore, in the case of a positive answer it would also be interesting to know the

dependence of the leading constants on ǫ. For example, in G(d + 1, p) it is known that for

p = 1+ǫ
d

the giant component is of order (2ǫ+o(ǫ))d , the length of the longest cycle is of order

Θ
(

ǫ2
)

d (see, for example, [42, Theorem 5.7]) and the size of the largest complete minor is of

order Θ
(

ǫ
3
2

)p
d (see [28]).

There are also some interesting open questions about the model Qd
p in the paper of Con-

don, Espuny Díaz, Girão, Kühn and Osthus [19]. In particular, they used as a crucial part

of their proof the fact that whp Qd
1
2

contains an ‘almost spanning’ path, that is, a path con-

taining (1−o(1))n vertices, and they showed that this property is in fact true for Qd
p for any

constant p.

However, analogous to the case of G(d + 1, p), we should perhaps expect such a path to

exist for much smaller values of p. In particular, if we expect the sparse random subgraph

Qd
p with p = c

d
to contain a path of linear length f (c)n for some function f (c) when c > 1, it

is natural to conjecture that f (c) → 1 as c →∞.

Question 5.5 ([19]). Let p =ω
(

1
d

)

. Is it true that whp Qd
p contains a path of length (1−o(1))n?

Finally, other notions of random subgraphs of the hypercube Qd have also been studied.

In particular, if we let Qd (p) denote a random induced subgraph of Qd , obtained by retaining

each vertex independently with probability p, then the typical existence of a giant compo-

nent in Qd (p) when p = 1+ǫ
d

for a fixed ǫ> 0 was shown by Bollobás, Kohayakawa and Łuczak

[14], and this was extended to a broader range of p with ǫ = o(1) by Reidys [58]. It would
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be interesting to know if whp the giant component in Qd (p) also has good expansion prop-

erties. We note that random induced subgraphs of pseudo-random d-regular graphs have

been studied by Diskin and Krivelevich [21], who in particular prove some likely expansion

properties of the giant component in a supercritical random induced subgraph.
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