
Provable Correct and Adaptive Simplex
Architecture for Bounded-Liveness Properties ⋆

Benedikt Maderbacher1, Stefan Schupp2, Ezio Bartocci2, Roderick Bloem1,
Dejan Ničković3 and Bettina Könighofer1

1 Graz University of Technology, Graz, Austria
{benedikt.maderbacher,roderick.bloem,bettina.koenighofer}@iaik.tugraz.at

2 TU Wien, Vienna, Austria
{stefan.schupp,ezio.bartocci}@tuwien.ac.at

3 AIT Austrian Institute of Technology, Vienna, Austria
dejan.nickovic@ait.ac.at

Abstract. We propose an approach to synthesize Simplex architectures
that are provably correct for a rich class of temporal specifications, and
are high-performant by optimizing for the time the advanced controller is
active. We achieve provable correctness by performing a static verification
of the baseline controller. The result of this verification is a set of states
which is proven to be safe, called the recoverable region. During runtime,
our Simplex architecture adapts towards a running advanced controller
by exploiting proof-on-demand techniques. Verification of hybrid systems
is often overly conservative, resulting in over-conservative recoverable
regions that cause unnecessary switches to the baseline controller. To
avoid these switches, we invoke targeted reachability queries to extend
the recoverable region at runtime.
Our offline and online verification relies upon reachability analysis, since it
allows observation-based extension of the known recoverable region. How-
ever, detecting fix-points for bounded liveness properties is a challenging
task for most hybrid system reachability analysis tools. We present several
optimizations for efficient fix-point computations that we implemented
in the state-of-the-art tool HyPro that allowed us to automatically syn-
thesize verified and performant Simplex architectures for advanced case
studies, like safe autonomous driving on a race track.

1 Introduction

With the unprecedented amount of available computational power and the
proliferation of artificial intelligence, modern control applications are becoming
⋆ This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement № 956123 - FOCETA, the Aus-
trian FWF project ZK-35, the austrian research promotion agency FFG projects
ADVANCED (№ 874044) and FATE (№ 894789), the Graz University of Technology
LEAD Project Dependable Internet of Things in Adverse Environments, and the
State Government of Styria, Austria – Department Zukunftsfonds Steiermark.

2 B. Maderbacher et al.

Fig. 1: Schematic of a Simplex architecture

increasingly autonomous. The increasing adoption of the DevOps paradigm by
the cyber-physical systems (CPSs) community facilitates development of the
control systems beyond their deployment – the observation and collection of data
during system operation allows control systems to evolve and improve over time.

Developing trusted advanced controllers has therefore become a major chal-
lenge in safety-critical domains. Since the high complexity of advanced controllers
renders formal verification infeasible, runtime assurance methods [26], which
ensure safety by monitoring and altering the execution of the controller, gain
more and more importance.
Simplex architecture. The Simplex architecture [7, 25] is a well-established
runtime assurance architecture, originally proposed for reliable upgrades in a
running control system. Let the plant P be the physical system of hybrid nature
(the system’s components exhibit mixed discrete-continuous behavior), and φ
be the safety specification. The Simplex architecture that ensures that P works
within the specification φ, consists of three components, as illustrated in Fig. 1:

1. The baseline controller (BC) is a formally verified controller with respect to
the given specification φ. Therefore, it is proven that the baseline controller
provides control inputs to the plant in such a way that φ is satisfied. This
holds under the assumption that the plant is initially in a state from which
the baseline controller is able to satisfy φ. We call the set of plant’s states,
from which the baseline controller guarantees safe operation according to φ,
the recoverable region.

2. The advanced controller (AC), a highly efficient and complex controller that
might incorporate deep neural networks. However, due to its complexity, the
advanced controller cannot be formally verified and therefore we have no
guarantees whether it always satisfies φ.

3. The switching logic (SL) monitors the execution of the advanced controller
and hands the control to the baseline controller if the plant would otherwise
leave the recoverable region where the baseline controller guarantees φ.

The Simplex architecture guarantees safety by ensuring that the plant operates
within the formally proven, recoverable region of the baseline controller, and
facilitates high performance by enabling the advanced controller maximal freedom
and only restricting its operation to the recoverable region.
Challenges. While conceptually simple, the implementation of a Simplex ar-
chitecture is challenging. To guarantee safety, it is required to formally verify

Provable Correct and Adaptive Simplex Architecture 3

the baseline controller. Hybrid automata [2] are a common model for accurately
describing composite systems that combine discrete computational and contin-
uous processes, therefore hybrid automata are the desired model for baseline
controllers. However, the verification of hybrid automata is typically the bottle-
neck due to the inherent limits of exhaustive verification tools. To obviate formal
verification, it is common practice to make assumptions about the correctness of
a given baseline controller and its recoverable region. By doing so, one loses all
correctness guarantees the Simplex architecture should provide.

The second challenge is to implement a Simplex architecture that allows high
performance while being formally verified. In case the formal verification of the
baseline controller was successful, the accumulation of over-approximation errors
during the static verification phase often results in an over-conservative recover-
able region. Therefore, the switching logic gives control to the baseline controller
much more often than necessary, causing unnecessary drops in performance.
Problem statement. We start from a given plant and a baseline controller,
both modeled as hybrid automata, and a safety specification expressed in signal
temporal logic (STL) [14], which includes bounded-liveness requirements. The
problem is to synthesize Simplex architectures that are provably correct for the
given specification for unbounded time, and are high-performant by optimizing
for the time the advanced controller is active.
Our approach. We compute at design time an initial recoverable region as the
set of states reachable by the baseline controller from an initial region. During the
reachability analysis, we check that the specification is satisfied for all reachable
states from the baseline controller starting from its initial states. Using a fixpoint
detection on the set of reachable states allows us to guarantee safety with respect
to the given specification on infinite time.

We then optimize, during the execution, the performance of the operating
Simplex architecture incrementally by adapting towards the running advanced
controller. Whenever the advanced controller proposes an output that would
cause the plant to leave the current recoverable region, we perform two steps: we
switch to the baseline controller, and we try to enlarge the recoverable region.
To enlarge the recoverable region, we collect suspicious states that would have
been reached in case the last command of the advanced controller would have
been executed. Next, we analyze the behavior of the baseline controller on all
suspicious states. If we are able to prove that the baseline controller ensures
safety for a suspicious state, we add this state and all states reachable from it to
the recoverable region. Next time the advanced controller tries to enter such a
state, the switching logic will not interfere.
Contributions. Our main results can be summarized as follows:

– We propose a workflow to synthesize provable correct Simplex architectures
that dynamically adapt to a running advanced controller.

– Our proposed methodology enables a lightweight reachability analysis to
show safety of suspicious states on demand. To this end, we employ flowpipe
construction based reachability analysis as an inductive approach which
allows to compute sets of reachable states for given initial configurations. This
enables local updates of the known recoverable region in a light-weight fashion

4 B. Maderbacher et al.

based on current observations of the system in an iterative way enabling us
to involve information obtained at runtime. We aim to incorporate already
established knowledge about recoverable regions into the verification approach
to further improve its scalability.

– To the best of our knowledge, we are the first that synthesize Simplex
architectures for bounded-liveness specifications.

– We present several optimizations for efficient fixpoint computations. In particu-
lar, we introduce novel data structures for faster lookup as well as set-theoretic
and symbolic approaches to improve fixpoint detection. We implemented these
optimizations in the hybrid system reachability analysis tool HyPro [24].
Only with our optimizations, we were able to verify hybrid automata against
bounded liveness properties in HyPro.

– We present a detailed case study on safe driving on a racing track and the
effects of optimizing the Simplex architecture during runtime.

Related work. Original works on the Simplex architecture [7, 25, 26], as well as
many recent work [12,19,27] assume to have a verified baseline controller and
a correct switching logic given. Under these assumptions, the papers guarantee
safe operation of the advanced controller. However, these assumptions are very
strong and the works ignore the challenges and implied limitations that need to
be addressed in order to get a verified baseline controller and a switching logic
that is guaranteed to switch at the correct moment. The reason for many works
to leave out these steps is that a general safety statement for unbounded time for
the baseline controller is required (i.e., a fixpoint in the analysis). Depending on
the utilized method, fixpoints in the analysis cannot always be found, as some
verification methods tend to have bad convergence due to accumulating errors.

Recent works that verify the baseline controller deploy standard methods to
verify hybrid systems such as barrier certificates [17,18,29], and using forward or
backward reachability analysis [4]. Our method is independent of the concrete
approach that is used for offline verification. In general, for methods based
on flowpipe construction for forward or backward reachability analysis, there
exists a trade-off between accuracy and complexity: using simple shapes to over-
approximate the reachability tubes results in overly-conservative recoverable
regions, while using too complex shapes requires difficult computations to check
for a fixpoint.By using the concept of proof on demand, we allow simple shapes
for the reachability analysis but amend the problem of an over-conservative
recoverable region by enlarging the region on demand.

While several works study provable correct Simplex architectures, there is only
little work on how to create high-performant Simplex architectures. Similar to
our approach, the work in [13] uses online computations to increase performance.
While our approach adapts to a given advanced controller and therefore the
number of online proofs reduces during exploitation, the approach in [13] performs
the same online computations repeatedly.

Furthermore, to the best of our knowledge, no work considered temporal logic
properties beyond safety invariants to be enforced by a Simplex architecture.

Provable Correct and Adaptive Simplex Architecture 5

isolated
x1 ≤ 0.2 ∧ x2 ≤ 0.2

x′1 = c0 ∗ u
x′2 = −c1

connected
x1 ≥ 0.2 ∨ x2 ≥ 0.2

x′1 = −c2 ∗ x1 + c2 ∗ x2 + c0 ∗ u
x′2 = c2 ∗ x1 − (c1 + c2) ∗ x2

x1 ≤ 0.2∧
x2 ≤ 0.2

x1 ≥ 0.2∨
x2 ≥ 0.2

open
t ≤ 1
u′ = 0
t′ = 1

t = 1 ∧ x1 ≤ 0.7

t = 1 ∧ x1 > 0.7

closed
t ≤ 1
u′ = 0
t′ = 1

t = 1 ∧ x2 < 0.35

t = 1 ∧ x2 ≥ 0.35

t := 0

t := 0

t := 0
t := 0

u := 0

u := 0.0002

u := 0.0002

u := 0

Fig. 2: Left: Illustration of the plant. Middle: Hybrid automaton HP modeling
the plant. Right: Hybrid automaton HBC implementing the baseline controller.

Instead, our work allows us to specify bounded reachability and bounded liveness
properties and conjunctions of these properties.

Runtime assurance covers a wide range of techniques and has several applica-
tion areas, for example enforcing safety in robotics [15] or in machine learning [28].
Runtime enforcers, often called shields, directly alter the output of the controller
during runtime to enforce safety. In the discrete setting, such enforcers can be au-
tomatically computed from a model of the plant’s dynamics and the specification
using techniques from model checking and game theory [1]. In the continuous
domain, inductive safety invariants such as a control Lyapunov functions [21] or
control barrier functions [20] are used to synthesize runtime enforcers.

2 Illustrative Example

As an illustrative example, we use a well-known textbook example of a coupled
water tank system [5], as illustrated in Figure 2 (left). Using this example, we will
outline how we construct the Simplex architecture from a given safety specification
in STL and a given baseline controller in form of a hybrid automaton.
Plant P. The plant consists of two tanks that are connected by a pipe that is
located at a height of 0.2 m from the floor. The left tank has an inflow that can
be adjusted by a controller. The right tank has an outflow pipe that constantly
drains water. The plant with the two connected water tanks can be modeled by
the hybrid automaton HP given in Figure 2 (middle). The automaton has two
state variables x1 and x2, corresponding the level of water in the left and right
tank respectively, and one control dimension u ∈ [0, 0.0005] influencing how much
water is added to the left tank. The two states reflect the two modes with different
dynamics. If the water in any of the tanks is higher than 0.2 m water can flow
through the connecting pipe and the levels in the two tanks equalize. Otherwise,
the tanks are isolated and evolve only according to their own dynamics.
Safety specification φ. The safety specification φ = φ1 ∧ φ2 requires that the
following two properties φ1 and φ2 are satisfied:

1. The water tanks may not be filled beyond their maximum filling height of
0.8 m. This property can be expressed in STL via φ1 = G(x1 ≤ 0.8∧x2 ≤ 0.8).

6 B. Maderbacher et al.

(a) initial region (b) no inflow

(c) constant inflow (d) random inflow

Fig. 3: Visualisation of the initial recoverable region and adapted recoverable
regions of the different advanced controllers for variables x1, x2.

2. If the water level of the right tanks falls below 0.12 m it has to be filled up
to at least 0.3 m within the next 30 time units. This is written in STL as
φ2 = G(x2 ≤ 0.12 → F[0,30](x2 ≥ 0.3)).

A safety specification φ in STL can be transformed into a hybrid automaton Hφ.
We discuss this transformation in the next section.
Baseline controller. We use the baseline controller that is given by the hybrid
automaton HBC in Figure 2. HBC consists of two locations open and closed. At
the end of a cycle (c = 1) the controller observes x1 and x2 to determine whether
to stay in its current location or switch to the other one. HBC remains in open
as long as x1 ≤ 0.7 and in closed as long as x2 ≥ 0.35. After every transition, the
value of u is set to either 0 or 0.0002 depending on the target location.
Static verification for a conservative Simplex architecture. In the first
step, we verify the baseline controller HBC acting within the plant HP with
respect to the specification Hφ for the initial states of the plant x1 ∈ [0.35, 0.45]
and x2 ∈ [0.25, 0.35]. To compute the initial recoverable region, we compute
the fixpoint of reachable states while checking that no bad state defined by Hφ

is contained in the reachable states. We verified the baseline controller using

Provable Correct and Adaptive Simplex Architecture 7

the reachability analysis tool HyPro [24]. Figure 3(a) illustrates the initial
recoverable region. The blue squares depict the initially known recoverable region
for each control cycle. The orange trajectory shows the behavior of the plant
when controlled by the baseline controller.
Adapting to the advanced controller via proof on demand. In the
second step, we run the Simplex architecture for 500 control cycles and evolve
the recoverable region during runtime. Figure 3(b)-(d) shows the growth of
the recoverable region over time for different advanced controllers: the first
advanced controller (Figure 3(b)) sets u to 0 constantly, the second advanced
controller (Figure 3(c)) sets u to 0.0004 constantly, and the third advanced
controller (Figure 3(d)) picks u ∈ [0.0001, 0.0005] equally distributed with a 10 %
probability, and sets u = 0 otherwise. In each figure, the green trajectory shows
the behavior of the plant when being controlled by the corresponding advanced
controller. The plots only show the known recoverable region at the end of each
control cycle. The points where the trajectory exits the blue region these points
are between control cycles and have been verified safe, but they are not stored
for efficiency reasons. In these experiments, we check the safety of states outside
of the recoverable region on the fly and immediately add them to the recoverable
region if they are safe. The switching logic only switches to the baseline controller,
if the advanced controller would visit unsafe states that cannot be added to the
recoverable region. Note, that these proofs on demand can also be performed in
the background.

3 Background

3.1 Reachability Analysis of Hybrid Systems

We use hybrid automata as a formal model for hybrid systems.

Definition 1 (Hybrid automata [2]). A hybrid automaton H = (Loc,Lab,
Edge,Var , Init, Inv,Flow, Jump) consists of a finite set of locations Loc = {ℓ1,
. . . , ℓn}, a finite set of labels Lab, which synchronize and coordinate state changes
between automata, a finite set of jumps Edge ⊆ Loc × Lab × Loc, that allow to
realize location changes, a finite set of variables Var = {x1, . . . , xd}, a set of
states Inv called invariant, which restricts the values ν for each location, a set
of initial states Init ⊆ Inv, a flow relation Flow where Flow(ℓ) ⊆ R ˙Var × Rd,
which determines for each state (ℓ, ν) the set of possible derivatives ˙Var, a jump
relation Jump where Jump(e) ⊆ Rd × Rd′ defines for each jump e ∈ Edge the set
of possible successors ν′ of ν.

A state σ = (ℓ, ν) of H consists of a location ℓ and a valuation ν ∈ Rd for each
variable, S = Loc × Rd denotes the set of all states.

Every behavior of H must start in one of the initial states Init ⊆ Inv. Jump
relations are typically described by a guard set G ⊆ Rd and an assignment (or
reset) ν′ = r(ν) as Jump(e) = {(ν, ν′) | ν ∈ G ∧ ν′ = r(ν)}. For simplicity, we
restrict ourselves to the class of linear hybrid automata, i.e., the dynamics (Flow)

8 B. Maderbacher et al.

are described by systems of linear ordinary differential equations and guards (G),
invariant conditions (Inv), and sets of initial variable valuations are described by
linear constraints. Resets on discrete jumps are given as affine transformations.
In this work, we use composition of hybrid automata as defined in [10] with
label-synchronization on discrete jumps and shared variables.

A path π = σ1 →τ σ2 →e→ · · · in H is an ordered sequence of states σi

connected by time transitions →τ of length τ and discrete jumps →e, e ∈ Edge.
Time transitions follow the flow relation while discrete jumps follow the edge and
jump relations, we refer to [10] for a formal definition of the semantics. Paths
naturally extend to sets of paths which collect paths with the same sequence of
locations but different variable valuations.
The reachability problem in hybrid automata. A state σi = (ℓ, ν) of
H is called reachable, if there is a path π leading to it with σ1 ∈ Init. The
reachability problem for hybrid automata tries to answer whether a given set
of states Sbad ⊆ S is reachable. Since the reachability problem is in general
undecidable [11], current approaches often compute over-approximations of the
sets of reachable states for bounded reachability. Note that reachability analysis
follows all execution branches, i.e., does not resolve any non-determinism induced
by discrete jumps in the model. That means, that computing alternatingly time-
and jump-successor states may yield a tree-shaped structure (nodes contain
time-successors, the parent-child relation reflects discrete jumps, see also [22])
which covers all possible executions.
Flowpipe construction for reachability analysis. For a given hybrid au-
tomaton H, flowpipe construction (see e.g., [6]) computes a set of convex sets

R = reachH
≤α(σ),

which are guaranteed to cover all trajectories of bounded length α that are
reachable from a set of states σ. We use reachH

=α(σ) to denote the set of states
that are reached after exactly α time, and similarly reachH

∞(σ) to denote the set
of states reachable for unbounded time.

The method over-approximates time-successor states by a sequence of sets
(segments), referred to as flowpipe. Segments that satisfy a guard condition of an
outgoing jump of the current location allow taking said jump leading to the next
location. Note that non-determinism on discrete jumps may introduce branching,
i.e., it requires the computation of more than one flowpipe. The boundedness
of the analysis is usually achieved by limiting the length of a flowpipe and the
number of discrete jumps.

To compute the set of reachable states reachH
∞(σ) for unbounded time requires

finding a fixpoint in the reachability analysis. For flowpipe-construction based
techniques, finding fixpoints boils down to validating, whether a computed set
of reachable states is fully contained in the set of previously computed state
sets. As the approach accumulates over-approximation errors over time, it may
happen that this statement cannot be validated [23]. In practice, researchers
often check, whether the set obtained after a jump is contained in one of the
already computed state sets.

Provable Correct and Adaptive Simplex Architecture 9

Safety verification via reachability analysis. Reachability analysis can be
used to verify safety properties by checking that the reachable states do not
contain any unsafe states. A system is (bounded-)safe if R ∩ Sbad = ∅, otherwise
the result is inconclusive. Unbounded safety results can only be obtained in case
the method is able to detect a fixpoint for all possible trajectories in all possible
execution branches.

3.2 Temporal Specification

We use STL [14], as the temporal specification language to express the safe
behavior of our controllers. Let Θ be a set of terms of the form f(R) where R ⊆ S
are subsets of variables and f : R|R| → R are interpreted functions. The syntax
of STL is given by the following grammar and we use standard semantics [14].

φ ::= true | f(R) > k | ¬φ | φ1 ∨ φ2 | φ1UIφ2 ,

where f(R) are terms in Θ, k is a constant in Q and I are intervals with bounds
that are constants in Q ∪ {∞}. We omit I when I = [0,∞). From the basic
definition of STL, we can derive other standard operators as usual: conjunction
φ1 ∧ φ2, implication φ1 → φ2, eventually FIφ and always GIφ.

In our approach, we use STL specifications to handle properties beyond simple
invariants. More specifically, we support the following subset of STL specifications:
invariance G(φ), bounded reachability F[0,t](φ), and bounded liveness G(ψ →
F[0,t](φ)) where φ and ψ are predicates over state variables and t is a time bound.
We also allow assumptions about the environment such as the bounds on input
variables.

STL specifications can be translated to hybrid automaton monitors. The
translation is inspired by the templates used by Frehse et al. [8]. We adapt
the original construction to facilitate fixpoint detection, by creating (mostly)
deterministic monitors instead of universal ones. Figure 4 depicts the specification
automata for the STL fragments considered in this work. A specification is
violated when the sink location ℓbad is reached. Urgent transitions are encoded
with location invariants and transition guards, such that no time may pass when
an urgent transition is enabled. This is possible because our φ and ψ are half-
plane constraints and we use the inverted guards as invariants. Conjunction of
invariance, bounded reachability, and bounded liveness properties is enabled by
parallel composition of monitor automata.

4 Verification of Adaptive Simplex Architectures

This section describes our workflow for obtaining a fully verified and adaptive
Simplex architecture that is able to enforce the safety of a black box controller for
temporal specifications. In this section, we first describe the setting and introduce
the terminology in Section 4.1. Next, in Section 4.2, we describe how to verify a
conservative known recoverable region and the techniques required to analyze

10 B. Maderbacher et al.

¬φ

l1

c′ = 1

lbad

l2c := 0

c := 0

φ
urgent

c > t

l1

c′ = 0

lbad

l2

c′ = 1

c := 0

ψ
urgent

c > t
c := 0

φ
urgent

l1

lbad

G(φ) F[0,t](φ) G(ψ → F[0,t](φ))

Fig. 4: Hybrid automata templates for the STL properties: invariance (G(φ)),
bounded reachability (F[0,t](φ)), and bounded liveness (G(ψ → F[0,t](φ))).

systems for infinite time. Finally, in Section 4.3 we describe how to execute the
Simplex architecture for temporal specifications and stateful baseline controllers,
as well as how to incrementally extend the known recoverable region using proofs
on demand.

4.1 Setting

We assume that we have a model of the plant, the baseline controller, and a
bounded liveness specification. The plant model is given as a hybrid automaton
HP with variables VarHP

and locations LocHP
. We designate a subset U ⊆

VarHP
of the variables as controller inputs with have constant dynamics and we

use variables X = VarHP
/U for the observable state of HP . We assume that the

plant and its model HP are deterministic, i.e., that for every observable variable
valuation of the plant X there exists exactly one location ℓ in the model where
X ∈ InvHP

.
The baseline controller is a hybrid automaton HBC equipped with a clock t

that monitors the cycle time. HBC is composed with HP and can read the state
(ℓ, νX) ∈ LocHP

× R|X| of HP . At the end of each control cycle (t = δ), HBC

sets the value of U via resets on synchronized jumps. An example of the two
components is depicted in Figure 2.

The specification of the system is given as an STL formula φ that is converted
to a hybrid automaton Hφ as described in Section 3.2. The advanced controller
is a black box that accesses the observable state (ℓ, νX) of the plant at the end
of a control cycle and suggests an output, i.e., an assignment for each variable in
U for the next control cycle.

Following classical terms, we partition the state space of HP × HBC × Hφ

into the unsafe region Sbad (the specification has been violated) and the safe
region Ssafe (the specification holds). The region for which the baseline controller
satisfies the specification is referred to as the recoverable region Sr ⊆ Ssafe, its
complement is called the non-recoverable region Snr .

The baseline controller is first verified for a small set of initial states. From
verification, we obtain a subset of the recoverable region. In the following, we use
the term known recoverable region Skr for the states for which trust has been
proven; the remainder of the recoverable region is the unknown recoverable region
Sur . The regions and their relations are illustrated in Figure 5.

Provable Correct and Adaptive Simplex Architecture 11

Sbad Snr Sur Skr

Fig. 5: Partitioning of the state space induced by a Simplex architecture.

4.2 Static Verification of the Baseline Controller

We perform a reachability analysis based on a flowpipe construction. We detect
fixpoints to verify that the baseline controller satisfy φ. The hybrid automaton
H = HP × Hφ is the product of plant and specification, the components commu-
nicate as described before via shared variables and label synchronization. Since
Hφ defines the set of bad states, we use Sbad for the set of bad states both in H
and in HBC × H.

To guarantee that the system satisfies the specification for unbounded time,
the reachability tool searches for fixpoints outside of the bad states, that
means it checks whether reachH×HBC

∞ (InitH×HBC
) ∩ Sbad = ∅. We refer to

the set of states that has been proven safe for unbounded time by Skr ⊆
(LocH × LocBC , 2R

|VarH|+|VarBC |). The set Skr needs to satisfy the Recoverable
Region Invariance: it cannot contain any bad states and it has to be closed under
the reachability relation.

Definition 2 (Recoverable Region Invariance). A set S fulfills the Recov-
erable Region Invariance if S ∩ Sbad = ∅ and reachH×HBC

∞ (S) ⊆ S.

If the reachability computation terminates with a fixpoint which does not
include a bad state, Definition 2 is guaranteed.
Fixpoint detection. As fixpoint detection is a known problem for flowpipe-
construction-based reachability analysis methods, several improvements were
added to increase the robustness of the approach and thus the chances to find a
fixpoint. Starting from a classical approach where a fixpoint is found whenever
a novel initial set after a discrete jump is fully contained inside a previously
computed state set we propose several improvements.

First, we augment the reachability analysis method with an interface to access
external data sources for fixpoint detection. This lets us accumulate results over
several runs and thus evolve Skr . External data is stored efficiently in a tree-like
structure similar to octrees [16] that subdivides the state space into cells for faster
lookup. For each location, we create a tree whose nodes represent a hierarchical
partition of the state space, i.e., nodes of layer i+ 1 are a partition of the nodes
on layer i. Computed sets are stored in the leaves of this structure to enable
faster lookup; if a cell is fully covered this information can be cached for faster
results. A minor, but effective improvement for the aforementioned data structure
is to only store initial sets instead of all sets of states that are computed to save
memory and speed up the lookup when searching for fixpoints.

12 B. Maderbacher et al.

Often, novel initial sets S′ are not fully contained in a single, previously
computed initial set Si but are still contained in the union of several of those
sets S′ ⊆

⋃
Si. We extend fixpoint detection to handle this case by iteratively

checking for all Si whether S′ = S′/Si eventually becomes empty. Note that
this check requires computing set-difference, which is hard for arbitrary state
sets, e.g., convex polytopes, as the potentially non-convex result needs to be
convexified afterwards. To overcome this, we fix our method to operate on boxes,
which allows more efficient implementation of the set-difference operation.

Furthermore, in some cases, we could not find fixpoints due to Zeno-behavior,
i.e., infinitely many discrete jumps in zero time. An example of such behavior
can often be observed in switched systems, where the state space is partitioned
into cells where the dynamics in each cell is described by a single location. For
instance, having two neighboring locations ℓ, ℓ′ connected by jumps with guards
x ≥ 5 and x ≤ 5, for x = 5 the system can switch infinitely often between
those locations without making any progress. To overcome this problem we
have added detection for those Zeno-cycles that do not allow progress into our
analysis method, such that these cycles get executed only once and thus can
be declared a fixpoint. In contrast to the aforementioned approach to finding
fixpoints, which operates on the computed state sets, this method analyzes cycles
symbolically and does not cause over-approximation errors. Intuitively, for a
path π leading to a reachable location ℓ, we iteratively compute sets of states
that would possible allow Zeno behavior: initially, we consider the set of states
satisfying the guard condition of the incoming transition to ℓ. Going back in the
considered path, we alternatingly add constraints for invariant conditions and
further incoming transitions along the locations and transition on path π while
also adding transformations according to the reset functions on the transitions.
This way, we can encode a symbolic expression representing the set of states, that
enables Zeno-behavior. Checking containment of the actual state sets and the
computed symbolic set allows to find Zeno-cycles of length up to the length of π.
Parallel composition. Computation of Skr is performed on the product of
the plant-automaton, the specification-automaton, and the baseline controller
automaton. To improve scalability, we feature an on-the-fly parallel composition
that unrolls the product automaton during analysis as required. This improves
execution speed and reduces the memory footprint.

4.3 Simplex Execution with Proofs on Demand

Once a known recoverable region Skr has been verified it can be used in a
switching logic. The intuition is to analyze the predicted set of reachable states
for the plant (and the specification) ahead for one control cycle and decide
whether to use the advanced controller or the baseline controller. The decision
is based on whether these results are compatible with the previously computed
recoverable region Skr , or if Skr can be extended to allow for these states. In the
following, we give a more technical description of this approach which is also
shown in Algorithm 1.

Provable Correct and Adaptive Simplex Architecture 13

Algorithm 1 Execution using a Simplex architecture.
1: ((ℓ, ℓB , ℓφ) , (X, UB , Xφ))← InitH×HBC

2: loop
3: UA ← AC (X)
4: UB ← BC (X)
5:

((
ℓ′, ℓ′

B , ℓ′
φ

)
,
(
X ′, U ′

B , X ′
φ

))
← reachH×HBC

=δ (((ℓ, ℓB , ℓφ) , (X, UA, Xφ)))
6: suc ←

((
ℓ′, ℓ′

B , ℓ′
φ

)
,
(
X ′, U ′

B , X ′
φ

))
⊆ Skr

7: if ¬suc then
8: (suc, Skr)← Train(Skr ,

((
ℓ′, ℓ′

B , ℓ′
φ

)
,
(
X ′, U ′

B , X ′
φ

))
)

9: end if
10: if suc then
11: X ← runPlant(UA, δ)
12: else
13:

((
ℓ′, ℓ′

B , ℓ′
φ

)
,
(
X ′, UB , X ′

φ

))
← reachH×HBC

=δ (((ℓ, ℓB , ℓφ) , (X, UB , Xφ)))
14: X ← runPlant(UB, δ)
15: end if
16: (ℓ, ℓB , ℓφ, Xφ)←

(
ℓ′, ℓ′

B , ℓ′
φ, X ′

φ

)
▷ Update for next loop iteration

17: end loop
18: procedure Train(Skr , σ)
19: Snew ← bloat(σ)
20: if reachH×HBC

∞ (Snew, Skr) ∩ Sbad = ∅ then
21: return

(
⊤, Skr ∪ reachH×HBC

∞ (Snew, Skr)
)

22: else
23: return (⊥, Skr)
24: end if
25: end procedure

The initial state is obtained from the model of the composition of plant and
specification. In a loop, the method receives the suggested outputs UA, UB from
both advanced and baseline controller (Lines 3 and 4) based on the current
observable state X. Since advanced controller and baseline controller may be
stateful, this step may also update their internal states based on (ℓ,X) during
the computation of the controller output. In a next step, we use reachability
analysis from the current state ((ℓ, ℓB , ℓφ) , (X,UA, Xφ)) to obtain all possible δ-
reachable states

((
ℓ′, ℓ′

B , ℓ
′
φ

)
,
(
X ′, U ′

B , X
′
φ

))
of the plant, the baseline controller,

and the specification when using the output from the advanced controller (Line 5).
The analysis is done for the length δ of one control cycle. Note that in this step,
we analyze the composition of the plant, the specification, and the baseline
controller using the output of the advanced controller to obtain all possible initial
states for the next iteration. The idea is to be able to validate, whether after
having invoked the advanced controller, the resulting configuration of the plant
and the specification yields a configuration from which the baseline controller
can ensure safety afterwards if required.

The system in its current state is recoverable when using the advanced
controller, if the newly obtained states

((
ℓ′, ℓ′

B , ℓ
′
φ

)
,
(
X ′, U ′

B , X
′
φ

))
are fully

contained in Skr (Line 6). The training function Train can be invoked to

14 B. Maderbacher et al.

attempt to extend Skr (Line 8) if the new states are not yet included. If the new
states are contained in Skr (possibly after extending it), the plant will be run
for one control cycle with the control input of the advanced controller (Line 11.
Otherwise, the plant is executed using the baseline controller output (Line 14).
In both cases, the state of the plant is observed and stored in X.

The procedure Train(Skr , σ) (Line 18) checks, if the new observation is safe
for unbounded time. In this case, it returns the new recoverable region together
with a Boolean flag ⊤. Otherwise, the procedure returns ⊥ and the old recoverable
region. The construction of the specification automaton ensures that a bad state
can never be left, if any point between now and σ would unsafe so is σ. To
produce results that generalize beyond a single state we bloat the state set by
extending it in all dimensions to a configurable size. Unbounded time safety is
checked for this enlarged set. This can be established either by proving that all
trajectories reach Skr or by finding a new fixpoint. Extending Skr using Train
preserves recoverability (Definition 2).

Proposition 1. Let S′
kr be the set computed by Train(Skr , s) then

(Skr ∩ Sbad = ∅ ∧ reachH×HBC
∞ (Skr) ⊆ Skr)

⇒ (S′
kr ∩ Sbad = ∅ ∧ reachH×HBC

∞ (S′
kr) ⊆ S′

kr)

The intersection of the states added by Train and of Skr with Sbad is empty.
Thus, this also holds for S′

kr . There are two cases to show that the evolution
of all states remains in S′

kr : First, the added states originate from a flowpipe
that fully leads into Skr . In this case, all added states will have a trajectory into
Skr when using the baseline controller, where they will stay by the assumption
for Skr . In the second case the new recoverable region that is added that has
its own fixpoint, i.e., is safe for unbounded time. The used reachability method
guarantees that every trajectory stays in this region which is a subset of S′

kr .
Thus S′

kr satisfies both properties from Definition 2, i.e., a system controlled by
Algorithm 1 satisfies φ, if its initial state is in Skr .

The evolutionary nature of this approach allows to provide proofs on demand
even during running time, provided the system environment is equipped with
enough computational power to perform reachability analysis. Since this is in
general not the case, the approach can be adapted to collect potential new initial
sets SAC and verify those offline or run verification asynchronously (online). In
the later cases, since safety cannot directly be shown for SAC , the system switches
to using the baseline controller and results obtained offline or asynchronously
can be integrated into future iterations.

5 Case Study: Autonomous Racing Car

We evaluate our approach to a controller for an autonomous racing car. The
car is modeled as a point mass, observables are the position (x, y), the heading
(θ), and its velocity (v). The car can be modeled by a hybrid automaton with a

Provable Correct and Adaptive Simplex Architecture 15

θ′
0

θ′
4

θ′
1

θ′
5

θ′
2

θ′
6

θ′
3

θ′
7

(a) The center of a bucket gives
θ′ as a representative for that
bucket.

θ5
ẋ = cos(θ′) · v
ẏ = sin(θ′) · v

θ̇′ = 0
v̇ = 0

θ6
ẋ = cos(θ′) · v
ẏ = sin(θ′) · v

θ̇′ = 0
v̇ = 0

θ4
ẋ = cos(θ′) · v
ẏ = sin(θ′) · v

θ̇′ = 0
v̇ = 0

set theta 5

θ′ := θ′ + 2π
8

set theta 6

θ′ := θ′ + 2π
8

set theta 5

θ′ := θ′ − 2π
8

set theta 4

θ′ := θ′ − 2π
8

(b) Locations for different buckets are only connected
by controller-actions (label synchronization), which
are periodically enabled with cycle time δ.

Fig. 6: Modelling approach for the discretized car for 8 buckets.

single location and non-linear dynamics. For simplification, we allow instanta-
neous changes of the velocity and do not model acceleration. To obtain a linear
hybrid system, we discretize θ and replace it with a representative such that the
transcendental terms become constants (see Figure 6a); the number of buckets
for this discretization is parameterized and induces multiple locations (one for
each bucket for each discretized variable, see Figure 6b).

The car is put on different circular racetracks where the safety specification
is naturally given by the track boundaries. Each track is represented as three
collections of convex polygonal shapes Pin, Pout , Pcurbs ⊆ R2 which define the
inner and outer boundary of the track (see yellow area in Figure 7a), as well
as the curbs on the border of the track. Whenever the car enters the curbs it
must exit them within 2 time units. Formally, the specification is φ = G((x, y) ̸∈
Pin) ∧ G((x, y) ̸∈ Pout) ∧ G(((x, y) ∈ Pcurbs) → F[0,2]((x, y) ̸∈ Pcurbs)).

Baseline controller. To model the baseline controller each track is subdi-
vided into an ordered sequence of straight segments. The control inputs of the
baseline controller attempt to drive the car to the center region of the current
segment where the car stops. To model this behavior, each segment is subdivided
into several zones with different dynamics, depending on the relative position of
the zone to the center of the segment.

Advanced controller. The advanced controller implements a pure pursuit
controller [3] that is equipped with a set of waypoints along the track. Waypoints
are either given by points in the middle of the track on the boundary between two
segments or in a more advanced setup obtained by a raceline optimizer tool [9].

Results and observations. For evaluation, we consider several tracks that
are either simple toy examples such as square- or L-shaped tracks or linearizations
of actual F1 racetracks.

We outline some of the results that we obtained during evaluation here, we
provide a full set of images and videos online 4.

The designed baseline controller is relatively conservative, it prioritizes safety
over progress as it steers the car toward the center line of the track and then
4 https://github.com/modass/simplex-architectures/wiki/

Experimental-results

https://github.com/modass/simplex-architectures/wiki/Experimental-results
https://github.com/modass/simplex-architectures/wiki/Experimental-results

16 B. Maderbacher et al.

(a) The car’s trajectory is shown in green.
Leaving Skr (dark blue) triggers extension
thereof (light blue).

(b) Distance to the closest track boundary
over time. Controller usages are color-coded
for each control cycle.

Fig. 7: Execution of the race car with online verification.

bloating BC invocations extensions

0.25 123 2945
0.5 142 1329
0.75 189 1133
1.0 268 803

Table 1: Bloatings used for proofs on demand affect the success of this approach.

stops. This behavior enables fast computation of unbounded safety results but as
a drawback does not allow for large extensions of Skr during a single training run.
To show the influence of proofs on demand, we synthesized Skr for the center
area of a whole track a priori. Depending on the selection of waypoints for the
advanced controller, naturally, the usefulness of the initial Skr varies. Waypoints
in the middle tend to induce fewer extensions of Skr (or, fewer invocations of
the baseline controller in case proofs on demand are disabled) than the set of
waypoints generated by the raceline optimizer, which selects points allowing a
path with less curvature. A visualization of the optimized trajectory, Skr , as well
as its extension can be seen in Figure 7a.

We recorded the number of invocations of adaptive proofs over time (see e.g.
Figure 7b), the results are plotted in Figure 8 for the two sets of waypoints.
We can observe, that initially many proofs are required to saturate Skr in the
first lap. Later laps require fewer adaptations, the number of proofs stabilizes at
around 40 proofs per lap. This results from the controller not ending up perfectly
in its starting position from the lap before, such that evolving Skr is necessary
to use the advanced controller as often as possible. The initial position used
to generate proofs on demand is bloated to allow larger extensions of Skr at
a time. Our experiments with different bloatings (Table 1) show two opposing

Provable Correct and Adaptive Simplex Architecture 17

Fig. 8: Successful extensions of Skr (left: blue) per lap for the F1 track. Starting
from a moderately large known recoverable region for two sets of waypoints
(standard = AC1, optimized = AC2).

effects with increasing bloating: (1) fewer requests for extensions due to the larger
extension, and (2) more invocations of the baseline controller as fewer extensions
are successful due to the attempt of more aggressive expansion. This observation
is in line with our expectations, as attempts for more aggressive extension of
Skr due to larger bloating may lead, if successful, to less requests for further
extensions. Otherwise, if those attempts are not successful, the consequence are
more invocations of the baseline controller. A user can choose an appropriate
trade off between verification time and how conservative the safety check is.

On a standard desktop computer, the computation of the initial recoverable
region takes about 20 minutes, performing a proof-on-demand to extend the
recoverable region takes less than a second, testing whether to switch without
extending takes about 10 milliseconds.

6 Conclusion

We have presented a method to incorporate proofs on demand in a fully automated
Simplex architecture toolchain to ensure controllers obey a given temporal
specification. Our method operates incrementally, fitting the recoverable region of
the baseline controller to the behavior of the running advanced controller. Since
our Simplex architecture adapts to the advanced controller, it allows performance
increases by avoiding unnecessary switches to the baseline controller and invokes
fewer verification queries at later stages of the execution phase.

One direction for future work is to use the robustness values of the STL spec-
ification to fine-tune the switching mechanism from the baseline controller to the
advanced controller. Furthermore, we want to combine our Simplex architecture
with reinforcement learning such that the architecture guides the learning phase
via reward shaping and, at the same time, ensures correctness during training.

18 B. Maderbacher et al.

References
1. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe

reinforcement learning via shielding. In: AAAI. pp. 2669–2678. AAAI Press (2018)
2. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An

algorithmic approach to the specification and verification of hybrid systems. In:
Hybrid systems, pp. 209–229. Springer (1992). https://doi.org/10.1007/3-540-57318-
6 30

3. Amidi, O., Thorpe, C.E.: Integrated mobile robot control. In: Mobile Robots V.
vol. 1388, pp. 504 – 523. International Society for Optics and Photonics, SPIE
(1991). https://doi.org/10.1117/12.25494

4. Bak, S., Manamcheri, K., Mitra, S., Caccamo, M.: Sandboxing controllers for
cyber-physical systems. In: ICCPS. pp. 3–12. IEEE Computer Society (2011).
https://doi.org/10.1109/ICCPS.2011.25

5. Belta, C., Yordanov, B., Aydin Gol, E.: Formal Methods for Discrete-time dynamical
systems. Springer (2017). https://doi.org/10.1007/978-3-319-50763-7

6. Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system
verification. IEEE transactions on automatic control 48(1), 64–75 (2003).
https://doi.org/10.1109/TAC.2002.806655

7. Crenshaw, T.L., Gunter, E.L., Robinson, C.L., Sha, L., Kumar, P.R.: The simplex
reference model: Limiting fault-propagation due to unreliable components in cyber-
physical system architectures. In: RTSS. pp. 400–412. IEEE Computer Society
(2007). https://doi.org/10.1109/RTSS.2007.34

8. Frehse, G., Kekatos, N., Nickovic, D., Oehlerking, J., Schuler, S., Walsch,
A., Woehrle, M.: A toolchain for verifying safety properties of hybrid
automata via pattern templates. In: ACC. pp. 2384–2391. IEEE (2018).
https://doi.org/10.23919/ACC.2018.8431324

9. Heilmeier, A., Wischnewski, A., Hermansdorfer, L., Betz, J., Lienkamp, M.,
Lohmann, B.: Minimum curvature trajectory planning and control for an
autonomous race car. Vehicle System Dynamics 58(10), 1497–1527 (2020).
https://doi.org/10.1080/00423114.2019.1631455

10. Henzinger, T.A.: The theory of hybrid automata. In: Verification of digital and
hybrid systems, pp. 265–292. Springer (2000). https://doi.org/10.1007/978-3-642-
59615-5 13

11. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? Journal of Computer and System Sciences 57(1), 94–124 (1998).
https://doi.org/10.1006/jcss.1998.1581

12. Ionescu, T.B.: Adaptive simplex architecture for safe, real-time robot path planning.
Sensors 21(8) (2021). https://doi.org/10.3390/s21082589

13. Johnson, T.T., Bak, S., Caccamo, M., Sha, L.: Real-time reachability for verified
simplex design. ACM Transactions on Embedded Computing Systems 15(2), 26:1–
26:27 (2016). https://doi.org/10.1145/2723871

14. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
FORMATS/FTRTFT. Lecture Notes in Computer Science, vol. 3253, pp. 152–166.
Springer (2004). https://doi.org/10.1007/978-3-540-30206-3 12

15. Marta, D., Pek, C., Melsión, G.I., Tumova, J., Leite, I.: Human-feedback shield
synthesis for perceived safety in deep reinforcement learning. IEEE Robotics Autom.
Lett. 7(1), 406–413 (2022). https://doi.org/10.1109/LRA.2021.3128237

16. Meagher, D.: Geometric modeling using octree encoding. Computer Graphics and Im-
age Processing 19(2), 129–147 (1982). https://doi.org/10.1016/0146-664X(82)90104-
6

https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1117/12.25494
https://doi.org/10.1109/ICCPS.2011.25
https://doi.org/10.1007/978-3-319-50763-7
https://doi.org/10.1109/TAC.2002.806655
https://doi.org/10.1109/RTSS.2007.34
https://doi.org/10.23919/ACC.2018.8431324
https://doi.org/10.1080/00423114.2019.1631455
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.3390/s21082589
https://doi.org/10.1145/2723871
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1109/LRA.2021.3128237
https://doi.org/10.1016/0146-664X(82)90104-6
https://doi.org/10.1016/0146-664X(82)90104-6

Provable Correct and Adaptive Simplex Architecture 19

17. Mehmood, U., Stoller, S.D., Grosu, R., Roy, S., Damare, A., Smolka, S.A.:
A distributed simplex architecture for multi-agent systems. In: SETTA. Lec-
ture Notes in Computer Science, vol. 13071, pp. 239–257. Springer (2021).
https://doi.org/10.1007/978-3-030-91265-9 13

18. Mehmood, U., Stoller, S.D., Grosu, R., Smolka, S.A.: Collision-free 3d flocking
using the distributed simplex architecture. In: Formal Methods in Outer Space.
Lecture Notes in Computer Science, vol. 13065, pp. 147–156. Springer (2021).
https://doi.org/10.1007/978-3-030-87348-6 9

19. Phan, D.T., Grosu, R., Jansen, N., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural
simplex architecture. In: NFM. Lecture Notes in Computer Science, vol. 12229, pp.
97–114. Springer (2020). https://doi.org/10.1007/978-3-030-55754-6 6

20. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier
certificates. In: HSCC. Lecture Notes in Computer Science, vol. 2993, pp. 477–
492. Springer (2004). https://doi.org/10.1007/978-3-540-24743-2 32

21. Romdlony, M.Z., Jayawardhana, B.: Stabilization with guaranteed safety
using control lyapunov-barrier function. Automatica 66, 39–47 (2016).
https://doi.org/10.1016/j.automatica.2015.12.011

22. Schupp, S.: State Set Representations and Their Usage in the Reachability Anal-
ysis of Hybrid Systems. Ph.D. thesis, RWTH Aachen University, Aachen (2019).
https://doi.org/10.18154/RWTH-2019-08875

23. Schupp, S., Ábrahám, E., Chen, X., Makhlouf, I.B., Frehse, G., Sankaranarayanan,
S., Kowalewski, S.: Current challenges in the verification of hybrid systems. In:
International Workshop on Design, Modeling, and Evaluation of Cyber Physical
Systems. pp. 8–24. Springer (2015). https://doi.org/10.1007/978-3-319-25141-7 2

24. Schupp, S., Ábrahám, E., Makhlouf, I.B., Kowalewski, S.: HyPro: A C++ li-
brary of state set representations for hybrid systems reachability analysis. In:
NFM. Lecture Notes in Computer Science, vol. 10227, pp. 288–294 (2017).
https://doi.org/10.1007/978-3-319-57288-8 20

25. Seto, D., Krogh, B., Sha, L., Chutinan, A.: The simplex architecture for
safe online control system upgrades. In: ACC. pp. 3504–3508. IEEE (1998).
https://doi.org/10.1109/ACC.1998.703255

26. Sha, L.: Using simplicity to control complexity. IEEE Software (4), 20–28 (2001).
https://doi.org/10.1109/MS.2001.936213

27. Shivakumar, S., Torfah, H., Desai, A., Seshia, S.A.: SOTER on ROS: A run-time
assurance framework on the robot operating system. In: RV. Lecture Notes in Com-
puter Science, vol. 12399, pp. 184–194. Springer (2020). https://doi.org/10.1007/978-
3-030-60508-7 10

28. Simão, T.D., Jansen, N., Spaan, M.T.J.: Alwayssafe: Reinforcement learning without
safety constraint violations during training. In: Dignum, F., Lomuscio, A., Endriss,
U., Nowé, A. (eds.) AAMAS ’21: 20th International Conference on Autonomous
Agents and Multiagent Systems, Virtual Event, United Kingdom, May 3-7, 2021.
pp. 1226–1235. ACM (2021). https://doi.org/10.5555/3463952.3464094

29. Yang, J., Islam, M.A., Murthy, A., Smolka, S.A., Stoller, S.D.: A simplex architecture
for hybrid systems using barrier certificates. In: SAFECOMP. Lecture Notes in Com-
puter Science, vol. 10488, pp. 117–131. Springer (2017). https://doi.org/10.1007/978-
3-319-66266-4 8

https://doi.org/10.1007/978-3-030-91265-9_13
https://doi.org/10.1007/978-3-030-87348-6_9
https://doi.org/10.1007/978-3-030-55754-6_6
https://doi.org/10.1007/978-3-540-24743-2_32
https://doi.org/10.1016/j.automatica.2015.12.011
https://doi.org/10.18154/RWTH-2019-08875
https://doi.org/10.1007/978-3-319-25141-7_2
https://doi.org/10.1007/978-3-319-57288-8_20
https://doi.org/10.1109/ACC.1998.703255
https://doi.org/10.1109/MS.2001.936213
https://doi.org/10.1007/978-3-030-60508-7_10
https://doi.org/10.1007/978-3-030-60508-7_10
https://doi.org/10.5555/3463952.3464094
https://doi.org/10.1007/978-3-319-66266-4_8
https://doi.org/10.1007/978-3-319-66266-4_8

	Provable Correct and Adaptive Simplex Architecture for Bounded-Liveness Properties

