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ABSTRACT:

Quantitative measurements of glacier flow over time are an important ingredient for glaciological research, for example to determine

the mass balances and the evolution of glaciers. Measuring glacier flow in multi-temporal images involves the estimation of a dense

set of corresponding points, which in turn define the flow vectors. Furthermore glaciers exhibit rather difficult radiometry, since

their surface usually contains homogeneous areas as well as weak texture and contrast. To date glacier flow is usually observed by

manually measuring a sparse set of correspondences, which is labor-intensive and often yields rather irregular point distributions,

with the associated problems of interpolating over large areas. In the present work we propose to densely compute motion vectors at

every pixel, by using recent robust methods for optic flow computation. Determining the optic flow, i.e. the dense deformation field

between two images of a dynamic scene, has been a classic, long-standing research problem in computer vision and image processing.

Sophisticated methods exist to optimally balance data fidelity with smoothness of the motion field. Depending on the strength of the

local image gradients these methods yield a smooth trade-off between matching and interpolation, thereby avoiding the somewhat

arbitrary decision which discrete anchor points to measure, while at the same time mitigating the problem of gross matching errors. We

evaluate our method by comparing with manually measured point wise ground truth.

1 INTRODUCTION

It has become common practice to use photogrammetric tools to

acquire and analyze the motion of glaciers. The corresponding

points in the images, which define the glacier motion, are still of-

ten measured manually. In this work we show how to automate

the process by applying optical flow techniques to the problem.

Optical flow algorithms have advanced to a state at which they

can densely compute motion vectors at every pixel despite the

difficult radiometry of glaciers. In this work we compare several

methods on a data set with available manual measurements and

perform a thorough evaluation using different error metrics. The

evaluation shows that in areas where the glacier surface is prop-

erly visible modern optical flow methods are competitive with

human observers.

1.1 Glacier Motion

The motion observed at the surface of a glacier is due to gravi-

tational deformation of the ice and sliding at the base. The re-

sulting ice flow transports mass from areas of snow accumulation

to lower areas with mass loss by melt. The magnitude of the in-

ternal ice deformation depends on thickness and surface slope,

whereas basal sliding depends on the basal conditions, which are

mainly influenced by the seasonally varying water pressure (Pa-

terson, 1994). This results in an overall smooth spatial pattern

of the surface flow field. Observed temporal variations in glacier

motion range from hours to seasons and decades (Iken, 1977).

Thus, knowledge of surface flow fields of glaciers contributes to

understanding glacier dynamics and is important data for many

glaciological applications.

Direct measurements by geodetic methods (GPS, total station)

can only be performed on a limited number of accessible points.

Remote sensing has the potential to provide dense spatial cov-

erage over large areas. A wide range of methods (optical/radar,

feature tracking/interferometric, airborne/spaceborne platforms)

have been applied especially on the polar ice sheets of Green-

land and Antarctica (Lucchitta and Ferguson, 1986, Bindschadler

and Scambos, 1991, Joughin et al., 1998, e.g.). Investigations

of spaceborne systems are restricted to the time of satellite passes

and appropriate orbits, which limits application for mountain gla-

ciers with more complex and small scale flow fields.

Ortho-images are a standard product of digital photogrammetric

analysis and are suitable for periodically repeated glacier map-

ping. Areas free of seasonal snow show a variety of features

and texture suitable for motion analysis. Early glaciological ap-

plications have been implemented for semi-automatic and man-

ual use with analytical stereo plotters (Flotron, 1979). More re-

cently photogrammetric methods became popular to determine

fully digital deformation measurements (Kaab, 2002). Analysis

of pairs or sequences of ortho-images acquired at different points

in time allow one to evaluate the horizontal motion field. The

vertical component of the ice motion and the mass balance at the

surface can then be separated by subsequent numerical flow mod-

eling (Gudmundsson and Bauder, 1999).

1.2 Optical Flow

The problem of image alignment and 2D motion estimation has

been studied in computer vision over the past 30 years and has

reached an impressive level of reliability and accuracy. Numer-

ous variants are already used in the industry performing tasks

such as driver assistance, medical image registration and human

motion analysis. In this section we give a short overview of the

most common approaches for optical flow estimation, and intro-

duce the basic terminology.

In general there are dense as well as sparse techniques. Sparse op-

tical flow is often preferred in time critical applications and usu-

ally performs some kind of feature tracking (Tomasi and Kanade,

1991). In a way sparse techniques have already been applied to

glacier flow (Debella-Gilo and Kaab, 2011). Here correspon-

dences are established from correlation coefficients, later mis-

matches are eliminated by thresholding and manual inspection.



Dense techniques on the other hand compute a motion vector

at every pixel. It is usually assumed that the observed motion

between adjacent frames is small, although there are techniques

which explicitly try to compute large displacement optical flow.

A classic model for optical flow estimation was introduced by

(Horn and Schunck, 1981). Many contemporary techniques are

variants of this method, see the popular benchmark (Baker et al.,

2007), thus we use it as basis for this chapter.

Instead of treating each motion independently, a regularization-

based framework is established, which enforces data fidelity and

spatial smoothness at the same time. In the original paper the

data term is expressed on a per pixel basis, using the well known

brightness constancy assumption (BCA). The BCA states that the

gray value of a moving pixel remains constant throughout the

explored frames (Eq. 1):

I(x+ u, y + v, t+ 1) = I(x, y, t) , (1)

where I denotes the image brightness at a given pixel and time-

step, and (u, v)t denotes the optical flow vector. Taylor series

expansion at (u0, v0) yields the optical flow constraint

Ix(u− u0) + Iy(v − v0) + It = 0. (2)

Here (Ix, Iy)
t = ∇I and It = I(x+u0, y+v0, t+1)−I(x, y, t)

is the temporal derivative. Using a variational formulation the

data term is finalized as:

ED =

�

Ω

ρD
�

Ix(u− u0) + Iy(v − v0) + It
�

dx. (3)

Integration is performed over the image domain Ω. In the origi-

nal formulation the penalty function ρD is the quadratic penalty

ρD(x) = |x|2. From Eq. 2 we can directly observe that the prob-

lem is ill-posed, since only a single constraint per pixel can be

extracted. In the literature this is known as the aperture prob-

lem. The problem is not limited to this specific formulation but

also exists when image regions are to be matched, for instance a

patch containing a single edge or a textureless area. Furthermore

noise can degrade the quality of a matching process. Therefore a

smoothness constraint on the motion field is introduced,

ES =

�

Ω

ρS(∇u) + ρS(∇v)dx , (4)

resulting in an overall energy

E = ED + λES . (5)

The parameter λ controls the amount of smoothing. The Euler-

Lagrange equations of the energy term, derived with variational

calculus, yield necessary conditions for a minimum of the en-

ergy functional. Since the functional is given in terms of con-

tinuous variables, variational methods naturally lead to sub-pixel

accuracy. The resulting energy minimization problem is highly

non-convex, because the optical flow constraint, Eq. 2, is only

valid in a small local neighborhood. Therefore minimization is

performed in a hierarchical coarse-to-fine approach. Using im-

age pyramids, solutions from a lower pyramid level initialize the

next-finer level.

The original formulation of (Horn and Schunck, 1981) suffers

from the fact that quadratic error functions ρD and ρS lead to

over-smoothing at motion boundaries. Different error functions

have been proposed. The most popular one nowadays is ρ(x) =√
x2 + �2, a differentiable variant of the L1-norm, which is both

robust and convex. Larger displacements can be estimated thanks

to image warping and postponing any linearisation to the numer-

ical scheme (Brox et al., 2004). Certain versions of variational

optic flow can be computed in real-time (Wedel et al., 2008).

In contrast to variational methods, which minimize the energy

functional by continuous optimization, combinatorial methods

which are dominant in stereo matching are less popular in the lit-

erature. Mainly because of the enlarged two-dimensional search

space. Notable exceptions are (Lei and Yang, 2009, Lempitsky et

al., 2008). Finally, local methods exist, which do not minimize a

global energy function at all e.g. (Rhemann et al., 2011).

2 ALGORITHMS

In this section we describe in more detail the methods selected for

our evaluation. We choose three different algorithms as represen-

tatives of the large number of optical flow methods developed

over the years. All three algorithms are parallelizable and effi-

cient in terms of memory and speed, which is important due to

the sheer size of aerial images used for glaciology.

2.1 Total variation optical flow

The first algorithm in our set is a representative of the popular

variational approaches. The energy functional is based on the

classical formulation already presented in Eqs. 3, 4 and 5. How-

ever instead of approximating the L1-norm in order to make the

functional differentiable, the integral equations are addressed di-

rectly, using a primal-dual scheme. In (Zach et al., 2007) it was

proposed to add additional auxiliary variables v to the energy

function, to simplify the optimization:

�

Ω

λ|∇u|+ 1

2θ
|u− v|2 + |ρ(v)|dx, (6)

where the data term is given by the optical flow constraint Eq. 2,
ρ(v) := �∇I,v−v0�+I(x+v0, t+1)−I(x, t) and θ is a small

constant restricting v to be a close approximation of u. The con-

vex energy can be minimized by alternating steps updating either

u or v. Fixing v, optimization with respect to u is achieved using

the primal-dual algorithm proposed in (Chambolle, 2004). For a

fixed u the optimization yields a sum of decoupled pixel-wise

energies, which can be minimized individually. More recently an

improved primal-dual scheme was introduced by (Chambolle and

Pock, 2011), superseding the need for auxiliary variables. More-

over a slightly improved optical flow constraint is used which

additionally models varying illumination:

ρ(u, w) = �∇I,u− u0�+ It + βw. (7)

The parameter β controls the influence of the illumination term.
The function w is assumed to be smooth and therefore requires

additional regularization. The final energy was already proposed

in (Shulman and Hervé, 1989),

�

Ω

λ|∇u|+ |∇w|+ ρ(u, w)dx. (8)

Details of the optimization scheme go beyond the scope of this
paper, please refer to (Chambolle and Pock, 2011).

2.2 Cost-Volume Filtering

The second algorithm we have selected considers optical flow es-

timation as a labeling problem. The space of possible solutions

for the flow vectors is given as a discrete set, and each pixel is as-

signed to one element of the set. Because the solution space is no

longer continuous, the task reduces to a search problem. A naive

solution would be to select the label with the lowest data error for



each pixel. Filter based methods, e.g. (Yoon et al., 2006), instead

apply a local filter on the energy values for different flow vectors

(the cost volume) before assigning the labels. These techniques

can also be seen as an approximation to discrete energy based ap-

proaches. In contrast to the spatially global smoothing of a con-

ditional random field, smoothness of the flow field is only defined

locally. The intuition why similar solutions are achieved is that

pixels far apart usually have only little influence on each other.

The method we choose for evaluation was proposed recently by

(Rhemann et al., 2011). The algorithm mainly differs from previ-

ous filter-based techniques by the choice of the filter weights. The

guided filter introduced by (He et al., 2010) preserves edges in the

input image and has a runtime independent of the filter size. In-

corporated into the filter framework the technique achieves high-

quality solutions, and is competitive with energy-based methods

on standard benchmarks. The method can potentially handle both

small scale motion structure and large displacements.

More formally, let the set of labels be denoted by L = {1, . . . L}
and l ∈ L be a label, in our case a displacement (u, v)t. A cost

C(i, l) is assigned to each pixel i and label l by evaluating the

data term. For a label l the filtered cost at pixel i, C̄(i, l), is the

weighted sum over the neighborhood N(i) of i:

C̄(i, l) =
�

j∈N(i)

wi,j(I)C(j, l). (9)

The final labeling is now given by taking the label li with min-
imal filtered cost at each pixel i, li = argmin

�

C̄(i, l)
�

. The key

to high quality results is to use an edge-preserving filter. The

weights of the guided filter depend on a guidance image I , in our

case the reference image:

wi,j(I) =
1

|N(k)|
�

k|i,j∈N(k)

1+
(I(i)− µk)(I(j)− µk)

σ2
k + �

. (10)

Here µk and σ2
k are the mean and variance of the region N(k)

centered at pixel k in I . The sum is composed of all image re-

gions containing both pixel i and j. The edge preservation can be

seen by considering a region with a single edge. If pixel i and j

are on the same side of the edge, the weight wi,j(I) becomes 2,

and close to 0 otherwise. For flat regions with σ2
k < � we have

wi,j(I) = 1 for all pixel in the region, which results in a simple

averaging filter. An extension to color images is straightforward.

For more details please refer to (He et al., 2010).

As data term we select two different popular cost functions. Firstly

the truncated absolute difference of the gray values and gradi-

ent at the matching points in the reference image I(·, t) and the

displaced image I(·, t + 1), and secondly the negative normal-

ized cross correlation (NCC). The truncated absolute difference,

Eq. 11, has been shown to be robust against illumination changes:

CSAD(i, l) = αmin[|I(i, t)− I(i+ l, t+ 1)|, τ1]+
(1− α)min[||∇I(i, t)−∇I(i+ l, t+ 1)||, τ2].

(11)

The truncation values are denoted by τ1 and τ2 in the equation.
In contrast to this pixel-wise data cost the NCC is defined as a

sum over a region N(i) centered at pixel i:

CNCC(i, l)=
�

i∈N(i)

(I(i, t)−µi,t)(I(i+l, t+1)−µi+l,t+1)

σ2
i,tσ

2
i+l,t+1

,

(12)

where µi,t and µi+1,t+1 are the means of images I(·, t) and
I(·, t + 1) over the region N(i) and σ2

i,t and σ2
i+l,t+1 are the

respective variances.

The major challenge in the approach is the huge label space to

be evaluated. In the examples the flow vectors extend over a re-

gion of {−75, . . . , 75}2 pixel, which leads to 22500 labels. That

problem is tackled by very fast implementations of the filtering:

the weighted filtering can be achieved by a sequence of box-filters

with a time complexity linear in the number of pixels. Sub-pixel

precision is accomplished by upscaling the second image by an

integral factor and evaluating the cost function accordingly with

respect to the new, increased label space.

2.3 Pyramid Lucas-Kanade Optical Flow

Another widely used approach for optical flow estimation was

first introduced by (Lucas and Kanade, 1981). Originally devel-

oped for image registration the method is still commonly used for

feature tracking and template matching. An image patch around

a pixel i undergoes a deformation governed by a parameter vector

p, in order to minimize the squared difference to a template T :

�

j∈N(i)

�

I(f(j,p))− T (j)
�2
. (13)

Here f denotes a warping function parameterized by p. The key
idea, compare also Eq. 2, is to perform gradient descent on the

sum of squared distance (SSD) energy function, using a Taylor

series expansion of the image function at p0:

�

j∈N(i)

�

I(f(j,p0)) +∇I
∂f

∂p
(p− p0)− T (j)

�2
(14)

Iteratively solving the corresponding normal equations with re-
spect to p delivers a solution for the parameter vector. In the 2D

case it is common to restrict the parameter set to allow for pure

translations or affine deformations only (Baker and Matthews,

2004). In order to achieve dense flow the scheme is applied at

each pixel individually and embedded into a hierarchical coarse-

to-fine framework.

The scheme estimates the motion at each pixel independently,

therefore the implementation can be easily parallelized. Care has

to be taken if the normal matrix is close to singular, for instance

in textureless regions.

3 RESULTS AND DISCUSSION

We evaluate the different optical flow methods on ortho-photos of

the Unteraargletscher located in the Bernese Alps, Switzerland.

This large valley glacier has two main tributary forming the com-

mon tongue with an area of about 23 km2 and a length of 13 km.

The grayscale ortho-images are divided into three parts of 26,

20.5 and 12 mega-pixel, consisting of the individual tributaries

and the tongue. One pixel corresponds to one meter ground res-

olution. Image pairs were acquired in a temporal distance of one

whole year, at 1970/71, 1982/83 and 1997/98 (Fig. 1). Details

about the acquisition and image processing chain can be found in

(Bauder, 2001). The maximal motion observed over the one year

period is about 40m at the tongue area and 90m in the area of the

tributaries.

We study three algorithms: total variation (TV-L1), cost volume

filtering (CF) and pyramid Lucas-Kanade (Pyr.-LK). Quantitative

evaluation is done by comparing the results with manually mea-

sured, sparse correspondences (Bauder, 2001). The dataset con-

sists of 5606 measurements on a 50 pixel grid and is only avail-

able for the years 1997/98. The accuracy of the manual measure-

ments is evaluated by measuring several feature points twice and

independently, see table 1. For all images the differences are in

the range of 1 to 3 pixel (=meters).



Figure 1: Reconstruction of all image pairs. Flow vectors are color coded w.r.t. their magnitude (blue=slow flow, red=fast flow).

Because of the large temporal gap between the acquisitions, changes

in image appearance are inevitable, which make optical flow esti-

mation challenging. Difficulties include varying snow coverage,

non-uniform melt out or crevasse patterns, moving and tumbling

rocks, shadows and generally different illumination conditions.

The biggest problem is posed by the varying snow cover extent.

The data term measuring visual similarity cannot identify cor-

responding parts correctly as their appearance is too different.

The second major problem are large textureless regions e.g. due

to snow coverage or shadows. Those parts carry only little, if

any, information about the motion. Usually optical flow meth-

ods deal with textureless segments by propagating information

from neighboring areas into those regions. In our case however,

the varying borders of the snow cover and shadow borders are

the main source of information here. Since these are completely

independent from the motion of the glacier, the quality of the re-

constructions is low in these regions (compare Fig. 3).

3.1 Error Metrics

Popular error metrics in the optical flow literature (Baker et al.,

2007) are the average end point error AEP and the average an-

gular error AAE. The former measures the distance between

two flow vectors in 2D. The latter compares the angle between

two flow vectors (u, v, 1) in homogeneous 3D space. The errors

are averaged over all test points. We also report the normalized

root mean squared error NRMS of the end point error, where

the normalization is performed w.r.t. the difference between the

maximal and minimal flow magnitude in the image. Further we

also report quantiles of the AEP, since the metrics are typically

dominated by few gross outliers.

We compare the results of the optical flow algorithms with the

sparse manual measurements. The results are shown in table 2.

The TV-L1 algorithm performs best in almost all cases, except for

the image Unteraarl. Here the algorithm cannot handle the vary-

ing snow cover at the top of the glacier. A close-up of that part

is shown in the first row of Fig. 3, and also on the right of Fig. 4.

Cost filtering (CF) with NCC performs better in that area, al-

though only for parts where the data function delivers reasonable

costs. Using the SAD data cost already produces unacceptable

results, although the cost function works well for smaller images

with relaxed environmental conditions. In all cases Pyramid-LK

performs worst and is not further considered in the evaluation.

Without any regularization, the algorithm is not competitive in

these complex conditions.

Table 1: Deviations of the control sample set of the manual mea-

surements (unit: pixel=m)

Unteraarz Unteraarr Unteraarl

mean deviation 0.89 2.96 2.36
std. deviation 1.36 3.02 2.23
sample-size 168 166 16

Table 2: Evaluation using different error metrics. (unit: pixel=m)

Unteraarz
AEP Q95% Q80% Q50% AAE NRMS

TV-L1 1.34 4.61 1.74 0.75 10.3° 5.5%
CF&NCC 1.69 6.11 1.99 0.89 11.7° 8.2%
CF&SAD 3.80 17.29 3.08 1.25 18.4° 24.2%
Pyr.-LK 18.44 53.45 31.96 12.80 58.8° 62.1%

Unteraarl
AEP Q95% Q80% Q50% AAE NRMS

TV-L1 8.90 44.55 14.29 2.42 14.3° 24.9%
CF&NCC 6.51 33.04 6.55 2.17 14.2° 22.4%
CF&SAD 25.12 87.20 63.64 4.80 45.5° 62.6%
Pyr.-LK 35.86 76.16 53.12 33.40 76.2° 64.1%

Unteraarr
AEP Q95% Q80% Q50% AAE NRMS

TV-L1 3.90 15.65 4.60 1.58 7.5° 9.3%
CF&NCC 7.40 45.12 5.39 1.99 14.3° 21.2%
CF&SAD 19.67 98.73 34.21 3.01 32.2° 43.3%
Pyr.-LK 36.90 103.42 58.51 28.48 66.3° 55.9%

In Fig. 4 (left) we visualize the difference of the solution of the

TV-L1 algorithm and the expert’s solution. Areas where the esti-

mates diverge are marked in red, and where they agree in green.

The regions of greatest disagreement are found in spots showing

limited visual correspondence in the original images. In Fig. 3 we

visualize several of those areas. Both algorithms are misled by

the ill-posed data term and can not estimate the flow correctly. In

the case of the CF algorithm these regions have limited impact on

neighboring areas, however the estimates within the regions are

completely wrong. This can be explained by the edge preserving

property of the filter. Vectors from regions separated by an image

edge have little influence on each other. On the other hand, the

TV-L1 algorithm generally seems to handle those parts better, and

in most cases still produces reasonable motion estimates. Poten-

tially the influence of erroneous areas could be restricted by the

use of an anisotropic smoothing kernel.

3.2 Illumination Changes

Due to different environmental conditions the assumption of bright-

ness constancy between successive image acquisitions is violated.

To alleviate the negative influence of illumination changes, sensor

noise, or shadows on the data term, three different methods were

tested in case of the TV-L1 algorithm. Structure-texture decom-

position (STT) (Aujol et al., 2006), has been shown to be a suc-

cessful pre-processing step for 2D optical flow estimation (Wedel

et al., 2008). Images are decomposed into a structural part, corre-

sponding to larger connected regions of the image, and a texture

part containing fine scale details. Further it is assumed that using

the textural part for the computation of the optical flow is more



Unteraarl Unteraarr
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Figure 2: Image similarity at corresponding points ac-

cording to TV-L1 and to manual flow estimates. NCC
scores are overlain onto the images using color-code.

Areas in red mark higher similarity with TV-L1, green

areas higher scores of the manual measurements.

1997 1998 CF TV-L1 Manual

Figure 3: Depicted are patches in which the computed flow-fields differ

grossly from the manual estimates. Errors occur if the true motion is not

visible on the surface (col. 1,2). Here the objective to match corresponding

image content can distort the flow fields (col. 3,4). Flow vectors are color

coded with respect to their magnitude (blue=slow flow, red=fast flow).

robust against shadow and shading artefacts. A study comparing

various filters is given in (Vaudrey et al., 2009).

The second method evaluated is an improved optical flow con-

straint in which the varying illumination is modeled by an addi-

tive term (Eq. 7). Additionally the data term is extended to also

include gradient images. In table 3 we summarize the experiment.

It is obvious that all methods significantly improve our results. In

all other experiments the setup “STT&additive function” is used,

which worked best overall.

3.3 Qualitative Evaluation

In a further experiment we attempt to evaluate the quality of

the estimated flow fields by investigating the similarity of cor-

responding image regions. We compute the NCC coefficients in

a 11×11 and a 5×5 window located at matching positions. Note

that NCC is not used in the TV-L1 algorithm, so in that case it

constitutes an independent check, whereas the CF method uses

NCC, which constitutes a bias of the evaluation. We compute

correlation scores at all pixel containing manual estimates. Ta-

ble 4 shows that on average the score produced by the algorithms

is noticeably higher than the score of the expert. Results for the

TV-L1 algorithm are consistently between 11% and 28% better

than the human expert. The CF algorithm achieves at most 16%

improvement, and is 3% worse than the human in one case. We

conclude that in terms of visual coherence the automatically pro-

duced results are at least at good as the annotated ground truth.

In Fig. 4 we visually compare the matching quality of the TV-L1

algorithm to the human expert. For this purpose we warp patches

Table 3: AEP of the TV-L1 algorithm using different illumination

models. (unit: pixel=m)

Unteraarz Unteraarr Unteraarl

none 5.84 13.84 30.56
STT 1.35 4.58 8.70

additive function 1.32 4.61 10.32
STT&additive function 1.34 3.90 8.90
STT&gradients 1.33 4.40 8.80

Table 4: Mean NCC scores of different algorithms

Unteraarz Unteraarr Unteraarl
11×11 5×5 11×11 5×5 11×11 5×5

TV-L1 0.49 0.49 0.45 0.46 0.36 0.36

CF&NCC 0.45 0.40 0.37 0.43 0.32 0.36

human expert 0.45 0.42 0.35 0.39 0.30 0.31

of size 200×200 using the flow vectors. Ideally the warps should

be identical to their counterpart in the reference image. For sim-

ple comparison we show the difference image between reference

and warped patch. In all cases, warps created by the algorithm ap-

pear more similar to the reference. The global deviation is smaller

and the error patches appear smoother.

Fig. 2 compares NCC-scores of the TV-L1 flow and the human

expert. In regions colored red the score of the algorithm was

higher, green regions mark areas with a higher NCC-score for

the expert. Clusters of green spots are located in areas affected by

changes in environmental conditions, where expert knowledge is

needed to overrule the observations. Otherwise red (TV-L1 better)

clearly dominates.

4 CONCLUSIONS AND FUTURE WORK

We have evaluated three different optical flow techniques on the

task of estimating the motion of glaciers. Especially results ob-

tained from the TV-L1 based method look promising. Based on

an independent image matching metric, and also by visual in-

spection, the estimates appear to be more accurate than manually

measured correspondences. Regions with little visual coherence

however can lead to distorted results. A solution could be to sim-

ply detect and exclude these areas from the estimation process.

Going further, the regularization term could be adapted to the

task by adopting a numerical model from glaciology. Finally an

extension of the algorithm to the 3D domain could be interesting.
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high similarity between TV-L1 estimates and manual measurements are drawn in green, deviating regions in red.
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Gudmundsson, G. H. and Bauder, A., 1999. Towards an indirect
determination of the mass-balance distribution of glaciers using
the kinematic boundary condition. Geografiska Annaler 81A(4).

He, K., Sun, J. and Tang, X., 2010. Guided image filtering. In:
ECCV.

Horn, B. K. P. and Schunck, B. G., 1981. Determining optical
flow. Artificial Intelligence 17, pp. 185–203.

Iken, A., 1977. Variations of surface velocities of some Alpine
glaciers measured at intervals of a few hours. Comparison with
Arctic Glaciers. ZGG 13(1/2), pp. 23–35.

Joughin, I. R., Kwok, R. and Fahnestock, M. A., 1998. Interfero-
metric estimation of three-dimensional ice-flow using ascending
and descending passes. IEEE TGARS 36(1), pp. 25–37.

Kaab, A., 2002. Monitoring high-mountain terrain deformation
from repeated air- and spaceborne optical data: examples using
digital aerial imagery and aster data. ISPRS Journal of Pho-
togrammetry and Remote Sensing 57(1-2), pp. 39–52.

Lei, C. and Yang, Y.-H., 2009. Optical flow estimation on coarse-
to-fine region-trees using discrete optimization. In: ICCV.

Lempitsky, V. S., Roth, S. and Rother, C., 2008. Fusionflow:
Discrete-continuous optimization for optical flow estimation. In:
CVPR.

Lucas, B. D. and Kanade, T., 1981. An iterative image registra-
tion technique with an application to stereo vision. In: IJCAI.

Lucchitta, B. K. and Ferguson, H. M., 1986. Antartica: mea-
suring glacier velocity from satellite images. Science 234(4780),
pp. 1105–1108.

Paterson, W. S. B., 1994. The Physics of Glaciers. third edn,
Pergamon, New York. pp. 480.

Rhemann, C., Hosni, A., Bleyer, M., Rother, C. and Gelautz, M.,
2011. Fast cost-volume filtering for visual correspondence and
beyond. In: CVPR, pp. 3017–3024.
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