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Abstract
Aortic dissection is a complex unsolved issue in medical and biomechanics fields. It affects the
main artery of the human body, the vessel that carries oxygen-rich blood from the heart to the
rest of the body through branch arteries: the aorta. The dissection of the aorta occurs inside its
wall, which is composed of three different layers of material, i.e., intima, media, and adventitia.
The load-bearing structure of the aorta is the media, which is composed of 50 to 70 sublayers.
The separation of the media layers and consecutive rupture of the intima causes the blood to flow
into the newly formed cavity. The blood pressure will cause the propagation of the secondary
volume, creating the aortic dissection. The new volume, in which the blood flows, is called a
false lumen. According to the Stanford Classification System, aortic dissection initiates from the
origin of an initial tear. A relative position to the ascending aorta will classify the disease as
Type A aortic dissection or Type B aortic dissection.

Consequently, a profound study on aortic wall mechanics and fluid-structure interaction are at
the basis of the mechanics of the disease. As for the hemodynamics of the system, it is worth
mentioning the beneficial role of thrombus formation in such a disease. The hemodynamics
condition in the false lumen often promotes the formation and growth of thrombi. Thrombus
development in aortic dissection has been the focus of many medical studies. The thrombus was
found to have a beneficial effect on a patient’s prognosis. The disease’s incidence is about 3 to 6
cases per 100 000 population in its acute condition. However, recent studies mention numbers up
to 15 cases per 100 000 population due to better diagnostics and awareness of the disease among
the medical community. Nonetheless, the disease’s management is challenging due to its rapid
progression, given the high uncertainty in its diagnosis and treatment. At the moment, it is still
unclear what is the mechanism that initiates aortic dissection, how and how fast it propagates,
and which is the best treatment to cure it.

Aortic dissection is a medical problem that benefits from the engineering approaches, like
many other scientific issues. The medical field is strongly affected by high uncertainty due to
the extreme variation of the human body. Here, body proportions, the morphology of internal
organs, lifestyles, and living environment represent some of the challenges that modelers face
when reproducing the mechanics of the human body through complex computational models.
The material and failure properties of aortic walls dominate the occurrence and progression of a
tear in the aorta. Numerical values of the parameters are inherently difficult to determine and
include a certain level of epistemic uncertainty, i.e., the tissue may be altered by genetics, loading
conditions, or traumas. Hence, the location of material and geometrical imperfections can hardly
be predicted.

Sensitivity analysis is used to investigate the variations in the output of a dynamical system
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caused by input values. Among various approaches, global sensitivity analysis with the variance-
based method allows the analyst to focus on output variations. This approach also examines the
whole input space of a model considering possible interactions among the input factors. On the
contrary, a local approach will only investigate how the variation of single parameters will change
the quantity of interest of the numerical model. A variance-based approach requires relevant
statistical information, for instance, the probability density function of the desired model output.
Given the vast amount of data that sensitivity analysis requires, the use of metamodels, such as
polynomial chaos expansion, is considered. Metamodels allow the computation of more or less
expensive numerical simulations and are convenient for quantitative sensitivity measures.

Sensitivity analysis is applied to reduce the uncertainty in aortic dissection detection using
impedance cardiography, a non-invasive methodology primarily aimed at the medical community.
Furthermore, given the lack of knowledge on the thrombus formation model, sensitivity analysis
assists the process of defining the governing variables that could accelerate or inhibit its formation
and growth. The use of sensitivity analysis helps to reduce the uncertainty in the modeling phase,
aids the modelers in the model reduction process, and promotes the bond between engineers
and physicians. While the firsts are more concerned with a mathematical and computational
approach to the disease, developing new models and predictors demands a clearer understanding
of the mechanics of the process and the applicability of newly developed tools.
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Zusammenfassung
Die Aortendissektion ist ein komplexes, ungelöstes Problem im Bereich der Medizin und der
Biomechanik. Sie betrifft die Hauptarterie des menschlichen Körpers, das Gefäß, das sauer-
stoffreiches Blut vom Herzen über die Nebenarterien in den Rest des Körpers transportiert:
die Aorta. Die Dissektion der Aorta erfolgt innerhalb ihrer Wand, die aus drei verschiedenen
Materialschichten besteht, nämlich Intima, Media und Adventitia. Die tragende Struktur der
Aorta ist die Media, die sich aus 50 bis 70 Subschichten zusammensetzt. Durch die Trennung
der Arterienwandschichten fließt das Blut in den neu entstandenen Hohlraum, wo det Blutdruck
die Ausbreitung dieses sekundären Volumens bewirkt, wodurch die Aortendissektion entsteht.
Das neue Volumen, in welches das Blut fließt, wird als falsches Lumen (false lumen) bezeichnet.
Nach dem Stanford-Klassifikationssystem geht die Aortendissektion vom Ursprung eines ersten
Risses aus. Anhand der relativen Lage zum Aortenbogenwird die Erkrankung als Typ-A- oder
Typ-B-Aortendissektion klassifiziert.

Folglich ist eine gründliche Untersuchung der Aortenwandmechanik und der Fluid-Struktur-
Interaktion die Grundlage der Mechanik der Aortendissektion. Was die Hämodynamik des
Systems betrifft, so ist die günstigste Rolle der Thrombusbildung bei einer solchen Erkrankung zu
erwähnen. Zweifellos begünstigen die hämodynamischen Bedingungen im falschen Lumen häufig
die Bildung und das Wachstum von Thromben. Die Thrombusbildung bei Aortendissektion ist
Gegenstand zahlreicher medizinischer Forschungsarbeiten, die zu dem Schluss kommen, dass sich
der Thrombus rasch positiv auf die Prognose des Patienten auswirkt. Die Inzidenz der Krankheit
liegt im akuten Zustand bei etwa 3 bis 6 Fällen pro 100 000 Einwohner. Neuere Studien gehen
jedoch von bis zu 15 Fällen pro 100 000 Einwohner aus, was auf eine bessere Diagnostik und die
Sensibilisierung der medizinischen Fachwelt für diese Krankheit zurückzuführen ist. Dennoch ist
die Behandlung der Krankheit aufgrund ihres raschen Fortschreitens und der großen Unsicherheit
bei Diagnose und Behandlung eine Herausforderung. Derzeit ist noch immer unklar, welcher
Mechanismus die Aortendissektion auslöst, wie und wie schnell sie sich ausbreitet und welche
Behandlung am besten geeignet ist, sie zu heilen.

Die Aortendissektion ist ein medizinisches Problem, das wie viele andere wissenschaftliche Fra-
gen auch von der Technik profitiert. Medizinische Fragen sind aufgrund der extremen Variabilität
des menschlichen Körpers von einer großen Unsicherheit geprägt. Die Körperproportionen, die
Morphologie der inneren Organe, die Lebensgewohnheiten und das Lebensumfeld sind nur einige
der Herausforderungen, denen sich die Modellierer stellen müssen, wenn sie die Mechanik des
menschlichen Körpers mit Hilfe komplexer Computermodelle nachbilden wollen. Die Material-
und Versagenseigenschaften der Aortenwände dominieren das Auftreten und Fortschreiten eines
Risses in der Aorta. Die numerischen Werte der Parameter sind von Natur aus schwer zu bes-
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timmen und beinhalten ein gewisses Maß an epistemischer Unsicherheit, d.h. das Gewebe kann
durch Genetik, Belastungsbedingungen oder Traumata verändert werden, und der Ort solchen
Unvollkommenheit lässt sich kaum vorhersagen.

Mit Hilfe der Sensitivitätsanalyse werden die durch die Eingangswerte verursachten Schwankun-
gen in der Ausgabe eines dynamischen Systems untersucht. Die Methode, die es dem Analysten
besser ermöglicht, sich auf die Ausgangsvariationen zu konzentrieren, ist eine globale Sensitivität-
sanalyse, die eine varianzbasierte Methode verwendet. Bei der globalen Sensitivitätsanalyse wird
der gesamte Eingaberaum eines Modells untersucht, wobei mögliche Wechselwirkungen zwischen
den Eingabefaktoren berücksichtigt werden. Im Gegensatz dazu wird bei einem lokalen Ansatz
nur untersucht, wie die Variation einzelner Parameter die interessierende Größe des numerischen
Modells verändert. Ein varianzbasierter Ansatz erfordert die Erstellung relevanter statistische
Informationen, z. B. der Wahrscheinlichkeitsdichtefunktion der gewünschten Modellausgabe.
Angesichts der großen Datenmengen, die für die Sensitivitätsanalyse erforderlich sind, wird
die Verwendung von Metamodellen wie der Polynomial Chaos Expansion in Betracht gezogen.
Metamodelle ermöglichen die Berechnung von numerischaufwändigen Simulationen und sind für
quantitative Sensitivitätsmessungen sehr vorteilshaft.

Die Sensitivitätsanalyse wird angewandt, um die Unsicherheit bei der Erkennung von Aortendis-
sektionen mit Hilfe der Impedanzkardiographie zu verringern, einer nicht-invasiven Methode, die
in erster Linie in der Medizin verwendet wird. Angesichts des fehlenden Wissens über das Modell
der Thrombusbildung hilft die Sensitivitätsanalyse außerdem bei der Definition der Variablen,
die die Bildung und das Wachstum des Thrombus beschleunigen oder hemmen könnten. Der
Einsatz von Sensitivitätsanalysen trägt dazu bei, die Unsicherheit in der Modellierungsphase zu
verringern, unterstützt den Modellierern bei der Modellreduktion und fördert die Verbindung zwis-
chen Ingenieuren und Ärzten. Während sich die Erstgenannten eher mit einem mathematischen
und rechnerischen Ansatz für die Krankheit befassen, erfordert die Entwicklung neuer Modelle
und Prädiktoren ein klareres Verständnis der Mechanik des Prozesses und der Anwendbarkeit
neu entwickelter Instrumente.
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List of symbols

Greek alphabet

Unit Description
ααα - Multi-index of the PCE
αi - Component of multi-index ααα
αFL rad Angle of relative position between false and true lumen
β rad RBC deformation angle
βth m2 Shear-enhancing coefficient for the diffusion of platelets
γd - Orthogonalization normalization constant in the degree d

γααα - Orthogonalization normalization constant in multi-dimensional
PCE

9γ s´1 Shear rate
Γ - Boundary of input domain
δqd - Kronecher delta in the indices q and d
∆EE - Distance between two sample points in the EE method
∆σbl % Blood electrical conductivity change
ε - Error, or approximation error
εemp - Empirical error for PCE coefficients
εLOO - Leave-one-out error for PCE coefficients
εpeq F m´1 Electrical permittivity
ζH - Blood electrical conductivity variation per hematocrit level
η Pa s Blood viscosity
ηpl Pa s Blood plasma viscosity
η0 Pa s Zero-shear fluid viscosity
η8 Pa s High shear rate fluid viscosity
Θ - Input sample
θpkq - Input sample point
λ s Shape function parameter for Carreau viscosity model
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Unit Description
µRBC N m´1 Membrane shear modulus of RBC
µi - Mean of variable xi
µ̌i - Mean of EEi
µ̌˚i - Mean of |EEi|
µy - Mean of output y
ξ - Percentile score
Ξ - Output sample
ρ kg{m3 Fluid, or blood, density
%i - Pearson’s product moment correlation coefficient
σpeq S m´1 Electrical conductivity
σbl S m´1 Bulk flowing blood electrical conductivity
σcv S m´1 Blood electrical conductivity of a control volume
σi - Standard deviation of variable xi
σp˛q - Standard deviation of quantity ˛

σ̌i - Standard deviation of EEi
σ2
i - Variance, or partial variance, of variable xi
σ2
ij - Partial variance of variable xi and xj
σ2
i1,...,is - Generic partial variance of the model
σpl S m´1 Plasma electrical conductivity of a control volume
σst S m´1 Stationary blood electrical conductivity
σth S m´1 Human thorax electrical conductivity
σy - Standard deviation of output y
τEE - Trajectory indicator of the EE method
τττ Pa Shear, or deviatoric, stress tensor
τo s Time constant for parallel orientation of RBC
τd s Time constant for RBC from disoriented to aligned
υ m Azimuth in the cylindrical coordinate system
φdp˛q - Univariate, i.e., one-dimensional, basis function of degree d
φth - Degree of local thrombosis
Φαααp˛q - Multivariate, i.e., multi-dimensional, basis function for the PCE
9Φc m3{s Thrombus characteristic growth rate
ϕ - Stationary to pulsating flow ratio
Ψp˛q - Vector of multivariate polynomials of the PCE
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Unit Description
ω rad s´1 Angular frequency
ωpeq rad s´1 Phasor angular frequency
Ω - Spatial input domain

Latin alphabet

Unit Description
A m2 Cross-section area
a0 m Minor semi-axis ellipsoidal RBC
ad m Deformed minor semi-axis ellipsoidal RBC

AM,d - Set of PCE indices for a surrogate of dimension M and
degree d

Ai - Set of PCE non-negative indices in i

AT,i - Set of PCE non-negative indices including all i combina-
tions

b0 m Major semi-axis ellipsoidal RBC
bd m Deformed major semi-axis ellipsoidal RBC
B - Model output dimension
bi - Linear regression coefficient
c, c1 - Polynomial coefficients
ccc - Vector of polynomial coefficients

rccc - Estimated vector of polynomial coefficients from least-
square method

pcqd - Falling factorial Pochhammer symbol
cααα - Polynomial coefficients for multi-dimensional PCE
cAP mol{m3 Activated platelets concentration
cBP mol{m3 Bounded platelets concentration
cc mol{m3 Coagulant concentration

ch - Polynomial coefficients for 1D PCE in the index h, s.t.
0 ď h ď d

Cprq, Ca, Cb,
Cr

- Orientation and deformation terms for RBC

d - Generic polynomial degree
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Unit Description
d - Differential operator
B - Partial differential operator
DDD - Rate-of-deformation tensor
Db m2{s Brownian diffusion coefficient of platelets
Dc m2{s Diffusion coefficient of coagulant
Dc 9γ m2{s Shear-enhanced diffusion coefficient of coagulant
Dp 9γ m2{s Shear-enhanced diffusion coefficient of platelets
DTR m2{s Blood self diffusion coefficient
DF - Damage factor induced by AD
EEi - Elementary effect of variable xi
E r˛s - Mean operator
f s´1 Frequency
fprq - Orientation function of the RBC in a cylinder
F - Deformation term of RBC
gp˛q - Function, or computational model
rgp˛q - Surrogate model of gp˛q

g0 - Model constant as result of the ANOVA decomposition of
gp˛q

gi - Univariate term as result of the ANOVA decomposition of
gp˛q

gij - Bivariate term as result of the ANOVA decomposition of
gp˛q

gi1,...,is - Multivariate term as result of the ANOVA decomposition
of gp˛q

h - Generic polynomial degree
H - Blood hematocrit
i - Random variable index
j - Imaginary unit
k - Sample point index
k1 m3{s Reaction rate constant
k2 1{s Reaction rate constant
KM - Unit cube domain of dimension M
kBP mol{m3{s Bounded platelets reaction rate constant for production
kc mol{m3{s Reaction rate constant for coagulant production
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Unit Description

kth kg{m3{s Constant coefficient for the sink term in Navier-Stokes
equation

L m Length, or cylindrical length
L2
ppxqpSX q - Space of mean-square integrable functions defined in SX

m - Generalized Reynolds number coefficient
mr - Aortic radius multiplier
mv - Aortic blood velocity multiplier
M - Model input dimension
n - Period, or cycle, counter
nnn - Normal vector
nη - Shape function parameter for Carreau viscosity model
nRBC 1{m3 Total number of RBC per unit volume
n‖ 1{m3 Number parallel RBC to the flow per unit volume
N - Set of natural numbers
N p˛, ˛q - Gaussian, or normal, probability density function
Nc - Cardinality of the PCE space
Nq - Number of quadrature points
Ns - Sampling dimension
NEE - Number of trajectories in the EE method
pEE - Even number indicating grid level in EE method
p Pa Fluid pressure
p1 - Quasi-norm degree
pp˛q - Probability density function

Pdp˛q - General polynomial formulation in the variable ˛ of generic
degree d

rPs - Hypergeometric representation of orthogonal polynomial

PMd p˛q - Space of all polynomials of dimension M and degree up
to d in the variable ˛

q - Quadrature point index
Q m3{s Fluid flow rate
Qs m3{s Steady component of pulsating fluid flow rate
Qo m3{s Oscillating component of pulsating fluid flow rate

r m Radial, or axial, distance in the cylindrical coordinate
system pr, υ, zq from the z-axis
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Unit Description
R m Radius of a cylinder, lumen
R2 - Coefficient of determination, goodness-of-fit
RA m Radius of the aortic arch
RFL m Radius of the aortic false lumen
RL m Reattachment length in BFS geometry
RTL m Radius of the aortic true lumen
R - Set of real numbers
RM - M -dimensional set of real numbers
R˛,˛ - Set of real matrices with ˛ rows and ˛ columns
Re - Reynolds number
Regen - Generalized Reynolds number
S - Set of indices composed by all combination of input indices
S˛ - Support of the domain ˛

Si - First Sobol index for the variable xi
ST
i - Total Sobol index for the variable xi

SRC - Standard regression coefficient
t - Time variable
tc - Thrombus characteristic growth time
T s Period or cycle
TR s Residence time
Ti1,...,is - Indices combination in a generic domain
uuu - Fluid velocity field
uz - Fluid velocity z component
ur - Fluid velocity r component
uυ - Fluid velocity υ component
Up˛, ˛q - Uniform probability density function
V V Electric potential
V r˛s - Variance operator
wpiq - Quadrature weights for the point xpiq

Wo - Womersley number
X - Model input space, or domain
x - Generic random variable
xi - Input random variable in the index i, s.t. 0 ď i ďM
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Unit Description
xxx - Input random vector
Y - Model output space, or domain
y - Output random variable
yyy - Output random vector
Z Ω Electrical impedance
Z - Set of integers
Z0 - Set of non-negative integers
ZM0 - M -dimensional set of non-negative integers

z m Axial coordinate, or height, in the cylindrical coordinate
system pr, υ, zq

Mathematical symbols

Symbol Description

˛„i
complementary of. The quantity ˛ is considered without the i-th
component
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1. Introduction

1.1. The medical problem
The human cardiovascular system is composed of the heart as its center and primary source
of energy, veins, arteries, and capillaries. The aorta is the first blood conducting vessel that
distributes blood into the whole organism from the heart. The aortic wall comprises three layers,
namely the intima, the media, and the adventitia, see Fig. 1.1. The intima, i.e., the innermost
layer, is formed by endothelial cells and, in physiological (healthy) conditions, it is in contact
with the blood flow. The media owes its mechanical properties to the corrugated structure of
collagen and smooth muscle cells layers, which gives elasticity and compliance to the whole
structure of the aorta. Finally, the more collagen-rich adventitia protects the vessel from the
outside and creates the interface to the surrounding tissues and vasa vasorum. The aorta is
subdivided into different sections, see Fig. 1.2, to ensure accurate medical classification. The
largest separation of the aorta occurs at the diaphragm height, where the thoracic and abdominal
aorta are distinguished.

According to the World Health Organization [121], cardiovascular disease (CVD) is the number
one cause of death in the human population, causing 17.9 million deaths each year. Some other
CVDs included in the statistics are: coronary artery disease, congenital heart disease, deep vein
thrombosis, and pulmonary embolism, to name the most prevalent. All of them are known in the
medical field to be often lethal and require complex treatment [121]. The aorta itself is subjected
to several diseases, of which aortic dissection (AD) is also classified as a CVD.

AD is a complex unsolved medical issue in the medical and biomechanics field. It is a
pathological condition that affects the wall of the aorta. The wall is damaged so that a tear
forms on the intima layer exposing the media layer to the blood flow. Here, the high velocity
of the fluid, together with the presence of elevated shear stress on the collagen fibers, creates
the perfect condition for the separation between the layers of the media. A new cavity, namely
the false lumen (FL), is formed where the blood starts to flow. When AD occurs, the remaining
healthy part of the aorta is also called true lumen. Single or multiple intimal tears grant the
communication between the lumina [69], in which case the first tear along the flow direction is
called proximal tear, and the following distal tears. The high mechanical force of the blood flow
may impose continuous FL propagation. An illustration of AD initiation is provided in Fig. 1.1.

Different AD conditions have been categorized in two different classifications based on the need
for surgical or medical management [42], namely the DeBakey [43] and the Stanford classifications
[42]. The former considers the expansion of the disease besides the intimal tear location. The
latter is used in the current text. The AD is classified by the Stanford classification system in
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Figure 1.1.: Initiation of aortic dissection starting from a rupture of the intima layer. Dissection formation
in the media layer causing separation of the layer separation and formation of true lumen
(TL) and false lumen (FL). On the left, the adventitia, media, and intima layers of the aortic
wall are shown. Image not in scale and inspired by Gasser et al. [61] and Surgery [159].
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Figure 1.2.: Schematics of the aortic sections and arteries. The thoracic aorta is characterized by the
presence of the brachiocefalic artery (BCA), the left common carotid artery (LCA), and the
left subclavian artery (LSCA). The abdominal aorta is composed by many more artery other
than the renal ones, however they are not represented here. Image not in scale and inspired
by Šťásek et al. [183].
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DeBakey IIIaDeBakey I DeBakey IIIbDeBakey II

Stanford type BStanford type A

Figure 1.3.: Stanford and DeBakey classifications of Aortic Dissection: (left) Type A, or TAAD, that
originates from the ascending aorta and (right) Type B, or TBAD, in which the aortic tear
involves the descending aorta. Image not in scale and inspired by Murillo et al. [116].

Type A AD (TAAD) when the dissection enwraps the ascending aorta, or Type B AD (TBAD)
when the tear is initiated in the descending thoracic aorta, see Fig. 1.3. The latter accounts for
25 % to 30 % of all AD, affecting primarily men. Both classifications do not include cases in which
the dissection involves the aortic arch but not the ascending aorta. However, new classification
systems are currently being developed [41]. TBAD can be further classified as complicated or
uncomplicated. Complicated TBAD is characterized by several pathologies, of which malperfusion
syndrome and aortic rupture are some [118]. Approximately 25 % to 40 % of TBAD are classified
as complicated [4].

AD classification is also based on chronicity, i.e., the state of the disease to become chronic
and have long duration. AD is defined as hyperacute when it lasts at most 24 h, acute when it
continues for a week, subacute for a month, and chronic when its presence endures for more than
a month. Acute AD usually requires urgent surgical repair [126]. However, type A patients have
more chances of success when treated surgically, while type B dissection has a lower mortality
rate with medical treatment [27, 69], see Fig. 1.4. From the Kaplan-Meier survival curves it is
evident that TBAD has more chances of success compared to TAAD. In the late 1990s, the AD’s
death rate was about 3 to 4 cases per 100,000 persons [67, 110]. Lately, the yearly incidence was
reported to be around 15 cases per 100 000 persons [93]. The reason of this discrepancy is given
primarily by medical advances in diagnosis. AD management, either medical or surgical, is highly
complex given the high uncertainty in diagnosis, treatment, and monitoring. In addition, the
propagation speed and mode of the FL are also still unclear. The initiation event is also obscure;
however, most AD patients present arterial wall abnormality or hypertension. Hypertension,
which is high blood pressure, primarily chronic, is associated with aortic dissection as a primary
cause [4, 136]. Connective tissue diseases are also considered as causes for AD. Examples are
Marfan syndrome and Ehlers-Danlos syndrome [4]. An aortic aneurysm is considered both a cause
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Figure 1.4.: Kaplan-Meier survival curves for Type A and Type B aortic dissection [27].

and a consequence of AD. Both are caused by the aortic wall weakening, particularly the intima
or the media layers. Among the risk features, there is TL diameter larger than 40 mm [175] or FL
diameter larger than 22 mm [152], patent or partially thrombosed FL [167], and proximal tear
size greater than or equal to 10 mm [165]. Although beneficial to determine the gravity of the
AD condition, the risk features are hardly collectible, requiring nonsimple diagnostic processes,
e.g., computerized tomography or magnetic resonance imaging scan.

The medical field deals with extreme human variability: patients have different morphological
characteristics, lifestyles, or habits. A patient’s clinical history may also affect health charac-
teristics in ways that are still not clear. Physicians have overcome this issue with the help of
clinical expertise and statistics. Therapies, treatments, and protocols often come from statistical
analysis on a large population to find the best available therapy. For example, a new surgical
treatment requires a large study on new techniques and approaches, validation through the
scientific literature, and final approval from the ethical committee. Same process is required for
the case of new medical treatments. In addition, the choice of study population is subject to
additional requirements to be met. In the case of CVD, the vascular surgeon has the duty to
select the right sampling in order to initialize an innovative methodology. Therefore, the medical
approach aims to find a clinical solution that may fit the highest number of individuals.
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1.2. The engineering perspective

1.2. The engineering perspective
Over the past decades, engineering has increasingly aided the medical field with more elaborated
computational models1, particularly in the cardiovascular field; some examples are given in
[89, 95, 96, 155, 156]. Engineers employ computational models to simulate a system, optimize
it by input domain manipulation, and eventually extract decisions. However, the high human
variability is often a complex issue hampering the modeling phase, especially when the transition
from computational model to clinical phase is expected. Model uncertainties, both aleatory and
epistemic, are common and unavoidable due to the dynamic and complex system in consideration.
In addition, model errors add up to model uncertainties [79]. This situation makes it difficult to
decide the model complexity that would describe the system the best.

The different approaches between the engineering world and the medical field in solving
problems are the main obstacle repeatedly encountered when implementing computational
models as a medicine-support tool. Sometimes, such implementation is even impossible due to
various other reasons. Consequently, the creation of a strong link between the two disciplines
should be encouraged. Achieving and solidifying such a link is possible by reducing model
uncertainty and reducing the amount of medical measurement required of the patient.

As Hanha [70] anticipated and then confirmed by many others [53, 133], model development
has to deal with finding the best compromise between model completeness and propagation
error [141]. On the one hand, increasing the former would better describe the system, but a
more significant number of uncertain variables in the input domain will increase the overall
uncertainty. On the other hand, model assumptions and model dimension reduction ease the
model computation, leading to an insufficient description of the physics and physiology of the
system. The error, thus uncertainty, optimization is also known as the conjecture of O’Neil [120]
and visualized in Fig. 1.5.

An uncertainty compromise is often complicated in the medical engineering field, and unsuccess-
ful attempts lead to widespread model skepticism [86]. Increasing the number of measurements
and tests on a patient translates into less induced uncertainty in the system. However, this will
eventually burden the patients and require more time in the hospitalization process. Successful
and mature computational models lead to a model-aided diagnosis, intervention planning, and risk
stratification [25, 124, 153]. Model personalization, i.e., translating the model into patient-specific,
is mandatory to make the model an effective clinical supporting tool. Model personalization
means that boundary conditions, parameters, and initial conditions are extracted from the
patient’s condition. However, daily physiological variation and measurements uncertainty are
common issues making data implementation hardly successful [45]. In the biomechanics field,
modeling techniques such as finite element method (FEM), fluid-structure interaction (FSI), or
computational fluid dynamics (CFD) have captured much attention in the past years. However,
little focus has been spent on accurately estimating of model parameters and selecting the
influential ones [91].

1The wording computational model it is intended, in this document, as any form of analytical or
numerical formulation for the solution of engineering problems.
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Figure 1.5.: Model error compromise between model completeness and propagation error. The figure has
been re-adapted from the work of Razavi et al. [133].

Uncertainty estimation and parameter reduction are valuable and practical tools that must
be considered to identify (non)valuable information before and during the modeling phase.
For example, uncertainty quantification (UQ) is a well-known method that assesses the model
uncertainty given by the model’s input variation. UQ is vital in engineering and represents a
necessary step in the modeling phase. Besides, sensitivity analysis (SA) focuses on studying how
the uncertainty is generated and connected to the model’s input variables.

The estimation of a sensitivity measure, as for the Sobol indices, can be an intensive task.
The first developed approach consists of a Monte Carlo, or quasi-Monte Carlo, assessment of
the indices. However, such techniques are computationally expensive due to the high number
of model runs required to reach convergent results [81]. Alternatively, the use of surrogate
models has been of great help for sensitivity measures estimation. In particular, the polynomial
chaos expansion (PCE) is a valid substitute since the Sobol indices are easily assessed from the
expansion coefficients. Therefore, the remaining computational effort is left to calculate a correct
PCE.

In a medical engineering context, a recent trend towards patient-specific modeling is visibly
becoming more decisive. Therefore, the prediction reliability of computational models is paramount
[48]. As a result, SA represents a tool that cannot be neglected when the model is required to be
suitable for decision-making. Furthermore, SA eases the process of model personalization. However,
its use is restricted in science, particularly in the medical field, by several challenges. The more
common challenges are a narrow vision of SA benefits, lack of communication between modelers,
analysts, and physicians, or absence of models’ uncertainties computation. An explicative work
about the challenges of SA and its future in science is provided by Razavi et al. [133].

Applications of SA for the topic of AD are not yet prevailing. Many are found for several CVDs
in the field of biomechanics. Quicken et al. [127] apply UQ and SA through a new formulation of
adaptive PCE for abdominal aortic aneurysm and arteriovenous fistula. Their application is the
closest to this thesis, although their scope was to demonstrate the utility of the new expansion
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formulation for treating complex CVD models. Recently, Brandstaeter et al. [32] presented a
fascinating analysis on the arterial wall model when subjected to AAA or hypertension. They
also use a global SA to demonstrate a possible improvement in clinical measurements, even
though it is still prohibitive in collagen growth measurement. Similar conclusions were drawn
by Altamirano-Diaz et al. [6] when computing the sensitivity of input parameters for a 0D
cardiovascular model affected by hypertension. Recently, Xu et al. [182] stressed the help of
SA and surrogate modeling to assess the reliability of in-silico tools for clinical application. An
example of how UQ and SA can improve the prediction of a well-known quantity of interest,
namely the fractional flow reserve, in coronary stenosis is given by Sturdy et al. [157]. Outstanding
work is performed by Eck et al. in [46] and successively in [47]. Initially, a 1D model of the whole
cardiovascular system is created, and SA, through a PCE, is computed on two system variables.
Successively, the model performance is compared with existing time-series clinical data, and the
SA is applied to different model assumptions. In conclusion, they analyzed the reliability of the
developed cardiovascular model through SA and model verification and validation.

In the context of AD, several aspects are still unclear and currently in research. Impedance
cardiography (ICG) is rapidly emerging in the scientific and medical field, and it appears as
a valuable method for AD detection and monitoring [5]. It involves injecting a low-amplitude
alternating current into a selected part of the body, e.g., the thorax, from a pair of electrodes.
Then, the changes of impedance are detected by measurement sensors in a cardiac cycle. How-
ever, different sensor positioning and physiological variations affect the outcome of electrical
models predominantly. Furthermore, the theory of the electrical conductivity of flowing blood
includes several limitations in the model assumptions. Usually, especially in the engineering field,
assumptions are made to simplify the mathematical modeling of systems that are sometimes too
complex to be described in their entirety. In the context of electrical conductivity of blood, fluid
and flow models have often been highly simplified, e.g., Newtonian fluid or steady-state flow.

Blood clot, medically thrombus, is a coagulation of blood that forms under some particular
conditions. When formed and then dislodged, the thrombus can be dangerous or fatal since it
may decrease or stop the blood flow in the cardiovascular system [166]. However, the thrombus
can be clinically beneficial in AD when it develops in the FL. The blood flow in the FL decreases,
the thrombus develops, and if complete thrombosis occurs, the FL could be entirely re-absorbed
by the organism. Eventually, the FL will disappear and the diseases with it.

The amount of thrombus in the FL is classified with the status of the FL, namely and ordered
by thrombus extension, patent, partial, and complete thrombosed. The most dangerous condition
occurs for partial thrombosed FL. Precisely, Tsai et al. [167] computed that this condition can
be up to 2.7 times more dangerous than a patent FL due to the occlusion of the distal tear,
which leads to FL volume increment and probable aneurysmal dilation or rupture. The latter
phenomenon is also known as “blind-sac” FL. However, it is still uncertain whether the patent or
partial FL can worsen AD. A complete thrombosis can also be induced by installing a thoracic
endovascular aortic repair (TEVAR), which allows the occlusion of the proximal, and eventually,
the distal tear, leading to a safe decrease of flow in the FL, and successively thrombosis.

All these uncertainties in understanding the mechanics of systems, particularly computational
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models, are given by the lack of connection between computational models and applied medicine.
Although this process may require a long ethical approval process, the models’ verification,
validation, and calibration are critical in research. It is common to analyze a natural phenomenon
in minimal detail, thus formulating an accurate duplicate of the studied system. In other words,
the spectrum of the analysis focuses and narrows on all the small details that increase model
accuracy and complexity. This thesis, on the other hand, intends to broaden the point of view
that is usually applied in constructing computational models, e.g., in solid mechanics. This choice
is also motivated by the ease with which sensitivity analysis makes it possible to operate.

A very intriguing aspect of SA is the possibility of recreating pathological situations simply by
creating an extensive sampling. Each point in the sampling space could be associated with a
patient. This approach could be the basis of a new reinforcement to medicine, creating virtual
patients to simulate different clinical conditions. This new strategy could be innovative given
the significant variability that is characteristic of the human being. Each of us has particular
and significantly different characteristics than any other individual. Therefore, creating samples
that explore this wide human variability could be a starting point for further statistical and
engineering studies. Unfortunately, the lack of large databases that can provide information about
the probability distribution of specific quantities is always an obstacle in this field. Hypotheses
of empirical distributions of system variables may temporarily overcome this challenge, but
they are still hypotheses. Therefore, in order to create this technological advance, new data and
experiments are preferable.

This thesis seeks to initialize broadening the engineering and medical point of view by laying the
groundwork for such a definition of virtual patient, namely by creating and imposing variability
in existing mathematical models that address AD-related issues. SA is an excellent tool for
analyzing models, such as policy management, decision-making, and even industrial organizations.
Therefore, it is believed that the power of SA in the field of medicine, particularly medical
engineering, is fundamental and can become an essential cornerstone in the production of effective
and transparent medical solutions.

This objective is approached following the example of the general UQ framework proposed by
Marelli and Sudret [99]. The proposed approach involves an iteration process that starts from
the description of the system through mathematical modeling and the introduction of variability
in the input parameters. After analyzing the statistical values of the output produced, UQ, SA,
and eventual Bayesian inversion are some of the tools that allow a deep understanding of the
mathematical model in use. The procedure is repeated iteratively to reduce the uncertainty of
the model as much as possible.

In this text, this framework is taken up, albeit slightly modified. Here, models related to AD
are analyzed. At the same time, critical outputs involved in the mechanics of the disease are
selected. The modeling process is iterated with the selection of system variables. These variables
are selected to best express human variability, and their variation is identified in the available
scientific literature and medical expertise. Subsequently, the outputs are analyzed by uncertainty
analysis before starting the SA process. This last analysis allows identifying the system variables
that do not induce output variation and allows identifying the mechanics of the models, so
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Figure 1.6.: The thesis’ framework is here illustrated. First, the modeling and output selection phases
iterate on the selection of the sources of uncertainty. Successively, the uncertainty and
sensitivity analysis lead to model interpretation. Image inspired by Marelli and Sudret [99].

far obscure. Therefore, the proposed framework differs from Marelli’s [99] since it does not
deliberately iterate. This iteration is omitted in this text due to the nature of the subject matter.
The original approach is very successful in the engineering field. Unfortunately, the situation
is more complicated in the medical field as models and hypotheses require clinical validation.
This thesis aims to initialize this theoretical process towards a future clinical application. The
visualization of the framework of this manuscript is shown in Fig. 1.6.

This thesis is one of the outcomes of the LEAD Project “Mechanics, Modeling and Simulation
of Aortic Dissection” at the University of Technology, Graz, Austria. The project aims to improve
the understainding of AD description, detection, treatment, mechanics, and processes by looking
at different scientific fields and approaches. The project is subdivided into several subprojects.
The employment of SA in AD represents one of them. The purpose of this subproject is to glimpse
the possibility of understanding the mechanism of AD, and therefore a broadening of views was
necessary. The use of SA represents the focus of one of these subprojects and consequently is the
cardinal topic of this thesis. The objective of this subproject was to use SA as a tool to better
understand some of the dynamics involving AD, so far unexplored. Therefore, it was essential to
create an infrastructure capable of analyzing complex computational models produced within
the project efficiently and quickly as a requirement for the SA. This requirement is often not
feasible due to the high complexity of the models in question, e.g., the case of FSI applications
that require complex computational operations and not easy algorithmic solutions.

Consequently, SA has seen great ease of application in problems such as the decoding of
mathematical formulations on the theory behind the electrical conductivity of blood, the opti-
mization of sensor positioning in ICG, or the analysis of phenomenological models for the study
of thrombus formation. These scientific investigations have been performed and published and
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are reported in this manuscript.
However, the product of this subproject is far from complete. There are still many aspects that

would require such a mathematical tool, i.e., SA, which will probably be further investigated in
later stages of research. Therefore, this thesis aims to set the groundwork for SA in computational
models dealing with AD. Here, the benefits and limitations of SA as a tool in biomedicine in
analyzed and discussed. The ambition is to set a more common use of SA in this field and
promote its use in the promising field of biomedicine, particularly AD. This work is based on the
author’s publications, listed at the beginning of the document.

1.3. Structure of the thesis
The thesis is divided into three parts. The first covers the motivation of the manuscript, given in
this introduction, and the theoretical background needed to comprehend better the next part.
The second section includes formulations and examples of sensitivity analysis and surrogate
modeling through polynomial chaos expansion.

The second part covers the applications’ methods and results that have been produced and
published. Chapters 3 and 4 are based on the impedance cardiography (ICG) method, considered
a valid candidate for AD detection. An initial analysis of the electrical conductivity of flowing
blood, at the basis of the ICG method, is presented in Chapter 3. Here, the analysis focuses on
the intrinsic model uncertainties of flow and fluid variables, together with model assumptions
such as Newtonian or non-Newtonian formulation of the fluid. Later in Chapter 4, the application
of the ICG method is considered. Here, a study is presented on the variation of the signal due to
model uncertainties and different electrode positioning on the human thorax. In Chapter 5, the
analysis focuses on an AD-related event, i.e., thrombus formation. A phenomenological model of
thrombus formation and growth is analyzed, and the model’s features are discovered through
sensitivity analysis.

The third and last part will cover separately the conclusions produced for each application
and, in addition, a more general overview of the role of SA in medical engineering is provided.
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2. Fundamentals
The current thesis focuses on applying sensitivity analysis (SA) in several scientific fields, from
electrical engineering to fluid dynamics and statistics. In this chapter, the theoretical formulations
of these areas are provided in the appendix section. The fundamentals here described have
the scope of describing the mechanics of SA to the reader. Initially, a brief introduction about
the notation and terminology employed in the chapter is described. Further, starting from the
initial idea behind this new scientific field, i.e., SA, its history is illustrated, referring to several
available methods. The discussion will lead to the state-of-the-art tools that are used nowadays.
In particular, the theory of surrogate modeling through the aid of polynomial chaos expansion
(PCE) is primarily illustrated. Examples are also provided to show the difference among several
selected methods to motivate the reader to understand the engaging nature of SA.

2.1. Notation and terminology
To enhance readability, the notation and terminology used in this work are introduced. The
model g is considered as a mapping function between the inputs and the outputs. The model
outputs, also referred to as Quantities of Interest (QoI), are chosen from the modeler and analyst
to perform a correct SA study. The dimensionality of input space X is indicated with M , and
the dimensionality of the output space Y is referred to as B. Thus, the model g is function of a
vector xxx of dimension M , i.e., xxx “ rx1, . . . , xi, . . . , xM s P X Ď RM , producing an output vector
yyy “ ry1, . . . , yi, . . . , yBs P Y Ď RB. Formulating these definitions, they results in

f : X Ñ Y (2.1)
yyy “ fpxxxq . (2.2)

The model is here intended as both an analytical or a numerical problem. The model inputs
are referred to as either factors or parameters. A generic input factor is denoted as xi. To indicate
all other factors of xxx but xi, the „ sign is employed with the meaning ’complementary of’, e.g.,
xxx„i “ rx1, . . . , xi´1, xi`1, . . . , xM s. However, this sign will be used with this meaning only in
subscript, not to be confused with the PDF description of a random variable, xi „ N p0, 1q.

When dealing with stochastic, i.e., non-deterministic models, input and output are characterized
by a random behavior. Their randomicity is captured and described by a probability density
function pp˛q (PDF). A random variable could be either continuous, e.g., aortic diameter or blood
velocity, or discrete, e.g., age, the roll of a dice. Note that in this work, only the continuous type
is taken into account. When a random variable is distributed following a Gaussian distribution, it
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can be fully described by the first two moments of pp˛q, namely the mean or expected value and
the variance. Other PDF need more information to be described. However, the other statistical
moments are not reported. For a random variable xi, they are generally defined as

µi “ E rxis “
ż `8

´8

xppxqdx , (2.3)

σ2
i “ V rxis “

ż `8

´8

px´ µiq
2 ppxqdx . (2.4)

The standard deviation of a PDF ppxiq is computed through the square root of Eq. 2.4 and
referred to as σi “

a

V rxis. An example of PDF is given in Fig. 2.1(left), where the random
variable xi is assumed to be Normal, or Gaussian, distributed with zero mean and unit variance
xi „ N pµi, σiq “ N p0, 1q. A variable can also be distributed uniformly between a maximum and a
minimum value, i.e., xi „ Upminpxiq,maxpxiqq. When not explicitly specified, the PDF refers to a
one-dimensional function. In the case of M ą 1, each system variable may be described by a PDF.
If they are mutual independent, the construction of the joint density function ppxxxq “

śM
i“1 ppxiq

is allowed. Note that the information about variable independence is often assumed when not
enough data are available to suggest otherwise.

Another way for visualizing the variability of a random variable is with the use of a boxplot.
Boxplots are largely employed in descriptive statistics due to their ability to show multiple
properties of variation in a single image. An example boxplot use is given in Fig. 2.1, where the
PDF of the random variable xi (on the right) is compared with the new introduced visualization
(on the left). The values illustrated in the boxplot percentiles. A percentile is a score at or below
which a given percentage ξ of the data is found. A well-known percentile, namely the median,
identifies the the score at or below which half of the data distribution is found, i.e., ξ “ 50 %.
The percentiles visible in a boxplot are the minimum (ξ “ 0 %), the first quartile (ξ “ 25 %), the
median, the third quartile (ξ “ 75 %), and the maximum (ξ “ 100 %). The first and the last one
are visualized as whiskers, while the others are extremes and the line of the central box.

In statistics, the support of a variable is defined as the set of all the values that the variable
can have. It is formally expressed as

SX “ txi P X | ppxiq ą 0u . (2.5)

The concept of conditional variance is introduced by Saltelli et al. [145], and it is defined as
V ry|xis. It expresses the variance of the variable y given the fixed value of the random variable
xi. Examples can be found in the variance-based SA described in Sect. 2.3.

For a better understanding, an arbitrary model is taken as an example, with which the different
SA tools will be applied and explained. The model with dimensionality M “ 3 is as follows:

y “ gpxxxq “ c1x1 ` c2x
2
2 ` c3x3 , (2.6)
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Figure 2.1.: Normal, or Gaussian, probability distribution function with zero mean and variance equal to
1, i.e., xi „ N p0, 1q. The gray area identifies the standard deviation of the variable xi. The
PDF is represented in its continuous form on the left side, and its boxplot representation is
on the right side.

where the output y is a scalar and the coefficients values ci, together with the probability
distributions of the random variables xi, i “ 1, 2, 3, are given as

c1 “ 1, c2 “ 0.5, c3 “ 0.1 (2.7)
x1 „ N p1, 0.2q x2 „ N p0, 0.2q x3 „ N p0, 1q . (2.8)

Equation (2.6) is computed with a Monte Carlo method by sampling the input space with a
Latin Hypercube Sampling technique. The dimension of the sampling space is indicated as Ns.

When dealing with time-dependent variables, two different averaging operators are usually
considered: the spatial ˛ and the temporal average x˛y. The spatial average will require averaging
in the dimension(s) of the system as in

˛ “
1
Ω

ż

Ω
˛pΩ, tqdΩ , (2.9)

where Ω is the spatial domain. The temporal average of a field variable ˛, or else cycle-averaged
variable, is defined as

x˛y “
1
T

ż pn`1qT

nT
˛pΩ, tqdt n P N , (2.10)

where T is the period of the cardiac cycle and n the cycle counter. The time derivative of a field
is visualized as 9̨ . In the next sections, the use of surrogate models is described and employed. To
distinguish between the computational model and the computed surrogate, the use of the symbol
r̨ is employed. Complex quantities are denoted as ˛, and for periodic quantities, the symbol p̨ is
employed to denote the peak-to-peak amplitude.
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2.2. Sensitivity analysis
This section is based on the work published by Melito et al. [105], and mainly inspired by
Borgonovo and Plischke [31], Razavi et al. [133], and Saltelli et al. [145].

SA is a relatively recent field of study that sees its origin from the known design of experiments
(DOE) method. While DOE is directed at analyzing the effect of one or more variables in the
context of laboratory experiments, SA originates with the progression of computational power
in the field of engineering. SA is used to extract the information, rooted into computational
models, about how much the uncertainty in the input factors affects the model output(s). Several
methods are used to rank the most influential variables on a QoI and assess their interaction
level [81, 82].

SA is classified as local when it focuses on the impact of one input random variable in its
vicinity for a small perturbation. In other words, one input parameter at a time is varied while
the others are kept fixed [142]. Some local SA examples are finite-difference computation [31],
differential importance measure [29], elasticity measure [30], screening methods [31, 115].

Alternatively, the SA is global when multiple parameters are varied simultaneously, and the
analysis is performed over the whole input space. Global SA quantifies the uncertainty of the
QoI by looking at the uncertainty in all input parameters and their combination. It is also a
powerful tool when used in calibrating the model to reproduce a physical process. Global SA is
based on the assumption that the model inputs’ probability distribution, joint or marginal, is
provided [140]. Specifically, in a global setting, it is possible to assign a probabilistic distribution
to the model’s input factors, unlike the local method. The use of SA in the thesis is always
referred to as the global method. Therefore a description of local SA is omitted here. However,
for completeness, a good overview of the local method is provided in Borgonovo and Plischke
[31]. Since local SA is never employed in this work, the author will refer simply to SA to express
a global method.

A well-known and basic example of global SA use is to analyze the distribution of the points in
a scatter plot where the input(s) are plotted against the output(s) data points. In this approach,
the solution of the model is performed with a Monte Carlo method. Therefore it can result
unpractical for a complex system. Considering the example given in Eq. (2.6), the scatter plot
of Ns “ 1000 samples is given in Fig. 2.2. The first element to notice is the way the points are
distributed. The variable x1 has more influence on the output y than variable x2. Indeed, the
correlation between input and output is linear and positively correlated for x1, while the plot of
x2 highlights an ambiguous behavior in the model. Finally, the third variable, x3, also shows
some positive correlation with the output, but not as strong as the first variable.

Different other methods of SA have been developed. Their classification does not result in being
uniform in literature. However, following the classification provided by Razavi et al. [133], SA may
be categorized in four main approaches: derivative-based, distribution-based, variogram-based,
and regression-based. The groups are described as follows:

• derivative-based approach is the simplest form of SA. Its core method is similar to a
local SA, where input perturbations are imposed. Given an input base-point, a perturbation
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Figure 2.2.: Scatter plot of input versus output of the arbitrary model of dimensionality M “ 3.

strategy, and a sampling method, the output variation is detected through derivatives,
computed analytically or numerically. Derivatives are commonly considered as local sensi-
tivity measures. However, they are averaged over the whole input space in this approach.
Some examples are developed by Campolongo et al. [34], Sobol and Kucherenko [151], or
Morris [115]. The latter is primarily used to detect the first sign of parameter sensitiveness
in the case of many input variables.

• distribution-based approach bases the analysis on the probabilistic distribution of
the model output. The variance-based approach, density-based approach, and regional
sensitivity analysis (RSA) are the most known methods.

• variogram-based approach is the youngest category in SA [131, 132]. Variogram-based
aims to identify a spatially-ordered structure that connects the input space to the output
space.

• regression-based approach collects the information about the sensitiveness of model
parameters from the coefficient of model regression. This widely used approach has also
been disapproved due to prior assumptions on the model behavior, such as linearity or
monotonicity. However, with the recent development of machine learning techniques, this
method provides a new sensitivity measure called ’variable importance.’

A particular method that is controversially classified is the Elementary Effect (EE) method
[115]. Although it is mainly a local SA, since it is based on the analysis of small input perturbations,
it may be considered a global derivative-based method due to its ability to overcome many local
methods’ limitations. EE also belongs to the Once At Time (OAT) techniques, the tools that
analyze models whose computations are given by a single factor input variation at a time. Given
its low computational cost, it can efficiently analyze a high-dimensional input space, and it is
easy to implement in any computational model. The algorithm imposes a pEE-level discretization
of the M -dimensional input space, with pEE being an even number. The distance between two
sample points in the grid is given by ∆EE “ pEE{p2p ´ 2q. Then, a starting point is chosen
randomly in the pEE-level grid, and NEE trajectories are drawn so that each one will cover each
dimension of the input space, see Fig. 2.3. The elementary effect for each input variable xi on
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Figure 2.3.: Representation of the grid levels and trajectory techniques of the Elementary Effect method
for a three dimensional problem (M “ 3). Figure interpreted and redapted from Saltelli et al.
[145].

the output y is EEi, which is formulated as [115]

EEi “
ypx1, . . . , xi `∆EE, . . . , xM q

∆EE
. (2.11)

The input perturbation is repeated for NEE trajectories and the employed sensitivity measure
is the sample mean µ̌i and its standard deviation σ̌i as [115]

µ̌i “
1

NEE

NEE
ÿ

τEE“1
EEipτEEq (2.12a)

σ̌i “
1

NEE ´ 1

NEE
ÿ

τEE“1

b

pEEipτEEq ´ µiq
2 . (2.12b)

The two mentioned indices are not to be confused with the mean and variance of a variable
xi, as referred to in Eq.s (2.3) and (2.4). Their notation is intentionally left similar since their
formulation is equivalent. However, the last two sensitivity indices are to be connected with the
EE method only.

When the index µ̌i is equal to zero, see Eq. (2.12a), a model factor can be either influential or
not on the output. Suppose that µ̌i “ 0, but the EEi standard deviation σ̌i is large. In this case,
the variable leads to both negative and positive EEi effects due to interactions or nonlinearities
that cancel each other. To overcome this phenomenon, another measure has been introduced by
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2.2. Sensitivity analysis

Figure 2.4.: Convergence of the EE sensitivity indices for different numbers of trajectories.

Campolongo et al. [34]

µ̌˚i “
1

NEE

NEE
ÿ

τEE“1
|EEipτEEq| , (2.13)

s.t. those effects are taken into account. In their work, Campolongo et al. [34] claim that µ̌˚i
is a valuable substitute for the Sobol indices, which will be discussed later. However, to reach
that, many trajectories are needed, making the method computationally expensive for complex
systems. As an example, the example model in Eq. (2.6) is employed for this particular method.
As visible in Fig. 2.4, for an easy model, the convergence of the results is reached at NEE “ 104.
An interesting excursus on this method has been published by Saltelli et al. [145], where a helpful
strategy optimization is introduced to produce the needed number of trajectories NEE.

In the regression-based approach, also classified as a non-parametric method [31], many
sensitivity measures have been defined. They are largely used because of the possibility of using
a Monte Carlo method for their computation. Therefore the computational cost is equal to
the selected sample size. Consider Ns to be the sample size. Suppose that the input-output
relationship follows a linear regression as

y “ gpxxxq « b0 `
M
ÿ

i“1
bixi . (2.14)
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where b0 is the y-axis intercept and bi are the variables slope coefficients. The standard regression
coefficient (SRC), which enhances direct comparison without units, is defined as [72, 90]

SRCi “ bi
σi
σy
, (2.15)

where the numerator is the standard deviation of the input model xi, and the denominator is the
standard deviation of the model output y. A second well-known coefficient is expressed by the
Pearson’s product moment correlation coefficient:

%i “ %py, xiq “
covpy, xiq
σiσy

(2.16)

where the numerator is covpy, xiq “
řNs
j“1pxij´µiqpyj´µyq, and covp˛q is the covariance operator.

Before computing the sensitivity coefficients, the goodness-of-fit coefficient, also known as
the coefficient of determination, R2 has to be considered. It is defined to include the square
of the residuals between the data point and the regression line and it ranges from 0 to 1. The
latter indicates a perfect regression match to the model data. A poor fit leads to an insufficient
regression, thus an inaccurate sensitivity quantification. As a good practice, the model regression
is considered inappropriate when R2 ă 0.5. Hence, the use of a regression-based approach is
discouraged when model linearity is unknown [33].

Consider again the problem example illustrated in Eq. (2.6). Linear regression is imposed
and shown in Fig. 2.5. As visible, the regression is very accurate for x1, worse for x3, but not
acceptable for x2. Such a conclusion could also be drawn by looking at the model formulation in
Eq. (2.6). The second variable has a non-linear influence on the output and, therefore, cannot
be represented by linear regression. The goodness-of-fit coefficient R2 reported in Tab. 2.1
confirms such results. It has to be mentioned that the model formulation is explicit and known
in this particular example. However, an explicit formulation is often rare in many engineering
applications, and assumptions on model behavior are necessary.

Looking at the results in Tab. 2.1, an unintelligible difference among the sensitivity methods is
visible. Although much confusion regarding the two coefficients is diffuse, they tend to equalize
when the variables are independent. Their accuracy is dependent on the available number of
sample points, which is a matter of model complexity. However, they fail to represent the influence
of all the system variables, especially for what concerns x2, given its non-linearity. To better
understand model linearity, one can analyze the value of the goodness-of-fit R2: if the coefficient
values, say, 0.7, then the model is 70 % linear, and the regression-based coefficients should be
used carefully. Therefore, the model has a linear behavior only for x1, but not in the remaining
two dimensions.

The variance-based method is one of the density-based approaches. The analysis is based on
the expected reduction in model output variance given the certainty of the model input factors.
This method is built upon the ANOVA output variance decomposition (ANalysis Of VAriance),
unique for independent input random variables [50, 119, 128]. From the variance decomposition,
sensitivity measures can be developed [148].
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2.2. Sensitivity analysis

Figure 2.5.: Scatter plots of the 3 model variables and linear regression model for each of them.

Table 2.1.: Linear regression coefficients (bi) and regression-based results (SRCi, %i) of the example model
are reported. In addition, the goodness-of-fit coefficient R2 to the linear model is reported in
column 3.

bi R2 SRCi %i

x1 1.018 0.787 0.904 0.887
x2 0.053 0.004 0.000 0.000
x3 0.098 0.196 0.442 0.443

Initially, the indices were uniquely computed using the Monte Carlo method. Here, a determin-
istic model is evaluated for a large sample collected from the input space of the model, and finally,
the conditional expectations expressed in Xiu and Karniadakis [180] and Ghanem and Spanos [66]
are computed. This method becomes onerous and troublesome for computationally demanding
models, e.g., FEM or fluid-structure interaction models. Recently, Sudret [158] introduced the
Sobol indices’ computation from the polynomial chaos expansion coefficient, which was previously
used mainly in the stochastic finite element method. The current thesis uses the variance-based
method and the polynomial chaos expansion as surrogate models and tools. Their description is
given in the following sections.

Another standard SA method is the density-based approach. Contrary to the most common
variance-based method, it considers the entire probability distribution of the quantity of interest;
thus, it does not focus the analysis on one particular distribution moment, i.e., the variance
[28, 122].

The advance of computational power has also promoted the diffusion of SA in many scientific
fields. New software tools and toolboxes have been developed and are now available. Some examples
include Dakota [1] in C++, SobolGSA [92] in C#, MATLAB and Python, the ’sensitivity’ package
[80] in R, and SAFE [123] in MATLAB, R, and Python. In the current work, the toolbox UQlab
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2. Fundamentals

developed by Marelli and Sudret [99] in MATLAB is used to compute the PCE formulations.

2.3. Variance-based approach
One of the most used techniques in SA is the variance-based method. Here, the output variance
is apportioned in the sum of the contributions of each random variable. The mechanics of the
variance-based method are initiated with the Sobol decomposition of the model [148]. Consider a
mathematical model g as a function of an input random vector xxx of dimension M . In addition to
the definition of Eq. (2.2), the input space is here defined in the unit cube KM “ txxx | 0 ď xi ď 1u.
The sum over all the combination of indices in KM , without repetition, is

ř

Ti1,...,is and defined
as [77]

ÿ

Ti1,...,is ”
M
ÿ

i

Ti `
ÿ

1ďiăjďM
Tij ` . . .` T1,...,M , (2.17)

where the indices are ordered as 1 ď i1 ă . . . ă is ď M , and s “ 1, . . . ,M . The in-
dices belong to S, which is the set of indices composed by all combination that include xi,
S “ tpi1, . . . , isq | Dq, 1 ď q ď s^ iq “ iu [77]. For example, for M “ 3, the sum over all the
combinations of indices is

ř

Ti1,...,is “ 3` 3` 1 “ 7, since the number of summands follows the
binomial coefficient

M
ÿ

i“1

ˆ

M

i

˙

“ 2M ´ 1, 1 ď i ď s ďM . (2.18)

The Sobol decomposition of the model gpxxxq reads [148]

gpx1, . . . , xM q “g0 `
ÿ

gi1,...,ispxi1 , . . . , xisq “

g0`

`

M
ÿ

i“1
gipxiq ` . . .

`
ÿ

1ďiăi1ďM
gii1pxi, xi1q ` . . .

` g1,...,M px1, . . . , xM q , (2.19)

where g0 is a constant and represents the average value of the model response

E rys “ g0 “

ż

KM

gpxxxqdxxx “ constant . (2.20)

Furthermore, the integral of each element of Eq. (2.19) over any of its independent variable is
null Sudret [158],

ż

KM

gi1,...,ispxi1 , . . . , xisqdxik “ 0 , 1 ď k ď s . (2.21)
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2.3. Variance-based approach

The uniqueness of the decomposition is granted by the orthogonality property of the model
decomposition of the summands in Eq. (2.19) as

ż

KM

gi1,...,ispxi1 , . . . , xisqgi1,...,itpxi1 , . . . , xitqdxxx “ 0 , (2.22)

due to the definition of Eq. (2.21). Each term of (2.19) is expressed as constant (2.23a), univariate-
(2.23b), bivariate- (2.23c), and multivariate-terms for more than two terms [77]

g0 “ E rys (2.23a)
gi “ E ry|xis ´ E rys (2.23b)
gii1 “ E ry|xi, xi1s ´ gi ´ gi1 ´ E rys . (2.23c)

After decomposing the model as in Eq. (2.19), quantitative statistical measures can be defined.
The model variance is derived, by using Eq.s (2.20) and (2.23a), as

σ2
y “ V rgpxxxqs “ E

“

g2pxxxq
‰

´ E rgpxxxqs2 “
ż

KM

g2pxxxqdxxx´ g2
0dxxx . (2.24)

To decompose the model variance, the integral of the square of Eq. (2.19) is computed. Using
the orthogonality property defined in Eq. (2.22), the variance can be decomposed as

σ2
y “

M
ÿ

i“1
σ2
i `

ÿ

1ďiăi1ďM
σ2
ii1 ` . . .` σ

2
1,...,M , (2.25)

where the σ2
i term identifies the partial variance imposed by the variable xi, σ2

ii1 the partial
variance imposed by both variables xi and xi1 . Else, in a more general formulation [77]

σ2
i1,...,is “

ż

KS

g2
i1,...,ispxi1 , . . . , xisqdxi1 , . . . , xis . (2.26)

At this point, the computation of the sensitivity indices is made possible in a variance-based
fashion. The first sensitivity measure is defined by computing the ratio between the partial and
the total output variance as in [77]

Si1,...,is “
σ2
i1,...,is

σ2
y

. (2.27)

As expected, they quantify the amount of output variance that is produced given the uncertainty
in the set of input factors i1, . . . , is. Although, the number of computable sensitivity indices
is 2M ´ 1, it is demonstrated that the first and total-order indices are enough to describe the
system’s overall sensitivity sufficiently [145]. Using the formulation expressed above, they are
defined as first-order Sobol index

Si “
σ2
i

σ2
y

, (2.28)
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and total-order Sobol index

ST
i “

ÿ

S

σ2
i1,...,is

σ2
y

. (2.29)

Given the variance decomposition in partial variances and the uniqueness and orthogonality of
the decomposition, it is demonstrable that the sum of all sensitivity indices equals 1. Consequently,
an alternative formulation of the total-order index is ST

i “ 1´ S„i, in which S„i indicates all
the indices that do not contain xi [145].

The description of the Sobol indices can also have a less abstract description. Consider a
scatter plot where the input data is plotted against the model output. Imagine dividing the
input domain into a set of small slices, thin the slices as much as possible, and inspect the
output data variation along the y-axis. This variation is also described as V rE ry|xiss, which
expresses the variation of the expected value of y when the variable xi is considered fixed in
value. Consequently, the first-order sensitivity index Si, see Eq. (2.28) [149, 150], can be derived
not only by the ratio of the partial variance σ2

i and the model’s total variance. By definition, it
is also expressed as

Si “
V rE ry|xiss

V rys
, (2.30)

which represents the contribution of the random variable xi to the change of the model output y,
without considering the effect of its interaction with other input variables. Therefore, a random
variable xi is considered influential (non-influential) to the model output if the conditional
variance V rE ry|xiss is large (small) enough to the variance of the QoI. The first-order index
identifies the level of influence of the single parameter on the output in the sensitivity analysis. It
allows the use of the Factor Prioritization setting, which identifies the input factors that contain
the most influence on the QoI, i.e., which one is the most responsible for the production of the
model variation [145].

The total-order sensitivity index ST
i , see Eq. (2.29), evaluates the total effect of an input

variable. The conditional probability is then computed over the whole input space except the
i-th random variable. This is described as xxx„i and leads to the evaluation of Eq. (2.29) as [145]

ST
i “ 1´ V rE ry|xxx„iss

V rys
“

E rV ry|xxx„iss
V rys

. (2.31)

The total-order sensitivity index shows the degree of the influence of the input random variable
on the QoI together with the interactions with other input factors. The total-order index is used
to produce the Factor Fixing setting. Here, the lower values of the total-order index are analyzed
to decide which variable has no effect or low effect on the output, considering its collaborations.
Consequently, they can be considered model constants, and the model output will not be affected
by their change.

Together with the first- and total-order sensitivity indices, it is possible to compute the
interaction terms for several degrees of interaction. However, the first and total indices together
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2.3. Variance-based approach

Figure 2.6.: Output probability distribution function. (left) comparison of the output data PDF and
normal PDF, and (right) QQplot of the two distributions, where the dotted line represents
the normal distribution and the data are plotted in gray dots.

express the influence relationship of the input domain on the QoI sufficiently and avoid the need
of computing high-order sensitivity indices, which may be computationally expensive [140]. An
intriguing feature of the first-order index is that it can identify the model’s additivity by summing
up all the first-order indices and checking if their sum is equal to one. Such a condition expresses
that all the output variation is given only by the single input factors and that no interaction
exists.

The model expressed in Eq. (2.6) can also be analyzed with the variance-based method. The
method requires having an output PDF that can be described by the variance. Indeed, using
a variance-based method is inaccurate in the case of multi-modal probability distributions. In
Fig. 2.6 a QQplot test is performed to check if the model output follows a normal distribution.
The test results are positive, therefore the model variance can be decomposed, and Sobol indices
applied. Other tests are available to verify if empirical distributions can be described with a
normal PDF. However, given the qualitative success produced by the QQplot, they are not
considered hereafter.

The computation of the Sobol indices with a Monte Carlo technique has been widely improved
over the years from the initial work of Homma and Saltelli [77]. Saltelli [140] introduced an
algorithm for the computation of first and total-order Sobol indices with a Monte Carlo sampling,
which is used in this text. The drawback of this technique is the computational burden needed
to reach a result convergence. Further on, Saltelli et al. in [145] and later in [146] introduced
an innovative approximation technique that additionally reduced the computation cost of the
indices. For the indices computation, several runs of the model are needed, and the convergence
of the indices is visible in Fig. 2.8. Even for an easy model as in Eq. (2.6), Ns “ 108 simulations
are needed to reach an accurate result. The computed indices and their standard deviation over
10 bootstrap evaluations are reported in Tab. 2.2. From the results, and because

ř

i Si “ 1, it
is clear that the model is additive in the sense that no interaction is present among the input
variables. An example of a nonadditive model can be made by transforming the model in Eq.
(2.6) from y “

ř

i cixi
d to y “

ś

i cixi
d, @d P Z0.
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Table 2.2.: Variance-based sensitivity analysis results of the example model. Final results of the Sobol
indices in the first two columns and their standard deviation over ten bootstraps.

Si ST
i σpSiq σpST

i q

x1 0.7877 0.7871 0.0005 0.0012
x2 0.0159 0.0151 0.0009 0.0019
x3 0.1964 0.1967 0.0007 0.0017

Figure 2.7.: Variance decomposition of the output distribution of the example model. The areas indicate
the variation imposed by the input factors’ uncertainties. The areas are the standard deviation
imposed by x2 and x3 (σ2 ` σ3), and x1 (σ1).

At this point of the analysis, it is clear that the model has a non-linear additive behavior. The
input factor x1 is the most important in the model since it drives the most uncertainty in the
output, i.e., 78 % of the variation. Imagine that the model represents an experimental setup and
that its formulation is known as in Eq. (2.6). Applying the Factor Prioritization setting suggests
that x1 is the primary source of uncertainty, and therefore its measurements require significant
attention. On the other hand, with the use of Factor Fixing, it is possible to infer that the factor
x2 does not affect the output variation and, therefore, it could be considered a model constant.

The standard deviation of the example model is highlighted and then decomposed in Fig.
2.7 to better visualize the variance decomposition of this method. The three areas denote the
influence imposed by the variation of the input parameters, and they are indicated as σi, for
i “ 1, 2, 3. The area of σ2 is hardly detectable due to the low influence of x2 in the model. The
dominance of x1 on the output variation is, however, evident.

The presented results are a clear example of the power of a variance-based sensitivity analysis.
However, the Monte Carlo approach is expensive and tedious. In the shown example, only three
sources of uncertainties are chosen. Nevertheless, the variable’s coefficient ci can also include
uncertainty, leading to higher complexity of the model, a nonadditivity behavior, and the need for
a larger input sample to create computational convergence. These are only some of the reasons
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2.4. Polynomial Chaos Expansion

Figure 2.8.: First- and total-order Sobol indices computation with Monte Carlo sampling technique. The
markers indicate (˚) x1, (˝) x2, and (5) x3. The dashed line refers to first-order index and
the continuous line refers to the total-order index.

that brought to the use of a surrogate model to compute the Sobol indices, namely the PCE.

2.4. Polynomial Chaos Expansion
The polynomial chaos expansion aims at representing random fields in a polynomial expansion
based on orthogonal polynomials of probability measures, i.e., the input random space [180].
The PCE was introduced by Wiener [174] in the pioneer study on Gaussian stochastic processes.
It was first developed to use only Hermite polynomials, and the word chaos comes from the
variability induced by the normal distribution of the variables. Later, it was implemented in the
engineering world by Ghanem and Spanos [66], but the expansion could still represent processes
driven only by Gaussian variables. Hence the use of Hermite polynomials made its characteristic
name: homogeneous chaos. This limitation has restricted the use of the expansion in non-Gaussian
applications. Lately, Xiu and Karniadakis [181] introduced the use of other polynomials, of which
Laguerre and Jacobi polynomials are some examples. From here, the expansion takes the name
generalized PCE. However, the author will refer to PCE in the text, considering the latter and
generalized formulation. To sum it up, PCE can be seen as a spectral representation of the
solution domain when it is affected by fluctuations given by randomicity.

For the definition of the PCE, the introduction and definition of orthogonal polynomials are
necessary. The formulation used in the following has been inspired by Xiu [179].

One-dimensional formulation A general polynomial formulation in the variable x P X has
the form

Pdpxq “ cdx
d ` cd´1x

d´1 ` . . .` c1x` c0 “
d
ÿ

h“0
chx

h . (2.32)
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The degree of the polynomial is d, and ch are the polynomial coefficients. Consider tPdpxq, d P Z0u

to be a system of polynomials, where Z0 “ t0, 1, 2, . . .u is the set of nonnegative integers. The
system is defined to be orthogonal when [179]

ż

SX

PqpxqPdpxqppxqdx “ γdδqd , (2.33)

for any q, d P Z0, and ppxq is a continuous PDF. The Kronecker delta δqd is null when q ‰ d,
equal to one otherwise, and SX is the support of the variable x. The term γd is referred as
normalization constant and it is defined as

γd “

ż

SX

P 2
d pxqppxqdx . (2.34)

Orthogonal polynomials have the possibility to be described by following the Askey scheme [8, 9],
which uses a hypergeometric series formulation. Thus, defining the falling factorial Pochhammer
symbol pcqd as [125]

pcqd “

#

c d “ 0
cpc` 1q . . . pc` d´ 1q d P N ,

(2.35)

the hypergeometric series representation rPs of an orthogonal polynomial of degree d is given by

rPspc1, . . . , cr; c11, . . . , c1s;xq “
d
ÿ

h“0

pc1qh . . . pcrqh
pc11qh . . . pc

1
sqh

xh

h! (2.36)

for r, s P Z0 being the number of polynomial coefficients in the numerator and denominator,
respectively, and c1j P N for j “ 1, 2, . . . , s.

Given the definition of orthogonal polynomials, the next step consists of defining the PCE’s
basis for a probability density function of a generic random variable x. Assuming that x follows
a continuous PDF ppxq, e.g., uniform distribution, and has finite moments as in [179]

E
“

|x|2r
‰

“

ż

|x|2rppxqdx ă 8 r P Z0 . (2.37)

The formulation of an orthogonal basis, as in Eq. (2.33) and by using Eq. (2.3), is given as

E rφqpxqφdpxqs “ γdδqd , (2.38)

where φq and φd are two generic functions of degrees q and d, respectively. The previous equation
can be rewritten as

E rφqpxqφdpxqs “
ż

φqpxqφdpxqppxqdx . (2.39)

The set of polynomials tφdpxqu is orthogonal to the weight function p; therefore, the polynomials
are chosen to be orthogonal to the PDF of the variable. Naturally, the construction of orthogonal
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Table 2.3.: Some example of hypergeometric represention of known orthogonals polynomials to continuous
random variable.

Notation Expansion ppxq Distribution

Legendre L0pxq “ 1 1
2 Uniform

2P1p´d, d` 1; 1; 1´x
2 q L1pxq “ x

L2pxq “
3
2x

2 ´ 1
2

. . .

Hermite H0pxq “ 1 1?
2πe

´x2{2 Normal
p
?

2xqd 2P0p´
d
d
,´d´1

2 ; 0;´ 2
x2 q H1pxq “ x

H2pxq “ x2 ´ 1
. . .

polynomials to the variable’s density functions is not limited to only continuous variables. However,
their formulation is not needed here (see [179]). Some examples of PCE basis polynomials for
normal and uniform random variables are illustrated in Tab. 2.3.

Given the orthogonality definition, the polynomials can be used as the basis to approximate a
function of x. If the model function g is integrable and belongs to the mean-square integrable
function space

L2
ppxqpSX q “

 

g : SX Ñ Y
ˇ

ˇ E
“

g2‰ ă 8
(

, (2.40)

then it is possible to define the PCE rgpxq of the model gpxq as

rgpxq «
d
ÿ

h“0
chφhpxq , (2.41)

where the polynomial coefficients ch are

ch “
E rgpxqφhpxqs

γh
, (2.42)

and γh is the normalization constant as in Eq. (2.34). The approximation sign in Eq. (2.41) is
due to the truncation of the sum to a certain degree d. The relation is exact for dÑ 8. This
approximation is also called “strong PCE approximation” when the model function is known as
a priori. The counter approximation is known as “weak PCE approximation”, which occurs when
the output’s probability distribution is given [179]. The demonstration of the latter approximation
is omitted.
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Multi-dimension formulation So far, only the one-dimensional case has been analyzed, i.e.,
when M “ 1. In this case, the orthogonal polynomials φd are univariate basis functions since they
include only one random variable. In multiple dimensions systems, the uncertainty is driven by a
generic random vector xxx “ rx1, . . . , xM s. In this other case, the derivation of a multivariate basis
for the expansion is needed. Given the variable independence, their joint PDF is ppxxxq “

śM
i ppxiq.

Each component xi of the random vector xxx is represented by the univariate PCE basis function
φd of degree up to d [179].

Before proceeding with the construction of a multivariate basis of the PCE, the multi-index
definition is necessary. The new basis has to include as many univariate basis functions as the
dimensionality of the problem M and degree up to d. The multi-index is employed to identify all
these characteristics. Thus, the multi-index ααα “ pα1, α2, . . . , αM q is defined in the set A Ď ZM0 ,
and ||ααα||1 “ α1 ` . . .` αM . The formalization used in the text refers to the graded lexicographic
order, and it is visualized in Tab. 2.4 for the case of M “ 3. Consider that the notation employed
in ||ααα||1 refers to the p-norm definition for p “ 1, and defined as

||x||p :“
˜

M
ÿ

i“1
|xi|

p

¸1{p

p P R. (2.43)

The multivariate basis functions, with generic degree d and dimension M are constructed by
the univariate functions of degree up to d, i.e., 1 ď ||ααα||1 ď d, as

Φαααpxxxq “
M
ź

i“1
φαipxiq . (2.44)

As for the one-dimensional case, by defining the space of all mean-square integrable function
of xxx as [179]

L2
ppxxxqpSX q “

"

g : SX Ñ Y
ˇ

ˇ

ˇ

ˇ

ż

SX

g2pxqppxqdx ă 8
*

, (2.45)

then the multi-variate PCE projection of degree up to d for a model gpxxxq is given by

rgpxxxq “
ÿ

αααPA
cαααΦαααpxxxq . (2.46)

The span of the multivariates space has the same dimension of A, which is

Nc “

ˆ

M ` d

d

˙

. (2.47)

To ease the notation, the set A of the expansion indices can also be referred to as

A “ AM,d ”
 

ααα P ZM0
ˇ

ˇ ||ααα||1 ď d
(

. (2.48)

Naturally, increasing the degree of the expansion, as in dÑ8, would eventually lead to [179]

||gpxxxq ´ rgpxxxq||L2
ppxxxq

pSX q
Ñ 0 . (2.49)
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Table 2.4.: Graded lexicographic order formalization of the multi-index ααα, for the case of M “ 3.

||ααα||1 ααα Index
0 (0 0 0) 1
1 (1 0 0) 2

(0 1 0) 3
(0 0 1) 4

2 (2 0 0) 5
(1 1 0) 6
(1 0 1) 7
(0 2 0) 8
(0 1 1) 9
(0 0 2) 10

3 (3 0 0) 11
(2 1 0) 12
. . . . . .

The coefficients cααα in the expansion are computable as in Eq. (2.42), i.e.,

cααα “
E rgpxxxqΦαααs

γααα
. (2.50)

In conclusion, it is possible to define the linear space PMd pxxxq of all polynomials of degree up to
d and dimension M as [179]

PMd pxxxq “

$

&

%

g : SX Ñ R

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

gpxxxq “
ÿ

1ď||ααα||1ďd
cαααΦααα

,

.

-

, (2.51)

whose dimension is Nc. In the following part, the multi-dimensional formulation will be used
as a basis for describing PCE characteristics since its particular one-dimensional case is easily
derivable, e.g., M “ 1.

2.4.1. PCE statistics
The PCE plays a vital role also in the computation of model statistics, assuming that a strong
approximation is available and that the error in Eq. (2.49) is proximal to zero. Thus, assume a
surrogate rg for a model y “ gpxxxq, as previously mentioned. The expected value of the model is
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given by [48]

E rys “ E rrgpxxxqs “
ż

X

˜

ÿ

αααPA
cαααΦαααpxq

¸

ppxqdx “ c0 , (2.52)

where c0 is the first expansion coefficient for ||ααα||1 “ 0. Similarly, the variance of the system can
be easily computed from

V rys “ V rrgpxxxqs “ E
”

prgpxxxq ´ E rrgpxxxqsq2
ı

“
ÿ

0ă||ααα||1ďd
γαααc

2
ααα . (2.53)

2.4.2. Sensitivity analysis from PCE
The estimation of the two variance-based sensitivity indices in Eq.s (2.30) and (2.31) is performed
from the expansion coefficients cααα [39, 46]. As visible from their formulation, the indices are a
function of the variance V rys and conditional variance V ry|xis of the model output. As visible
in Eq. (2.52) and (2.53), the mean and variance of the system are assessable from the expansion
coefficient. Two additional sets of indices are introduced, namely Ai

Ai “
 

ααα
ˇ

ˇ αi ą 0^ αi1 “ 0 @i1 ‰ i
(

, (2.54)

and AT,i

AT,i “ tααα | αi ą 0u . (2.55)

The first includes all the multi-indices in which the polynomials in the only variable xi have
a non-zero degree, while others have zero degrees. For example, ααα “ p0 2 0q indicates the
second degree polynomial of the variable x2, for M “ 3 and ||ααα||1 “ 2. The second set includes
all the multi-indices in which the polynomials in the variable xi have a non-zero degree, e.g.,
ααα “ p2 1 0 0q, for M “ 4 and ||ααα||1 “ 3. Consequently, Ai Ď AT,i [45].

Therefore, the first Sobol indices can also be assessed from the PCE coefficient as in [158]

Si «
1

V rrgpxxxqs
ÿ

αααPAi

V rcαααΦαααpxxxqs “
ř

αααPAi
c2
ααα

ř

αααPA c
2
ααα

, (2.56)

and the total Sobol index as

ST
i «

1
V rrgpxxxqs

ÿ

αααPAT,i

V rcαααΦαααpxxxqs “
ř

αααPAT,i
c2
ααα

ř

αααPA c
2
ααα

. (2.57)

These formulations are very convenient from a computational point of view, meaning that once
the PCE of a system is built, the assessment of the Sobol indices comes with almost no effort.
They are computed by collecting the needed coefficients of the expansions, squaring, summing,
and normalizing them by the expansion total variance.
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2.4. Polynomial Chaos Expansion

For the case of dynamic processes, i.e., the model output is dependent on time, a new
formulation has been adapted from the proposed work of Alexanderian et al. [3]. In these cases,
the generalized sensitivity indices read as

Si “

ş

T

ř

αααPAi
c2
αααpτqdτ

ş

T

ř

αααPA c
2
αααpτqdτ

, (2.58)

ST
i “

ş

T

ř

αααPAT,i
c2
αααpτqdτ

ş

T

ř

αααPA c
2
αααpτqdτ

. (2.59)

The only complication that is left regards the computation of such expansion coefficients.

2.4.3. Coefficients estimation
Historically, when PCE was implemented by Ghanem and Spanos [66], the expansion solution was
mainly performed with the Galerkin method. This method’s deterministic procedure consists of
finding an approximate solution in a Hilbert space H s.t. the error generated by the approximation
is orthogonal to the H space. In the case of a PCE, the Galerkin approach becomes stochastic so
that the approximate solution belongs to PMd pxxxq defined in Eq. (2.51). For example, consider a
general PDE system represented by the following scalar equation

yps, t,xxxq : Ωˆ r0, T s ˆ RM Ñ R , (2.60)

where y could be considered as any system unknown, e.g., displacement. Ω is the closure of the
space domain, as in Ω “ Ω`Γ, T ą 0 denotes the time domain, and xxx P RM is the random vector.
A PCE projection of the problem, says ryps, t,xxxq of degree up to d, requires the implementation
of such expansion in the PDE system, resolving in a system of coupled deterministic equations,
whose dimension is again Nc “

`

M`d
d

˘

. This method requires a complex implementation in
the problem, and it is therefore classified as an intrusive technique. Given this motivation, the
Galerkin procedure is disregarded for the assessment of a model PCE [179].

Alternatively, other techniques were developed, known as non-intrusive, since no implementa-
tion is required and the PCE solution is drawn from selected model solutions. This category is
further divided into two main classes, the projection, and the regression methods.

Projection methods The projection method involves the definition of orthogonality, as
expressed in Eq. (2.39), from which the coefficients are computed by simply solving for cααα.
However, the solution of such an integral requires quadrature techniques, where the integral is
approximated through a weighted sum

cααα “

ż

X
gpxqΦαααpxqppxqdx «

Nq
ÿ

q“1
wpqqgpxpqqqΦαααpxpqqq , (2.61)

where wpqq are the weight, xpqq the quadrature points, and Nq are the number of integration points.
The first ones are defined as the roots of the polynomials orthogonal to the joint distribution
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function ppxxxq. The accuracy of the approximation strictly depends on the number of integration
points. Their amount is Nq “ pd` 1qM . Consequently, for large models, that is for M " 1, this
number increases rapidly, leading to the well-known curse of dimensionality.

While the Gaussian quadrature is based on a tensor-product of univariate integration rule,
the more recent sparse quadrature method developed by Smolyak allows reaching the same
numerical accuracy with less needed points. An alternative to the quadrature method would be a
Monte Carlo approach to solve Eq. (2.61). However, considering the typical complexity of many
engineering applications, this last technique is usually discarded a priori [179].

Regression methods The regression approach initiates from the PCE approximation of the
original model. As already mentioned, the discrepancy, or error, between the two decreases for
an expansion degree dÑ8. However, this is impractical in engineering applications. Therefore,
the approximation error ε can be included in Eq. (2.46) as [46]

rgpxxxq “
ÿ

αααPA
cαααΦαααpxxxq ` ε . (2.62)

The minimization of the error can be performed through a least-squares minimization problem.
A matrix formulation of the above expression is given as

gpxxxq “ rgpxxxq ” cccTΨpxxxq ` ε , (2.63)

where ccc is the vector of the coefficients, and Ψpxxxq is the vector of the multivariate polynomials.
The least-square minimization problem formulation is

rccc “ arg min E
„

´

cccTΨpxxxq ´ gpxxxq
¯2


. (2.64)

The solution of this problem is usually approached with an ordinary least-square (OLS)
approach by assuming that a sampling of the input and output is available. Indeed, assume
Θ “ pθp1q, . . . , θpNsqqT to be the input sample of dimension Ns of the input xxx. Equally, Ξ is the
output sample computed from the model’s solution for each θpkq. The OLS is

rccc “
´

AAATAAA
¯´1

AAATΞ , (2.65)

where Aij “ φjpθ
pkqq is the regression matrix composed of the expansion basis polynomial

φj computed in the sampling point θpkq, thus AAA P RNs,pd`1q. Although this approach is more
affordable than the projection method for estimating the expansion coefficients, it does include
one critical challenge. The choice of Ns has to be s.t. Eq. (2.65) can be overdetermined, i.e.,
Ns ą Nc. In practice, for good approximation is suggested to have Ns “ 2Nc [48, 78], although
the rule of the more, the merrier always applies. In Fig. 2.9, the number of unknown coefficients
Nc and needed samples Ns is displayed for different model dimensions and PCE degrees.

Recently, Blatman and Sudret [23] introduced an adaptive sampling technique to reduce
the required model simulations for the regression approach. By comparing the accuracy of the
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Figure 2.9.: Relationship between number of unknown coefficients Nc and sampling points Ns per model
dimension M and PCE degree d.

PCE, they were able to reduce the number of required computational simulations radically.
Then, they introduced in [24] another improvement to reduce the number of necessary model
simulations, namely the hyperbolic scheme. Here, they introduce a quasi-norm truncation of the
computable coefficients, penalizing the high interactions terms in the expansion, i.e., those where
all random variables are included. Specifically, it is called quasi-norm since it does not satisfy
the triangular inequality property of the common mathematical norm. Such truncation derives
from the principle of sparsity-of-effects, which assumes that high-order interactions are often
negligible since systems variations are due to main-effects or low-order interaction at most [114].
In other words, consider the set A of the multi-index ααα defined as in Eq. (2.48). The hyperbolic
truncation scheme with a p’-quasi-norm is given by [24]

Ap1 ”
 

ααα P ZM0
ˇ

ˇ ||ααα||p1 ď d
(

, (2.66)

where

||ααα||p1 “

˜

M
ÿ

i“1
αp

1

i

¸1{p1

for 0 ă p1 ă 1 . (2.67)

The p’-quasi-norm does not have to be confused with the p-norm introduced earlier. As
a matter of fact, the lack of the absolute value in Eq. (2.67) does not satisfy the triangular
inequality property of the p-norm. The number of unknown coefficients to compute in the PCE
is substantially reduced. An example is given in Fig. 2.10, where the comparison is made for
different PCE degrees d and model dimension M “ 10.

Blatman and Sudret [24] also introduced a new method for computing the PCE coefficients
based on least angle regression (LARS). In this method, several PCE are computed s.t. their
model predictability is as accurate as possible. The algorithm starts with the computation of a
basic PCE, i.e., all polynomial coefficients are set to zero but the first one. A surrogate and its
discrepancy to the model are computed. This procedure is repeated iteratively by incrementing
the number of coefficients to solve, and it is stopped when the discrepancy error is stable or
converges.
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Figure 2.10.: Number of unknown coefficients for a PCE of various degree d and model dimension M “ 10.
The number of unknowns are truncated through the hyperbolic truncation scheme, for
different values of p’-quasi-norm values.

Error estimation The error estimation of the PCE is computable in several ways [99]. A
general formulation is given by ε, where the variance of the computed output normalizes the
discrepancy between the model and the surrogate. Its formulation is

ε “
E
”

pgpΘq ´ rgpΘqq2
ı

V rΞs . (2.68)

Other formulations are also available [99]. The normalized empirical error εemp considers the
surrogate’s accuracy in the available experimental design realizations, as in

εemp “

řNs
k

`

gpθpkqq ´ rgpθpkqq
˘2

řNs
k

`

gpθpkqq ´ E rgpΘqs
˘2 , (2.69)

where θpkq is a generic input sample realization. The problem of this formulation is that it is
affected by the over-fitting problem, i.e., the error does not reduce by increasing Ns, but by
increasing the degree d of the surrogate rgpΘq. Blatman and Sudret [23] introduced the leave-one-
out error εLOO based on a cross-validation procedure to overcome this issue, which was developed
for machine-learning problems. For the evaluation of εLOO, several surrogates are built, each
from a reduced experimental design Θzθpkq that excludes the i-th observation from the training
set Θ. Therefore, εLOO is given as

εLOO “

řNs
k

`

gpθpkqq ´ gPCEzipθ
pkqq

˘2

řNs
k

`

gpθpkqq ´ E rgpΘqs
˘2 , (2.70)

where gPCEzi is the surrogate model built from the reduced experimental design Θzθpkq. When a
least-square minimization procedure is employed, the computation of εLOO is easily computable
from the regression matrix AAA, see Eq. (2.65).
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Applications and results
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3. On electrical conductivity of flowing
human blood

The scientific outcome presented in this chapter mainly focuses on the theory at the base of a
detecting method for aortic dissection, namely impedance cardiography (ICG). This method
involves injecting electrical current into a body and measuring the impedance from sensors. The
idea is based on this signal being able to detect volume changes in the body, particularly the
AD disease. However, physiological and geometrical uncertainties make the simulations pretty
insecure. The electrical conductivity of blood is at the base of the ICG method. This property of
the fluid allows the computation of the ability of the fluid to conduct electrical current. On this
topic, the scientific publication by Melito et al. [105] is here presented. It is based on a sensitivity
analysis study on the effect of fluid and mechanics assumptions on the electrical conductivity of
flowing blood.

3.1. Introduction
Blood is a heterogeneous suspension of several components, consisting of plasma as the carrier
fluid, as well as erythrocytes (red blood cells), leukocytes (white blood cells) and thrombocytes
(platelets) as the cellular content. The fluid is physically complex and, due to its physiological
importance, its chemical and physical properties have been studied in numerous scientific fields,
[38, 54, 57, 108, 109, 164, 171, 173].

It is generally assumed that the physical properties of whole blood, such as the viscosity, i.e.,
its resistance to rates of deformation, and the electrical conductivity, are mainly determined by
the properties of the red blood cells (RBCs) and the surrounding blood plasma. Furthermore,
the electrical conductivity of blood is a crucial factor for electrical bioimpedance measurement
applications in clinical settings [13, 134, 168].

The electrical properties of stationary blood depend mainly on the volume fraction of RBCs in
the blood plasma, namely the hematocrit [55], RBCs’ shape and orientation, and the temperature
of the blood. In Maxwell [101], the research on electrical conductivity began from a dilute
suspension of spherical and ellipsoidal isolating particles in an electrolyte. From there, the findings
produced the Maxwell-Fricke theory, which allows accurate calculation of the conductivity of
stationary blood with randomly oriented RBCs as a function of hematocrit.

To study electrical properties on flowing blood, Edgerton [49] elaborated the theory quan-
titatively by introducing a Couette and successively a Poiseuille flow, and adding probability

39



3. On electrical conductivity of flowing human blood

distributions for the orientation angles of RBCs. While the Couette flow is characterized by a
shear-induced flow, the Poiseuille one is a pressure-induced flow. Within the Couette flow, the
distribution of RBCs’ orientation angles are dependent on the flow’s shear rate until an orientation
equilibrium is reached; the equilibrium of orientation distribution appears at low shear stress
for high hematocrit values. Furthermore, after equilibrium is reached, the viscosity decreases
continuously due to deformation of the RBCs. The reduction of viscosity is also confirmed at the
breakup of rouleaux at low shear rates, a phenomenon leading to viscosity change. Regarding
the Poiseuille flow, it is concluded that the RBCs orientation is crucial for blood conductivity.

Years later, the Maxwell-Fricke theory was tested for human blood in Poiseuille flow [170].
It was concluded that the cell orientation is the dominant cause of the electrical conductivity
changes of blood, although large deformations of the RBCs occur. However, Sakamoto and
Kanai [139] and Fujii et al. [56] showed that if only the orientation of RBCs is considered, the
conductivity changes do not depend on the shear rate for higher hematocrit levels (above 20 %).
Therefore, since an equilibrium orientation of the RBCs is reached at a low shear rate, for higher
shear rates the conductivity changes are due to deformation of RBCs.

In Hoetink et al. [76], the Maxwell-Fricke theory was used to explain the dependency of the
electrical conductivity of blood on its flow condition in a cylindrical tube. For this setup, the
authors assumed a shear-rate independent viscosity fluid in a steady flow, in which RBCs are
oblate ellipsoids that get deformed and oriented, given the flow condition. Since the conductivity
of RBCs is very low at frequencies below 3 MHz, the current distribution in the suspension
and thus the mean conductivity of this domain changes with the altered RBCs condition and
configuration. This study leaves the electrical conductivity change of blood through the aorta
due to its pulsatile flow condition unexplored.

To overcome this issue, Gaw et al. [62–64] introduced a study on the impact of pulsatile blood
flow on the electrical conductivity of blood in a cylindrical tube with rigid walls, using the
flow theory developed by Womersley [178]. In this case, it was visible, both theoretically and
experimentally, that during the acceleration phase of the fluid, i.e., the systolic phase of the
cardiac cycle, a robust linear relationship between the average velocity and the conductivity of
blood exists. The computed impedance shows differences in both systole and diastole related to
the same average velocity. The latter phenomenon introduced a significant new insight into the
physiological origins of impedance variations in bioimpedance methods. Developments performed
by Shen et al. [147] include an elastic tube instead of a rigid one for the domain of the model. It
results in highlighting the strong influence of the centre-line velocity value and the low impact of
the wall elasticity on the electrical conductivity of blood.

Blood exhibits non-Newtonian behavior dominated by shear thinning, which must be accounted
for in simulating blood flows of the human body. Many models for blood flow, including the
sources mentioned above, however, are subject to basic assumptions which may differ from
the physical reality. Examples relate to the state of flow and the fluid dynamic behavior upon
deformation. For example, the flow is modelled either steady or pulsating.

The rheological behavior of blood is highly complex because its exact composition is more or
less unique for each person. Broken down to the most important influencing factor regarding
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viscosity, the hematocrit value varies from person to person in a certain range for average women
and men (adult males: 42 % to 54 %; adult women: 38 % to 46 % [172]). However it may differ by
4 % to 7 % due to pregnancy [117] or exceed 60 % for professional athletes [169].

The present work focuses on analysing the electrical conductivity of flowing blood through
a variance-based global sensitivity analysis (SA) [146] by considering different flow situations
(steady or pulsating) and rheological behavior (Newtonian or non-Newtonian). Variance-based SA
can be performed with Monte Carlo method, which requires a high number of model simulations
[48]. However, when dealing with complex model structure, surrogate models are usually preferred.
Herein, the polynomial chaos expansion is used as surrogate model for the assessment of the
sensitivity indices [158].

The uncertainty in computational models can originate from two different sources: in the
model’s input parameters and in the model selection. To reduce the first, a well-known uncertainty
and sensitivity analysis is performed based on the assessment of the sensitivity indices from the
PCE, see [94]. As for the model selection analysis, a discrete variable, namely the trigger, is
added in the input space of the surrogate model. To the knowledge of the authors, the latter
approach is innovative and not found in the literature.

The uncertainty quantification of the model selection was introduced with a Bayesian approach
by Kass and Raftery [87], where the posterior probabilities of all competing models are computed.
The method, named Bayesian model averaging [75], highlights the need for considering the
uncertainty in the model selection to avoid over-confident inference and decision. A latest
application of Bayesian model averaging can be found in Jia et al. [85] where the best model
choice is compared with the computed posterior probability. Lately, the approach was illustrated
in Saltelli et al. [143] for the scope of sensitivity analysis and then applied in Saltelli et al. [145].
Other applications of model selection are found in countries composite indicators [138, 144, 160],
geological analysis of potential oil basins [140], and CO2 storage ability [85]. However, they all
use Monte Carlo method to asses the sensitivity of several competing models. Therefore, a trigger
variable in the input space of the surrogate model is introduced in this paper.

In the current study, different flow properties are studied by the trigger variable that simulates
the change in the model assumption, i.e. emulating a switch behavior. Differences between steady
and pulsating flow with different fluid types (Newtonian or non-Newtonian) are predicted. The
input space will also include different properties of the blood, distinguishing different patient-
specific cases. In the pulsating case, the SA will focus on the computation of the conductivity
of blood in one cardiac cycle as a model output. The study aims to provide a more profound
understanding of the mechanisms governing the value of the conductivity of flowing blood.
The differences in the conductivity of blood due to the varied model parameters will lead to
conclusions on the model sensitivity for this study case.

3.2. Methods
In this section, the methods used to carry out and analyze the illustrated problem will be
analyzed. First, the model for calculating the electrical conductivity of blood will be presented.
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The method introduced by Hoetink et al. [76], conceived for steady-state flows, will be presented,
followed by the method introduced by Gaw et al. [63], which assumes a pulsating flow type.
Both of these methods were designed for Newtonian fluids. Consequently, to amplify the method
to non-Newtonian-type fluids, the formulation of the latter is described. Ultimately, the fluid
domain models for both cases, Newtonian and non-Newtonian, are presented. Similarly, the cases
of stationary and pulsating flow will be described for both types of fluid.

Particular attention is given to the representation of non-dimensional quantities that can fully
describe the introduced systems. As will be shown later, these quantities are the famous Reynolds
number and Womersley number. In addition, a new non-dimensional quantity is introduced,
which describes the relationship between the pulsating and stationary flow.

Finally, the uncertainty quantification and sensitivity analysis used in this application will
be briefly described, as more details about them are provided earlier in Part I of the text. A
representation of the schematic of the present chapter and the coupled model is visualized in Fig.
3.1.

3.2.1. Electrical conductivity of blood
The electrical conductivity of the blood is computed by assuming the fluid to be a dilute
suspension of ellipsoidal particles [55, 101]. The fluid flows in a straight and rigid pipe, where
the RBCs, surrounded by plasma, are considered at the center of each control volume [76].
The control volumes are given by the fluid domain discretization. The RBCs are oriented and
deformed due to the shear stress induced by the fluid.

The conductivity of flowing blood was initially modeled by Hoetink et al. [76] for a Newtonian
fluid in steady laminar flow through a rigid tube of cylindrical shape. This model extends the
Maxwell-Fricke theory by introducing orientation and deformation terms of RBCs in the flow.
Here, different shear stress thresholds exert different orientation conditions of the RBCs. This
work is based on the early findings of Visser [170] on the study of electrical conductivity of
stationary and flowing human blood. The system formulation kept improving over the time,
and in Gaw et al. [64], the model was extended by incorporating a pulsatile flow and different
orientation effects. Therefore, the assumptions taken in Gaw et al. [64] for the computation of
electrical conductivity of blood are herein considered and applied [105].

Orientation and deformation of RBCs RBCs are subject to orientation and deformation
in flowing blood due to shear rate. Only two states of orientation for the RBCs are considered:
a random orientation, as in flipping disk behavior, and a stable orientation, as in liquid drop
behavior. In the latter, given that the RBCs are aligned with their major 2b0 axis, see Fig. 3.2,
within ˘20˝ from the axial and dominant flow direction, RBCs are assumed to be parallel to the
flow direction [22].

When a pulsation of the flow is present, the time delay in the alignment of the RBCs to the
flow field has to be accounted for. Such effect depends highly on the shear rate experienced by
the cells and the acceleration of the flow [21, 171]. To tackle the orientation rate as a function of
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Figure 3.1.: Schematic description of the current chapter and visualization of the diagram of the computa-
tional model. The quantity of interest of the model is highlighted in green.
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Figure 3.2.: Top and side view view of a red blood cell (RBC) modeled as an ellipsoidal particle.

the shear rate, the function fprq at a distance r from the pipe axis, as introduced by Bitbol and
Quemada [22], is shown as

fprq “
n‖
nRBC

“
τ´1

o prq

τ´1
d prq ` τ´1

o prq
, (3.1)

where nRBC is the total number of RBCs per unit volume, of which n‖ are parallel to the flow,
τo is the time constant for parallel orientation of cells, and τd is the time constant for the aligned
cells to disorient in randomly oriented cells. The formulations of τo and τd are expressed in Bitbol
and Quemada [22] as proportional to the inverse of the shear rate for τo and as proportional to
the inverse of the square root of the shear rate for τd.

Consider the RBCs as ellipsoidal particles with one symmetry axis of length 2a0 and two
axes of equal length 2b0, s.t. a0 ă b0, see Fig. 3.2. An erythrocyte with initial axes ratio a0{b0 is
deformed into adprq{bdprq due to shear stress present in a pipe flow. This deformation is inversely
proportional to the membrane shear modulus µRBC of the cells [76], and it is described as

adprq

bdprq
“
a0
b0

„

1` ||τ
ττ ||2prqb0
4µRBC

´3
(3.2)

where τττ is the shear, or deviatoric, stress tensor.
This quantity depends on the position in the flow field and relates the state of deformation of

the RBCs to the state of flow.

Conductivity of blood The conductivity of blood is then computed from the Maxwell-Fricke
theory, with the formulation introduced by Hoetink et al. [76], in which the conductivity of blood
of a control volume σcvprq is given by

σcvprq

σpl
“

1´H
1` pCprq ´ 1qH , (3.3)

where σpl is the conductivity of the blood plasma measured in S m´1, H is the hematocrit level
of the blood, and Cprq is the term accounting for the orientation and the deformation of RBCs
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at a radial location r in the pipe. In particular, the RBCs are considered impermeable to the
electrical field for frequencies in the range of several hundred kHz, and therefore their amount in
the blood volume is particularly significant. The following formulation gives the calculation of
Cprq [64]

Cprq “ fprqCb ` p1´ fprqqCr , (3.4)

where fprq is the function for the orientation of RBCs from Eq. (3.1), and Cb and Cr are terms
that account for the alignment of RBCs. Cr is the average of the C values for each axis alignment
to the flow as in:

Cr “
1
3pCa ` 2Cbq , (3.5)

where Ca “ 1{F , Cb “ 2{p2´ F q, and F is the deformation term computed as

F pa0 ă b0q “
β ´ 1

2 sin p2βq
sin3 β

cosβ , (3.6a)

cosβ “ adprq

bdprq
. (3.6b)

The RBC orientation and deformation is coupled with the Maxwell-Fricke theory by substituting
Eq. (3.2) in Eq.s (3.6a) and (3.6b). The bulk conductivity of blood is computed as the integral
of the control volume’s conductivity over the pipe’s cross-sectional area of radius R as

σbl “
2

R2

ż R

0
σcvprqrdr . (3.7)

Finally, given the conductivity of stationary blood σst in which RBCs’ orientation and deforma-
tion do not occur [170], the conductivity change of blood against its stationary value, expressed
in percent, is computed as [105]

∆σbl “

ˆ

σbl ´ σst
σst

˙

100 . (3.8)

where the electrical conductivity of stationary blood is computed as proposed by Visser [170].

3.2.2. Rheology of blood
The fluid model of the blood is collected and re-adapted from Melito et al. [105]. For the present
illustration, blood flow through a cylindrical vessel with a circular cross-section is simulated,
comparing the steady and unsteady blood flow modeled as a Newtonian or a non-Newtonian liquid.
The study is based on an analytical description of the Newtonian and numerical simulations of
the non-Newtonian flows.
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Figure 3.3.: (a) Geometry characterization of the flow domain and reference system, and (b) flow domain
representation with inlet velocity profile at t “ 0. Image re-adapted from Melito et al. [105].

The flow domain is a section of a straight pipe with a circular cross-section of constant diameter
2R “ 25 mm. The section is 200R long. The symmetry axis of the pipe is the z-axis of a cylindrical
coordinate system, as sketched in Fig. 3.3(a). The domain and the flow field are axisymmetric
around the z-axis, i.e., there is no dependency on the polar angular coordinate denoted with the
Greek letter υ. Numerically, the flow is nonetheless treated as three-dimensional.

3.2.3. Governing equations
The fluid flowing through the pipe is assumed to be incompressible, i.e., its density ρ is treated
as constant. For this case, the mass balance is reduced to the requirement that the velocity field
uuu is solenoidal, i.e.,

∇ ¨ uuu “ 0 , (3.9)

where ∇ is the nabla operator, ∇¨ is the divergence operator. The vectorial momentum balance,
or Navier-Stokes equation, reads

ρ

„

Buuu

Bt
` puuu ¨∇quuu



“ ´∇p`∇ ¨ τττ , (3.10)

where body forces are neglected, τττ is, again, the shear, or deviatoric, stress tensor, and p is the
pressure. The material derivative is expressed in the square brackets.

The rheological constitutive equation relates the deviatoric stress to the velocity field. In this
formulation, two types of rheological behavior of the liquid are considered: a non-Newtonian
inelastic and shear-thinning, on the one hand, and the Newtonian one on the other.
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Figure 3.4.: Relationship between viscosity η and shear rate 9γ imposed by the Carreau model [35]

non-Newtonian inelastic shear-thinning - the Generalized Newtonian model As the
rheological constitutive equation for the non-Newtonian liquid, we select the Generalized Newto-
nian model given by Bird et al. [19] as

τττ “ 2ηp 9γqDDD, 9γ “
`

2trpDDD2q
˘1{2

. (3.11)

The shear rate 9γ is determined from the second invariant of the rate-of-deformation tensor DDD
[26]

DDD “
´

∇uuu` p∇uuuqT
¯

{2 , (3.12)

with the velocity gradient ∇uuu. The dynamic viscosity ηp 9γq as a function of the shear rate is
represented by the Carreau model [35]

ηp 9γq “ η8 ` pη0 ´ η8q
”

1` pλ 9γq2
ıpnη´1q{2

, (3.13)

which is known to represent shear-thinning liquid behavior well, see Fig. 3.4. In the model, η0
represents the zero-shear viscosity, the first Newtonian plateau, and η8 the limiting value of the
viscosity for high shear rates, the second Newtonian plateau. λ and nη are parameters determining
the shape of the function ηp 9γq. In the specification of this function for the computational analysis,
the four parameters are determined by fitting Eq. (3.13) to experimental data from blood
rheometry and displayed in Tab. 3.1.

Special case of shear rate-independent viscosity - the Newtonian model A Newtonian
fluid has a shear rate-independent dynamic viscosity. Therefore its rheological constitutive
equation reduces from Eq. (3.11) to

τττ “ 2ηDDD , (3.14)

where η is the dynamic viscosity of the blood treated as Newtonian. A model well-established
in the literature for determining the viscosity of blood as a function of the hematocrit for a
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Table 3.1.: Model parameters of the rheological Carreau model.

Value Unit
η0 1.581ˆ 10´2 Pa s
η8 2.779ˆ 10´3 Pa s
λ 1.561 s
nη 0.475 -
ρ 1.060ˆ 103 kg{m3

Newtonian rheological model is due to Merrill [108] as

η “ ηpl
“

1` 2.5H ` 7.35H2‰ , (3.15)

where η and ηpl are the dynamic viscosity of blood and plasma, respectively, and H is the
hematocrit represented as the volume fraction of red blood cells.

3.2.4. Initial and boundary conditions
Pulsating flow In the numerical simulations, the flow is determined by a prescribed time-
dependent volumetric flow rate and the corresponding velocity profile at the inlet of the pipe in
Fig. 3.3(b). This profile is set parabolic at the inlet and evolves hydraulically in the flow direction
z. The pipe section is long enough to ensure a fully developed state at the outlet z “ L.

The corresponding heart rate is computed in beats per minute (bpm) by converting the
frequency f from s´1 to min´1. The boundary conditions for the velocity components uuu “
ruz, ur, uυs at the inlet are imposed in the following forms

uzpr, z “ 0, tq “2Qptq
A

ˆ

1´ r2

R2

˙

r P r0,Rs (3.16a)

urpr, 0, tq “uυpr, 0, tq “ 0 r P r0,Rs , (3.16b)

where A is the cross-section area of the pipe. The boundary conditions at the pipe wall represent
the no-slip condition

uzpR, z, tq “ urpR, z, tq “ uυpR, z, tq “ 0 @z, t . (3.17)

The flow rate of the pulsating flow is composed of a steady component Qs and a time-dependent
component Qoptq. The time dependence is sinusoidal, i.e.,

Qptq “ Qs `Qoptq “ Qs ` pQo ¨ sinpωtq , (3.18)

where ω “ 2πf is the angular frequency of the pulsation with frequency f for the period T “ 2π{ω,
and pQo is the flow rate pulsation amplitude. The volumetric flow rate equivalent velocity is given
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as us and puo is the volumetric flow rate equivalent pulsation amplitude given as

uptq “
Qptq

A
“ us ` uoptq “ us ` puo ¨ sinpωtq . (3.19)

Steady flow The steady flow is the special case where all the properties of the flow are
time-independent. The boundary conditions for the velocity components at the pipe inlet read

uzpr, 0q “
2Qs
A

ˆ

1´ r2

R2

˙

r P r0,Rs (3.20a)

urpr, 0q “ uυpr, 0q “ 0 r P r0,Rs (3.20b)

The steady-state no-slip conditions at the pipe wall are analogous to Eq. (3.17). For both the
unsteady and the steady simulations, the pressure at the outlet z “ L was set to zero. The inlet
pressure was obtained as a part of the solution to the flow problem.

3.2.5. Non-dimensional parameters
Sets of non-dimensional parameters govern the mechanical behavior of flowing fluids. The
parameters are defined as quantities characterizing the flow and the fluid, such as characteristic
velocities, length scales, and fluid material properties. For the present physiological context, the
values of such parameters are known from the literature, such as flow velocity, pulsation frequency
(heartbeat), vessel diameter, and blood viscosity. Successively, the values of the non-dimensional
parameters are characterized in the uncertainty analysis.

The current flow is governed by the six parameters us, puo, ω, R, ρ, and η. Given the three
dimensions kg, m and s involved, these parameters form the three non-dimensional groups [105]

Re “ ρus2R
η

; Wo “ 2R
c

ωρ

η
; and ϕ “

puo
us

, (3.21)

where ϕ may be interpreted as the ratio of the corresponding flow rates, pQo{Qs, also.
The first non-dimensional group is the Reynolds number Re. It represents the ratio of convective

to diffusive transport of momentum, with the volumetric flow rate equivalent velocity us, the
diameter 2R of the pipe, and the density and dynamic viscosity of the fluid, ρ, and η, respectively.
Defining the Reynolds number for fluids with variable viscosity requires special treatment. The
form of the generalized Reynolds number in non-Newtonian flow proposed by Metzner and Reed
[111] for a power-law fluid was re-derived for the present Carreau fluid to yield

Regen “
u2

sρ
3m`1

4m
`

us
2R

˘ ¨

»

–η8 ` pη0 ´ η8q

«

1`
ˆ

λ
3m` 1

4m

´

8 us
2R

¯

˙2
ff
n´1

2
fi

fl

´1

. (3.22)
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The coefficient m, which represents a logarithmic derivative of the pressure gradient to a
representative shear rate, is calculated as

m “
η8 ` pη0 ´ η8q

”

“

1` pλ 9γwq2
‰pn´1q{2

` pλ 9γwq
2pn´ 1q

`

1` pλ 9γwq2
˘pn´3q{2

ı

η8 ` pη0 ´ η8q r1` pλ 9γwq2spn´1q{2 , (3.23)

with the wall shear rate

9γw “
3m` 1

4m

´

8 us
2R

¯

. (3.24)

For each value of the generalized Reynolds number, m was iteratively calculated, starting from
an initial value, calculating the wall shear rate from this value, and using this wall shear rate
to calculate a new m, and so forth. This process was repeated until the difference between two
successive values of m was below 1ˆ 10´4.

The second non-dimensional group in Eq.s (3.21) is the Womersley number, representing the
ratio of the time scale for diffusive momentum transport to the pulsation period. In the case
of the non-Newtonian fluid model, the dynamic viscosity varies in the flow field. Therefore, for
calculating the Womersley number, the kinematic viscosity is expressed using the generalized
Reynolds number as [105]

Wo “
c

2Rω
us

Regen . (3.25)

The pulsating nature of the flow is represented by the non-dimensional group ϕ in Eq.s (3.21).
Using this group, Eq. (3.18) transforms into [105]

Qptq “ Qs r1` ϕ sinpωtqs . (3.26)

Different magnitudes of ϕ determine the flow as

ϕ “
puo
us

#

! 1 steady flow rate dominating
" 1 oscillating flow rate dominating

(3.27)

3.2.6. Models solutions
The solutions of the models are necessarily different depending on their linearity. In the case
of a Newtonian fluid, which is linear, the solution is determined analytically. In addition, the
symmetry of the geometry used is exploited in this formulation for both cases of flow, i.e.,
stationary and pulsating. The pressure in the system is determined by the volumetric flow rate
imposed by the input domain. The equation for analytically calculating the velocity in the flow
direction component uz is determined following the work of Womersley [177] and is illustrated as
follows

uz
us

ˆ

r

R ,
t

T

˙

“ 2
ˆ

1´ r

R
2
˙

` <

#

ej2πt{T
32jpp˚

Wo2

«

1´
J0

`

r
R
?
´jWo

2
˘

J0
`?
´jWo

2
˘

ff+

, (3.28)

50



3.3. Application

where < represents the real part of the complex following term, J0 is the Bessel function of the
first kind and 0-th order, and pp˚ “ pp{pρu2

s q is the normalized pressure amplitude.
In the case of non-linear material behavior, i.e., non-Newtonian fluid, the model requires a

numerical solution. The model is solved in the open-source software OpenFOAM. Given the
system’s symmetry, the problem is solved on a cylinder wedge with an angular aperture of 5
degrees in the polar direction, see Fig. 3.3. After a sensitivity study on the convergence mesh,
the wedge is formed by 1500 hexahedral and prism cells. The result is considered valid when the
flow at the outlet is developed, i.e., its values do not change in subsequent time cycles. The flow
is always laminar [105].

3.2.7. Uncertainty quantification and sensitivity analysis
Uncertainty and sensitivity analysis are fundamental steps in model building and they represent
an important role in the decision making process that results from model simulations [31].
Sensitivity analysis is used to extract the information, rooted into computational models, about
how much the uncertainty in the input factors affects the model output(s). Several methods are
used to rank the most influential variables on a quantity of interest and to assess their level of
interactions [81, 82]

A variance-based approach is used for the current study. In this case, the variance of the
output is decomposed into a sum of contributions of the input space [158]. Since knowledge
regarding the model is limited, in the sense that it is unknown whether its behavior can be linear,
additive, monotonic, or none of them, the choice of a variance-based approach is suitable.

For the estimation of the Sobol indices as quantitative measures for the SA, a surrogate model
construction is employed, namely the polynomial chaos expansion. Alternatively, the use of Monte
Carlo sampling or quasi-Monte Carlo sequences are adopted, but the cost of this computation is
still affected by the high number of model calls [81, 105].

3.3. Application
SA is applied to the coupled model that solves the rheology of blood first, as described in Sect.
3.2.2, and the electrical conductivity of flowing blood. as mentioned in Sect. 3.2.1. The uncertainty
sources in the present study are generated by both the physiological variability of the human
body and the variation of data collected from model assumptions. Physiological parameters, such
as aortic flow rate Qs and corresponding flow rate ratio ϕ, blood hematocrit H and density ρ,
and heart rate f , present significant probability distribution variation [64, 73, 74, 88, 108, 113].
Moreover, through literature research on the models that emulate the electrical conductivity of
blood, it has been noticed that some of the input parameters vary substantially among different
authors, i.e., the RBCs axes ratio a0{b0, the electrical conductivity of plasma σpl [64, 65, 170],
and viscosity of plasma ηpl [64, 88]. A uniform probability distribution function for all random
variables is considered, due to the lack of prior information on their real probability distributions.
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Table 3.2.: Input parameters of the model and their probability distribution properties used for sensitivity
analysis.

Notation ppxiq Unit Reference

Volumetric flow rate Qs U [0.000 032, 0.000 182] m3{s [113]
Flow rate ratio ϕ U [0.1, 1] - [113]
Blood density ρ U [1050, 1060] kg{m3 [64, 73, 74, 88]
Hematocrit level H U [0.30, 0.70] - [108]
RBCs axes ratio a0{b0 U [0.11, 0.40] - [64, 65, 170]
Plasma conductivity σpl U [1.12, 1.57] S m´1 [64, 65, 170]
Viscosity of plasma ηpl U [0.0011, 0.001 55] Pa s [64, 88, 108]
Heart rate f U [50, 100] min´1 [100, 163]
Trigger trigger [1, 2 or 3] - [62, 64, 76, 170]

Furthermore, this assumption allows to better emphasize the randomicity of different patient-
specific cases. The ranges of the distributions, shown in Tab. 3.2, highlight the uncertainty that
afflicts medical research. Their variation aims at producing different responses of the models and
at analysing their influence through such models using a sensitivity analysis technique.

Different model assumptions are the basis of the sensitivity analysis to understand the
importance of such hypotheses when computing the conductivity of blood. One of the questions
that arose in the development of this study is: how complex should the fluid model be to give a
reliable output of electrical conductivity change of flowing blood? Often models tend to simplify
the fluid mechanics of the problem to avoid complexity and to reduce the computational effort.
Therefore, it is the interest of this study to evaluate and quantify the importance of such choices
concerning the evaluation of the conductivity of blood. The last random variable in Tab. 3.2,
discretely distributed and referred to as the trigger, is used to analyse the differences in the
output considering different model assumptions:

1. Newtonian fluid and steady flow
2. Newtonian fluid and pulsating flow
3. non-Newtonian fluid and pulsating flow

The experimental design is built so to explore the model’s input space. The variability of
the input space is also meant to simulate the randomicity of everybody’s health condition and
characteristics. It is therefore essential to analyse the functioning of different model assumptions
in relation to the randomness of their corresponding input domain, see Tab. 3.2. In order to
assure the physiological ranges of the flow parameters with respect to the rheological parameters
of the human body in modelling hemodynamics [154], the ranges of non-dimensional numbers
characterising the flow are calculated and depicted in Fig. 3.5, namely the Reynolds and the
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Figure 3.5.: Boxplot visualization of the distributions of (left) Reynolds Re and (right) Womersley Wo
numbers computed for each model assumption: 1 Newtonian-steady, 2 Newtonian-pulsating,
and 3 non-Newtonian-pulsating.

Womersley number.
Due to the Reynolds number distributions, see Fig. 3.5 left, the flows could be considered, with

good approximation, to be laminar for all the three model assumptions. Blood flow generally
exhibits laminar flow under ideal conditions [40]. To confirm such an assumption, different values
are found in the literature regarding the Reynolds number’s threshold value that confirms the
laminar behavior of blood. However, Re values below 2000 confirm, in general, the laminar flow
of blood [52, 112]. Thus, given that most of the distribution is below such value, the flow is
considered laminar. Higher values of Re, up to 3000, denote a transient flow, which is easily
detectable in the aorta [12]. In the aorta, Re is usually higher due to the vicinity of the heart
(pump). Hence, Re average values is 2500, and peaks values are up to 7500 [112]. The Womersley
number distribution, see Fig. 3.5 right, also shows good agreement with the usual variation of
values detected in the physiology of the cardiovascular system [68], although slightly higher due
to imposed model variation.

The conductivity change relative to stationary blood, as in Eq. (3.8), was determined to assess
the QoI, as expressed next. In particular, given its variability over one cardiac cycle, its average
value in time over the period is taken into account

x∆σbly “
1
T

ż T

0
∆σbldt . (3.29)

where T is the assumed heart cycle.
The reason for this choice is that such output holds more useful information about the behavior

of conductivity of blood over time. More importantly it is mostly used in the related scientific
literature, instead of considering the conductivity of blood per se. The peak-to-peak amplitude of
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(a) εLOO of the PCE for model assumptions 2 and 3. (b) εLOO of the PCE for SA
among the three model

assumptions.

Figure 3.6.: The leave-one-out error for the x∆σbly is indicated with the star marker (*), while for ∆pσbl
with the circle marker (o).

such signal over one cardiac cycle, referred as ∆pσbl, is also considered to be of interest to analyse
the models’ mechanics.

Two different sensitivity analyses have been performed. The first one is a sensitivity analysis
within each model assumption, i.e., model 1, 2 or 3, to better understand their functioning and
mechanics. This analysis is performed with a different sample size Ns of the input space, with the
dimension M “ 8, given that the trigger variable is considered constant for such computation.
The high computational expenses of model assumption 3, i.e., non-Newtonian fluid and pulsating
flow, constrains the number of performed simulations to Ns3 “ 500. For trigger equal 1 or 2, the
sample size is Ns1,2 “ 10 000 due to the availability of the analytical formulation for the fluid
mechanics, which reduces the computational costs.

The second sensitivity analysis is then performed among the model assumptions and with the
input space of dimension M “ 9, since the last factor in Tab. 3.2 is assumed as a random variable.
For this analysis, the number of simulations is Ns “ 1500, so that each model assumption is run
an equal amount of times.

The two sensitivity analyses, are computed from two different polynomial chaos expansions.
The surrogate for the analysis within each model assumption is resolved with ordinary least
square method (OLS) [17, 18] for the models 1 and 2, given the low computational costs. For
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model 3, due to the limited resources, the least-angle regression (LARS) method [24] is selected.
The degree of each expansion is selected at the minimum of the Leave-One-Out error εLOO
[23, 94] produced for different polynomial degrees. Therefore, as visible in Fig. 3.6(a), degree 7
is chosen for both QoIs in model 2. Although εLOO already reach a good value for d “ 6, the
degree 7 will increase the quality of the surrogate and does not affect the computational burden.
As for model 3, PCE is truncated at degree 10 for the cycle average x∆σbly, and at degree 6
for the amplitude ∆pσbl. OLS method is selected for the sensitivity analysis among the model
assumptions and the polynomial is truncated at degree 4, see Fig. 3.6(b). A PCE degree smaller
than M suggests the exclusion in the PCE of some interaction terms. However, the employed
basis-adaptive strategy detects and deletes negligible high-order interaction terms, reducing the
dimensionality of the truncated polynomial expansion [24, 98].

The trigger variable is included in the construction of the polynomial chaos expansion upon
transformation into a uniformly distributed variable. Nonetheless, such transformation does not
affect the accuracy of the surrogate model. By evaluation of the accurate PCE, a Monte Carlo
method is chosen for the estimation of the Sobol indices among the model assumptions, see Eq.s
(2.30) and (2.31).

3.4. Results and discussion
Uncertainty analysis After performing the simulations for each model assumption, a first
check on the reliability of the results was performed. In Fig. 3.7, the box plots of the cycle average
of the conductivity change of blood x∆σbly (left) and its amplitude ∆pσbl (right) are shown.

An overview of the distribution of the results of the QoIs is necessary to analyse the behavior
of different model assumptions and differences in their mechanics. Here, the distribution of the
cycle average of the blood conductivity change of the model assumption 1 (see Fig. 3.7 left, model
1) shows inaccurate results. Its distribution is characterised by a median value slightly larger
than zero and by a prolonged negative tail. As visible, such results are inaccurate in expressing
the increment of conductivity of flowing blood. Theoretically, during the flow condition, RBCs
are oriented and deformed by the shear rate. The steady flow assumption has been developed
for the computation of the electrical conductivity of blood, given its simplicity and easiness
in implementation. Results of its use are also compared to experimental results [76]; however,
those comparisons stand only for a few particular cases and combinations of the input domain.
Thus, since most of the distributions of the conductivity change ∆σbl are below the zero value,
model 1 indicates the inability of the steady flow assumption in computing such QoI, given the
variability of the input parameters. Furthermore, due to the steadiness of the flow, the amplitude
of the conductivity change of blood is absent, which stresses the inability of such assumption in
emulating the nature of such measurement. As a consequence, the steady flow model assumption
is not considered for the following sensitivity analysis.

The results for model assumptions 2 and 3 are not only comparable, but also more realistic
when compared to the real behavior of the ∆σbl signal. In previous deterministic models [62–64],
∆σbl is shown to oscillate between 10 % and 20 %. Lack of previous studies on the variation of
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Figure 3.7.: Box plots of the cycle average of conductivity change of blood (left) and its peak-to-peak
amplitude (right) for the three model assumptions: (1) Newtonian-steady, 2 Newtonian-
pulsating, and 3 non-Newtonian-pulsating.

such outputs for different fluid and flow assumptions lead to the the conclusion that the present
results are valid. The distributions of x∆σbly show good agreement both in the median value and
the tail of the distributions. Regarding the distribution of the amplitude of conductivity change
∆pσbl, see Fig. 3.7(right), the assumption of a non-Newtonian fluid highly increases the variability
of this QoI. Such a phenomenon has to be further investigated through a sensitivity analysis
among the models, with a particular interest in the output ∆pσbl. Nonetheless, both distributions
show good agreement with the nature of the ∆σbl signal, and are therefore considered as reliable
results [62–64].

For the sake of completeness, the results of the pulsating flow models are shown in Fig. 3.8.
Here, the average trends over the simulations of the conductivity change of blood, both for the
Newtonian and non-Newtonian fluid in pulsating flow, are plotted over a normalized cardiac
period. Noticeable is the similarity of expressing the delay in decelerating when compared to the
input sinusoidal wave of the volumetric flow rate (3.2.4), as researched in [64].

Sensitivity analysis Before proceeding with the sensitivity analysis, an investigation of the
behavior of the model is performed with the use of a scatter plot, see Fig. 3.9, where the input
parameters are projected in turn against the two QoIs. Here, the grey color represents the use of
the model 2 assumption, while the black one refers to model 3. Furthermore, the input space is
normalised with respect to their input domain and ∆pσbl is represented in log scale for better
visualisation.

The scatter plots show that x∆σbly is more sensitive to the variables hematocrit H and the
RBCs axes ratio a0{b0, which display a strong linear relationship in both model assumptions. In
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Figure 3.8.: Conductivity change of blood in time averaged over the simulations for a Newtonian (continu-
ous line) and non-Newtonian fluid (dashed line), both in a pulsating flow model assumption.

addition, the volumetric flow rate Qs for model 2 also shows a linear trend, but all the other
input factors do not exhibit particular influence. As for the amplitude of the conductivity change
of blood ∆pσbl, a clear difference behavior between the two model assumptions is visible. In model
2, variables such as hematocrit H, volumetric flow rate Qs and flow rate ratio ϕ demonstrate
a higher influence on ∆pσbl. In model 3 however, while H seems to maintain its impact on this
output, Qs influence decreases. Instead, the flow rate ratio ϕ shows a new strong linear trend. The
output ∆pσbl is also equally influenced by the RBCs axis ratio a0{b0 for both model assumptions.

The difference in output domain coverage for ∆pσbl when switching from model 2 to model
3 is significant, see Fig. 3.9 bottom row. All the input variables show an exponential behavior,
apart from ϕ in model 3, which suggest the presence of a higher level of interactions than for the
output x∆σbly. The use of scatter plots aids in identifying influential parameters, however it can
be deceiving and lead to refutation of influential parameters [143]. This motivates the use of a
variance-based sensitivity analysis and the computation of Sobol’ indices.

Sensitivity analysis results are plotted in Fig. 3.10. The top two figures refer to the first- and
total-order Sobol’ indices on the cycle average of the blood conductivity change x∆σbly for models
2 and 3. In contrast, on the bottom, the indices refer to the amplitude of blood conductivity
change ∆pσbl.

Regarding the first-order sensitivity indices Si of the output x∆σbly (top figures in Fig. 3.10),
the ranking of the most influential factors is similar for both model 2 and 3 having the hematocrit
value of blood H as the most important one, followed by the RBCs axes ratio a0{b0 and the
volumetric flow rate Qs. The hematocrit value is the volume fraction of RBCs in the blood, thus
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Figure 3.9.: Scatter plot of the two quantities of interest, cycle average of change of blood conductivity
x∆σbly and its amplitude ∆pσbl, versus the model input parameters, normalised in their domain
(Tab. 3.2). The third dimension, the color, represents different model assumptions: grey for
model 2 and black for model 3.

proportional to the number of RBC, which are considered to be non-conductive for the electrical
signal. The electrical signal follows the path with less resistance; indeed, it is eased by fewer
RBCs or by many oriented and deformed cells. This result confirms the influence on the mean
value in time of the ∆σbl of both the hematocrit value H and the RBCs axes ratio a0{b0 before
the deformation of such cells takes place.

The interaction effect is estimated by the difference between the first- and total-order sensitivity
indices. An analysis of the total-order Sobol indices ST

i of the same output, highlights the presence
of low interactions between the parameters; thus, the model could be considered additive in the
output x∆σbly. Secondly, ST

i drives the discussion in considering variables as constant values
for the model, i.e., applying the Factor Fixing setting, since any variation in their value will
not affect the considered model’s response. Such variables are the viscosity of plasma ηpl, the
conductivity of plasma σpl, the flow rate ratio ϕ, the heart rate f , and the blood density ρ.

Different behavior is shown for the sensitivity analysis on the amplitude of blood conductivity
change ∆pσbl, see Fig. 3.10 bottom figures. Model 2 (left picture) confirms that the hematocrit
value H gives the principal influence on the output, followed by the volumetric flow rate Qs. Such
influence is explained by the presence of H in Eq. (3.15) for the computation of the viscosity of
blood, and in Maxwell-Fricke theory Eq. (3.3). Both equations form the basis for calculating the
blood conductivity and the fluid mechanical model, so affecting the shear rate of the flow and
then the RBCs deformation. To be noticed is also the increment in interaction terms in the model
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3.4. Results and discussion

Figure 3.10.: Sensitivity indices on the cycle average value (top) and amplitude (bottom) of the conductivity
change of blood ∆σbl for model 2 (Newtonian-pulsating) and model 3 (non-Newtonian-
pulsating). The grey bars represent the first-order sensitivity index; the black bars the
total-order sensitivity index. The variables, listed in Tab. 3.2, are sorted by first-order
sensitivity index.
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Figure 3.11.: Visualization of the models mechanics in computing the amplitude of the conductivity
of flowing blood for Model(2) and Model(3), respectively Newtonian-pulsating and non-
Newtonian-pulsating assumptions. The input variables are highlighted in blue and the output
in green. It is evident that the non-Newtonian formulation introduces significant changes.

for this particular output, contrary to what was discussed for x∆σbly, see Fig. 3.10 left-top.
By looking at the sensitivity analysis results for the non-Newtonian fluid model, Fig. 3.10

right-bottom, it is clear how the mechanics for the computation of the electrical conductivity is
altered. Here, the highest first-order sensitivity indices are recorded in the flow rate ratio ϕ, and
in the RBCs axes ratio a0{b0. Also, the hematocrit level H shows a high influence on the model’s
QoI, but its value is not the highest recorded. The reason for such change of mechanics has to be
found in the change of formulation between the Newtonian and the non-Newtonian fluid models.
In the non-Newtonian formulation, the viscosity model of Merrill et al. [109] of Eq. (3.15) is not
implemented, given the non-linearity of the viscosity model. Therefore, other factors act on the
variation of the flow shear rate 9γ and resulting shear stress τ . In particular, the flow rate ratio ϕ,
as defined in Eq. (3.27), directly influences the shear rate in the flow, and further affects the
RBCs deformed configuration in Eq. (3.2). Besides, the undeformed configuration of the RBCs
a0{b0 is as crucial as ϕ in the final computation of the amplitude of blood conductivity change
∆pσbl. Finally, once the deformation of the RBCs has taken place, the Cprq factor of Eq. (3.3) is
consequently affected. This change in model mechanics is shown in Fig. 3.11 for both models (2)
and (3).

The sensitivity analysis among the model assumptions is presented in Fig. 3.12. Again, the
left part of the figure represents the first- and total-order sensitivity indices of the cycle average
of the blood conductivity change x∆σbly. In contrast, the right picture refers to the amplitude of
blood conductivity change ∆pσbl. As expected, the change of the model assumptions affects both

60



3.4. Results and discussion

Figure 3.12.: Sensitivity indices of the global analysis between different model assumption on the mean
value of blood conductivity change (left) and on its amplitude (right). The variables, listed
in Tab. 3.2, are sorted by first-order sensitivity index.

outputs largely, since the trigger factor has the highest first-order sensitivity index. These results
stress the need for a clear identification of the model that is used for the computation of both
QoIs. However, although the trigger’s first-order sensitivity index Si is dominant on the other
indices for the computation of x∆σbly, the first Sobol’ index of the same input random variable
has a much lower value for the amplitude of ∆σbl. Furthermore, its value shares a similar value
to the indices of the blood hematocrit level H.

When computing the amplitude of blood conductivity change, the model shows a high
interaction between the input random variables, as it is visible by the higher values of STi in Fig.
3.12(right) with respect to the Si. This translates in non-additive model behavior, besides being
non-linear. However, such high interaction effect seems to disappear when it is about the QoI
x∆σbly.
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4. On configuration optimization of
simulated thoracic bioimpedance

In this chapter, a study on impedance cardiography (ICG) is employed. ICG, also known as
thoracic bioimpedance, is a standard tool that measures volumetric changes in the thorax
by applying alternate current injected through sensors in contact with the patients. It is a
noninvasive technique, and therefore convenient for both patients and physicians. Nowadays, its
use in cardiology is advanced since it allows the measurement of cardiac output (CO), stroke
volume (SV), heart rate, and many more parameters. NASA initially developed it in the 1960s,
but modern technological advances allow its use on many more applications [36].

As analyzed in the previous chapter, the variation of electrical conductivity of flowing blood
σbl is easily obtained. Indeed, different model assumptions and input variations lead to highly
different scenarios. However, the work presented in this chapter anticipates such conclusions and
examines the effect of electrical conductivity uncertainties on ICG applications, in particular,
when AD develops.

Here, ICG is employed as a tool for the detection of AD. Given the human variability of
physiological parameters discussed in the previous chapters, the configuration of the electrical
sensor for an ICG measurement is uncertain. Therefore, a study on geometrical optimization of
the position of the sensors based on surrogates and sensitivity analysis is produced.

The ICG model described here has been the subject of many studies so far [10, 11, 134, 135].
Preliminary work was conducted by Melito et al. [102], in which two different SA methods
were applied to deal with high dimensional computational model. This work will serve as an
introduction to Badeli et al. [10], which will be the main focus of this chapter. In summary, the
reported work is mainly based on the works of Melito et al. [102], and Badeli et al. [10].

4.1. Introduction
The formation of TBAD is commonly initiated by the dilatation of the aorta or high blood
pressures that tear the intima, allowing blood to flow into the aortic wall. The pulsatile pressure
of the circulation then drives the blood. It separates the aortic wall layers, resulting in a true
lumen TL and a false lumen FL.

Detecting TBAD can be difficult because the symptoms are similar to those of various health
problems. Ultrasound scanning (sonography), magnetic resonance imaging, and computerized
tomography are expensive techniques currently used for this purpose, with experts needed to
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read and interpret the images. Nevertheless, an easy-to-use and still reliable method for pre-
identification of TBAD would be beneficial. Furthermore, tracking the development of the disease,
such as FL expansion and FL thrombosis, can be very helpful for the medical management of
TBAD.

The presence of a FL alters the aortic hemodynamics and changes the thorax tissue distribution.
These changes can be identified and quantified by bioimpedance techniques such as ICG. In ICG,
a current field longitudinally across a thorax segment is applied using a constant low magnitude
and high-frequency alternating current. It is a non-invasive, safe, easy to use, and low-cost method
for measuring several cardiodynamic parameters (e.g., the stroke volume and the cardiac output)
continuously [5]. Besides, this method is portable, and the analysis could be automated.

Impedance changes can be evaluated during a cardiac cycle by injecting a low-amplitude
alternating current into the thorax and measuring the voltage drop ∆V on the thorax. The
negative of the first-time-derivative impedance signal ´|dZ{dt| is known as the impedance
cardiogram. Since the conductivity of the blood-filled aorta is much higher than that of the
surrounding tissue types, the measured impedance changes are strongly related to changes in the
aorta. An alteration of blood volume and flow occurs in TBAD, leading to an irregular impedance
cardiogram. Thus, ICG results to be a good candidate for diagnosis and monitoring purposes
[11, 134, 135]. A 3D numerical simulation model is used to compute the impedance changes on
the thorax surface in the case of the TBAD.

4.2. Preliminary assessment of sensitivity parameters
A proof of concept study is illustrated here to assess the method’s validity and optimize the
electrode configuration. However, the amount of encountered uncertainties in the construction of
the model is significant. A visualization of the model geometry is represented in Fig. 4.1(a).

The first question that arise in the construction of this model is the geometrical configuration.
The aortic system is different for each human. Therefore the aortic arch and TL radii, namely RA
and RTL, may vary significantly among the population. Other geometrical uncertainties included
the radius of the FL RFL, which fluctuates depending on TBAD progression, and the position of
such secondary volume with respect to the TL. The latter uncertainty is included as the angle
between the x-axis and the center of the idealized FL cross-section and named αFL, see Fig.
4.1(b). A radius multiplier models the variation of the TL radius so that the radius enlargement
in time is as in Fig. 4.3. These factors are therefore grouped s.t. their variation affects only the
geometrical configuration of the model.

The second group of uncertainties regards the physical and electrical fields. First, the blood
velocity is considered with a 50 % variation from the reference assumption, as in Fig. 4.4. Next,
the hematocrit of the blood H and the electrical conductivity of flowing blood σbl and thorax
σth are also considered as system variables. All the parameters lack enough knowledge regarding
their mean value and PDF. So, they are assumed to be distributed uniformly, see Tab. 4.1, whose
values are found in the literature.

The analysis of eight input parameters is performed on a 3D FEM model developed in COMSOL
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Figure 4.1.: (a) Aortic system in the thorax modeled in COMSOLTM and (b) schematic positioning of the
FL with respect to the TL. Figure readapted from Badeli et al. [10].

MultiphysicsTM , which will be described in the following sections and by Reinbacher-Köstinger
et al. [134]. Two sensitivity analysis methods have been applied: the EE and the variance-based
methods with PCE as surrogate models. Such choice is motivated by the struggle that the PCE
brings when dealing with many input variables. Therefore, a first screening of the input space is
performed by the EE method. The result will highlight the most sensitive factors of the model.
A PCE is then built for those factors, and the sensitivity indices in Eq.s (2.56) and (2.57) are
computed. This work has been inspired by the work of Donders et al. [45].

In the EE method, the input parameters are divided into geometric (rows 1 to 4 in Tab.4.1) and
physical parameters (rows 5 to 8 in Tab.4.1). The first group is made of the radius of the aortic
arch RA, the radius of the FL RFL, a multiplier for the radius of the aorta mr, and the relative
position of the dissection with respect to the TL αFL. The second group includes the multiplier
of the blood velocity in the aorta mv, the hematocrit percentage in the blood of the patient H,
the conductivity of the blood σbl and the conductivity of the thorax σth. The computed output
for the analysis is the impedance cardiogram signal ´|dZ{dt| between the measurement sensors,
as visualized in Fig. 4.1(a). The output formulation is left to the later sections.

The EE evaluation, based on NEE “ 80 trajectories and therefore Ns “ 720 simulations, shows
that parameters 2, 3, 4, and 8 have the most significant value of µ̌˚ and σ̌i. Consequently, they are
considered for the surrogate model construction. The latter has been performed from Ns “ 1000
sampling generated from LHS technique. The metamodel is truncated up to degree 6. From the
PCE construction, the Sobol indices Si and ST

i are computed.
In conclusion, coupling the two methods allows a better and simplified construction of the

metamodel. Furthermore, more investigation should be performed on the conductivity of the
thorax σth given its high value of Si among the second input parameter group. The geometry of
the FL is shown to be more influential than the geometry of the TL. By reducing the number of a
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4. On configuration optimization of simulated thoracic bioimpedance

Table 4.1.: Sensitivity analysis results of the model’s input random variables. Inputs variables names
are in column (1) and their variability is shown in column (2). Results from the EE method
are shown in columns (3) to (5); Sobol sensitivity indices are in columns (6) and (7). Table
readapted from Melito et al. [102].

ppxiq µ̌i µ̌˚i σ̌i Si ST
i

(1) (2) (3) (4) (5) (6) (7)
RA U [38, 42] ´4.33ˆ 10´6 3.34ˆ 10´5 1.75ˆ 10´9 - -
RFL U [0, 30] ´2.84ˆ 10´3 2.88ˆ 10´3 4.63ˆ 10´4 0.650 0.676
mr U [0.95, 1.25] 8.80ˆ 10´7 4.57ˆ 10´5 3.41ˆ 10´9 0.005 0.002
αFL U [-π/3 π/3] 5.19ˆ 10´7 4.60ˆ 10´5 3.88ˆ 10´9 0.174 0.274
mv U [0.5, 1] 1.19ˆ 10´8 1.85ˆ 10´8 7.92ˆ 10´15 - -
H U [0.37, 0.54] ´3.85ˆ 10´9 8.75ˆ 10´9 1.83ˆ 10´15 - -
σbl U [0.5, 0.7] ´2.86ˆ 10´9 6.04ˆ 10´9 3.82ˆ 10´16 - -
σth U [0.08, 0.13] 1.43ˆ 10´2 1.11ˆ 10´1 1.27ˆ 10´2 0.168 0.047

random variable, the model still appears to represent a noticeable difference in the measurement
in the presence of TBAD. Indeed, from the results illustrated in the table, RFL appears to be
extremely sensitive to the results, confirming the validity of the model in detecting variation in
blood volumes.

This analysis highlighted four parameters as the most sensitive for the illustrated model.
In the following sections, model complexity is increased by including lungs and heart in the
thoracic geometry. The analysis of this second model aims to identify the optimal configuration
of electrodes for ICG measurements. The system variables selected are those resulting from
this preliminary study. However, the thoracic conductivity will be considered constant and the
hematocrit as a variable. This choice is motivated by the difficulty encountered in defining the
exact variation of the thoracic conductivity. This process is visualized the schematics in Fig. 4.2.

4.3. Methods
Model complexity increases due to modeling new elements in the thorax, such as the heart and
lungs. This section will illustrate the methods and assumptions assumed in this new modeling
phase. After illustrating the methods considered in modeling thoracic impedance, the use of SA
as a tool to determine the optimal electrode configuration will be motivated.

A global sensitivity analysis technique is applied to investigate different electrode configurations
in the simulation model with different input parameters to cover as many patient-specific cases
as the dimension of the input space. The final aim is to find the desired electrode configuration,
which gives the highest difference between the impedance cardiograms of the healthy condition
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Figure 4.2.: Schematics of the preliminary assessment of the sensitive parameters. The geometrical, physical
and electrical variability is imposed onto the thoracic model from where the impedance is
computed. The sensitivity analysis includes an initial screening with Elementary Effect method
and a successive variance-based method. In gray are the number of simulations performed
for these tasks. The results are exported to the more complex model described in the next
sections.

and those with the TBAD.

Sources of impedance changes during a cardiac cycle The measured electrical impedance
without respiratory or cardiac activity is known as static thoracic base impedance Z0. Upon
ventricular ejection, a time-dependent pulsatile impedance change ∆Zptq is obtained. When
∆Zptq is super-imposed on Z0 the time variable total transthoracic impedance Zptq is registered.
By eliminating the oscillating cardiac-asynchronous respiratory component, Zptq comprises a
static DC component Z0 (from 22 Ω to 45 Ω) and a dynamic AC component ∆Zptq (from 0.1 Ω
to 0.2 Ω), synchronous to cardiac activity [15, 168]. In many studies, sources of the thoracic
impedance changes have been investigated, and a consensus is lacking in the origins of cardio-
synchronous impedance changes due to different model assumptions. Hereof different approaches
are listed in De Sitter et al. [44]. Of course, simulation of transthoracic bioimpedance signals
considering all possible time-dependent sources is impossible. Also, comparing experimental
results obtained from dissected patients with earlier measurements in healthy states is practically
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Figure 4.3.: Spatial average time-dependent cross-sectional radius of the aortic arch and the descending
aorta during one cardiac cycle of 1 s. Figure readapted from Badeli et al. [10].

infeasible. Nevertheless, the focus of this work is to compute the discrepancy between the healthy
and the dissected state and not the evaluation of absolute measurement values. Therefore, only the
velocity-induced blood conductivity variation and the aorta’s volumetric changes are considered
as sources of ∆Zptq in a healthy case. The magnitude of Z0 not only varies among individuals
and the frequency of the applied current, but also depends on the electrode configuration used
for signal acquisition.

Volumetric changes of the blood-filled aorta The volumetric expansion of the blood-filled
aorta changes corresponding to the cardiac pulse wave. For the sake of simplicity, a spatial
average time-dependent cross-sectional radius of the aorta has been used in the simulation model
for two sections separately, the aortic arch and the descending aorta, see Fig. 4.3. The spatial
average radius R is collected from real aortic measurements for different aortic sections, namely
the aortic arch and the descending aorta. The data are based on measurements provided in
Alastruey et al. [2] from a young, healthy male volunteer at rest.

Velocity induced blood conductivity variation The electrical properties of resting blood
mainly depend on the volume fraction of RBCs, namely hematocrit H, the temperature, and the
cell shape. However, the electrical properties of flowing blood are found to be influenced by the
flow rate [105, 171]. A spatial average time-dependent velocity of the blood flowing inside the
aorta, i.e., reduced average velocity uz{R, is collected from Alastruey et al. [2], and taken into
account for the aortic arch and the descending aorta, see Fig. 4.4. This velocity is composed by
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Figure 4.4.: Blood reduced average velocity in the aortic arch and the descending aorta during one cardiac
cycle of 1 s. Figure readapted from Badeli et al. [10].

uz as the spatial average blood velocity, and R as the spatial average cross-sectional radius of the
aorta. During the systolic phase of a cardiac cycle, the heart contracts to pump blood into the
aorta, and in the diastolic phase, the heart relaxes after contraction. As also confirmed in the
previous chapter, the pulsatile blood flow causes the variation of blood conductivity inside the
aorta. The reason is the orientation and deformation of the RBCs in case of flowing blood. At
higher velocities, the shear stress increases, deforms the RBCs in the layer with the highest stress
close to the vessel wall, and aligns them throughout the vessel. Both effects lead to a higher
conductivity than the resting blood, see Fig. 4.5 for reference [56, 76].

Based on the formulation described in Hoetink et al. [76] where the blood is modeled as a
Newtonian fluid in steady flow, the blood conductivity changes as a function of reduced average
velocity uz{R. Different hematocrit levels also alter ∆σbl as shown in Fig. 4.5. From this figure,
it is evident that more conductivity changes of blood exist with higher hematocrit levels. It is
also evident that the conductivity changes mainly occur at lower blood velocities, and the slope
of the ∆σbl curve decreases significantly for higher velocities.

As already demonstrated in the previous chapter, and shown in Gaw et al. [63] and successively
in Gaw et al. [64], the blood conductivity during pulsatile blood flow is not the same at any
given velocity during acceleration and deceleration. This disparity is a consequence of the
RBCs’ inability to achieve complete randomization at end-systole, which leads to minor but
still considerable conductivity changes during the cardiac cycle. For simplicity, a steady flow
assumption is considered in this study. The conductivity changes shown in Fig. 4.6 have been
assumed in the simulation model.

Sensitivity analysis This study aims to use a SA technique to identify which electrode
configuration has significant changes in impedance cardiogram ´|dZ{dt| given the uncertainty
on TBAD’s developed status. The difference in impedance cardiograms between healthy and
dissected models provides the changes between the two states of the patient, so to simulate
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Figure 4.5.: Effect of orientation and deformation of RBCs on the electrical conductivity of blood in a
vessel during the systole and diastole. Figure readapted from Badeli et al. [10].

TBAD identification.
In this application, only the first- and the total-order Sobol indices are considered. Any

interaction between the input random variable can be derived by subtracting the second index
from the first. Consequently, the difference will result in the amount of interaction present in the
model.

The Sobol indices are computed from a PCE [158], representing a valid mathematical meta-
model. Finally, it is possible to estimate the two sensitivity indices as the ratio between the
PCE coefficients from the PCE. Since the case study is evaluated in time, the implementation of
time-dependent indices is implemented following Alexanderian et al. [3]. The PCE is computed
through the UQLab toolbox for Matlab [99]. However, the time-dependent indices are developed
manually from the extrapolation of the PCE coefficients.

4.4. Simulation model
Geometry, physics and formulation A 3-D numerical simulation model is used to investigate
the changes in the electric potential and the impedance changes on the thorax surface. The model
has been set up in COMSOL MultiphysicsTM for the underlying time-harmonic current flow
problem. Since the cardiac cycle duration is much higher than the period of the injecting current,
simulations can be performed in the frequency domain. The electric potential drop is evaluated
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Figure 4.6.: Relative blood conductivity changes as a function of reduced average velocity uz{R for different
hematocrit H levels. Figure readapted from Badeli et al. [10].

between the measuring electrodes by solving the Laplace equation for the electric potential V :

∇ ¨
”

pσpeq ` jωpeqεpeqq∆V
ı

“ 0 . (4.1)

where p∇¨q denotes the divergence, and σpeq is the electrical conductivity. Since the simulations
are performed in the frequency domain, V is considered as a phasor with frequency ωpeq, and
electrical permittivity εpeq. The term in the square brackets is also defined as complex conductivity.
The subscript peq is added to the terms in Eq. (4.1) to avoid confusion with previously introduced
quantities.

The model consists of a simplified geometry, as shown in Fig. 4.7. Three pairs of source
electrodes (injection) are placed on the surface of the thorax (each pair in one vertical line) and
inject an alternating current with a magnitude of 5 mA and a frequency of 100 kHz asynchronously.
For each injection, the electric potential drop is evaluated between five measurement electrode
pairs (each pair in one vertical line) which leads to the thoracic impedance

Z “
V u ´ V l

I
, (4.2)

where V u and V l are the potentials measured at the upper and lower sensors, respectively. The
boundary conditions are defined as

• V u is constant
•
ş

S rpσ ` jωεq∆V us ¨nnndS “ I0
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(a) (b)

Figure 4.7.: Simulation model setup: a) 3D view and b) bottow view. Figure readapted from Badeli et al.
[10].

• V l “ 0
• nnn ¨ rpσ ` jωεq∆V s “ 0 on the thorax surface

where nnn is the normal unit vector. A tetra-polar spot electrode configuration is used as proposed by
Mansouri et al. [97]. Different positions for source and measurement electrodes have been chosen
to reach the most noticeable discrepancy between the impedance cardiograms of the healthy and
dissected conditions [135]. The conductivity and the permittivity of tissue types considered in the
simulation model have been taken from data provided in [58–60]. Other surrounding materials
such as muscles, fat, and ribs are not considered directly in the simulation model. However, a
mean conductivity and permittivity are assigned to the thorax domain to provide a realistic
value for the static thoracic impedance Z0 of about 25 Ω, as reported in Bernstein [15]. Only
the first half of the cardiac cycle is considered in the simulation model in order to reduce the
computational cost.

Modelling physiological changes in the presence of the false lumen It has been shown
that the blood flow is highly disturbed inside the aorta and changes locally to turbulent flow
with strong recirculation [37, 148]. Flow disturbances occur around the dissection, which inhibits
the deformation and orientation of the RBCs. Thus, the flow shear rate and, consequently, the
electrical properties of blood are altered. At the highest blood flow velocity, i.e., at the highest
RBCs’ deformation and orientation rate, a remarkable difference in the electrical conductivity
between the healthy (non-disturbed flow) and the aortic dissection conditions can be expected
[11]. Since no experimental or simulation data exist regarding conductivity changes of blood
in this kind of disturbed flow, it is assumed that the blood flow disturbances increase with a
radially growing FL, thus descresing the conductivity changes. Due to the imposed variation
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Figure 4.8.: Damage factor DF as a function of the radius of the FL RFL. Figure readapted from Badeli
et al. [10].

given by the application of SA, several TBAD conditions can be simulated, hence, several FL
radii are produced. To quantify this assumption, a damage factor DF has been introduced for
each simulation. DF is the ratio of the dissection volume to the maximum volume of the FL

DF “ πR2
FLLFL

πmax
`

R2
FL
˘

LFL
“

R2
FL

maxpR2
FLq

, (4.3)

where RFL and LFL are the radius and the height of the FL, respectively. The maximum value
for the radius of the FL in the simulation model is 1.5 cm. When RFL “ 1.5 cm, it is assumed
that the flow disturbances in the descending aorta are at maximum, see Fig. 4.8. DF is applied to
the conductivity changes of blood in the descending aorta during the cardiac cycle to model the
decrease in the conductivity changes of blood due to dissection, as described in the next section.

4.5. Application
Since the study aims to catch the difference between different health conditions, two numerical
models are set. The metamodels simulate the healthy and diseased condition of a virtual patient.
Given the nature of these surrogates, different health and disease conditions can be described.
The first one refers to the healthy condition, and the second one to the dissected condition. As
described earlier, the latter differs from the first one in the presence of the FL and different blood
flow profile. Therefore, different input spaces variations are produced for each model. Besides,
introducing variability in the input space of the models will guarantee the realization of as many
virtual patient-specific cases as the dimension of the input sample. Thus, a deeper understanding
of the impedance cardiography for a human thorax can be revealed. From the models’ evaluations,
the PCEs for the healthy and dissected conditions are constructed, and analyzing the differences
between them will guide the choice of the best electrode configuration. A visualization of the
procedure to achieve the aim of the current study is visualized in Fig. 4.9.
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Figure 4.9.: Electrode configuration optimization scheme. After defining the source of uncertainty, both
healthy and dissected models are built, the electrical conductivity of the system’s blood is
computed, and the damage factor DF is computed for the dissected model. Next, surrogate
modeling of both cases and their difference is evaluated, leading to uncertainty and sensitivity
analysis. Finally, the best candidates electrode configurations are determined.

The input space of the healthy case is composed of only two random variables, namely the
maximum radius of the TL RTL and the blood conductivity coefficient ζH. RTL is considered
uniformly distributed between 1.35 cm and 1.95 cm, according to the study of Wolak et al. [176].
As shown in Fig. 4.3, the average radius of the aorta changes in time due to pressure changes
over a cardiac cycle. Since the aorta in the simulation model is considered a blood-filled lumen,
different values of the RTL emulate different blood volumes dilating the aorta, in other words,
different stroke volumes (SV). It has to be mentioned that changes in the SV will also vary the
peak blood velocity in the aorta. Since almost all the RBCs are entirely aligned and deformed for
higher velocities, the differences among the blood conductivity changes for different SVs are not
significant. Based on the distribution’s moments of RTL, the SV changes approximately between
62 mL and 140 mL in the simulation model.

The coefficient ζH expresses the blood conductivity change variation due to hematocrit level,
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Table 4.2.: Input space description for the healthy and dissected study cases. Table readapted from Badeli
et al. [10].

ppxiq Unit
RTL U [1.35, 1.95] cm
ζH U [1.00, 1.10] -
RFL U [0.30, 1.50] cm
αFL U [2.90, 3.65] rad

as shown in Fig. 4.6; thus, it emulates a scaling factor for ∆σbl as

∆σblpuz, Hq “ ζH∆σbl
`

uz, H
:
˘

(4.4)

where H: refers to hematocrit level 35 %, as this is the minimum level considered for the model.
The parameter ζH is set as

ζH “

#

1 H “ H:

1` h1 H ą H: .
(4.5)

The coefficient h1 is formulated as the variation of conductivity changes with respect to the
reference ∆σbl

`

H:
˘

at the basic hematocrit level. Its formulation is expressed as

h1 “
∆σbl pHq ´∆σbl

`

H:
˘

∆σbl pH:q
. (4.6)

This equation computes the difference in conductivity changes between two hematocrit levels.
In conclusion, since the variable H is uniformly distributed between 35 % and 55 %, ζH is also
uniformly distributed between 1 and 1.1. Therefore, the blood conductivity changes for the
healthy case is computed as:

∆σbl puz, Hq “ ζH∆σbl
`

uz, H
:
˘

. (4.7)

The dissected condition includes both the random variables of the healthy condition, the
radius of the FL RFL and the radial position of the FL to the TL αFL, representing different
possible positions of the FL. The two new parameters have been considered uniformly distributed
since knowledge regarding the dimension and position of the FL is not available before the
measurement, and the uniform distribution better represents the lack of knowledge regarding a
model variable. The description of the input space for both case studies are given in Tab. 4.2.
Furthermore, since the damage factor DF affects the conductivity changes in the case of aortic
dissection, the blood conductivity change results in

∆σbl puz, Hq “ ζH∆σbl
`

uz, H
:
˘

p1´DFq . (4.8)
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4. On configuration optimization of simulated thoracic bioimpedance

The two models produce a measurement of the impedance cardiograms for each source
electrode pairs Ninj and each measuring electrode pairs Nmeas at each time step Nt. The time
interval is limited to the first half of the cardiac cycle. After setting the input and output space
characteristics, the next step is to set up the options for the PCE. It is essential to notice that a
minimum number of point evaluations Ns is needed to have an accurate surrogate. Ns is defined
to satisfy

Ns ě 2pM ` dq!
M !d! , (4.9)

whereM is the input space dimension, and d is the order of the polynomial. The healthy condition
model has Ns equal to 100, while for the dissected condition, Ns is assumed 150. To ensure
proper construction of the metamodel and an accurate representation of the interaction between
the random input variables, polynomial order of 4 has been chosen for both models. Such a
degree guarantees the presence of enough interaction terms in the expansion and minimize the
approximation error.

Two PCE functions ĄHCptq and ĄDCptq are introduced. The two surrogates express the
impedance cardiograms of the healthy HC and the dissected condition DC models as

ĄHCn,mptq “ ´

ˇ

ˇ

ˇ

ˇ

dZ
dt

ˇ

ˇ

ˇ

ˇ

HC

(4.10a)

ĄDCn,mptq “ ´

ˇ

ˇ

ˇ

ˇ

dZ
dt

ˇ

ˇ

ˇ

ˇ

DC

, (4.10b)

where n and m are the indices related to the source and the measurement electrode pairs,
respectively. The difference rYn,mptq between the last two equations is then calculated as

rYn,mptq “ ĄHCn,mptq ´ĄDCn,mptq . (4.11)

Three source electrode pairs (A, B, and C) and five measurement electrode pairs (m1 to m5)
are considered in the simulation models of the healthy and dissected conditions, see Fig. 4.10.
Each simulation contains an injection from one of the source electrode pairs and measuring
from all the five measurement electrode pairs. For each simulation, the impedance cardiogram
´|dZ{dt| is computed, and through all the simulation results, i.e., for different input variables,
the two surrogates are evaluated. The aim is to find the setup which gives the maximum difference
between the impedance cardiograms measured for the healthy and dissected conditions, which is
denoted as rYmax.

4.6. Results and discussion
Combinations of injections have been applied, and the results of rYn,mptq are shown in Fig. 4.11.
The figure displays the difference between the measurements of the healthy and dissected cases.
This difference is color-coded so to spot significant discrepancies between the cases. The time, i.e.,
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Figure 4.10.: Source electrode pairs and measurement electrode positions. Figure readapted from Badeli
et al. [10].

from t “ 0 s to t “ 0.5 s, is represented on the y-axis and discretized in 20 time instances. The
x-axis displays the measurement sensor position. For each electrode configuration, the highest
difference occurs in the third time step where, indeed, the blood velocity is at the peak level,
or in other words, the blood conductivity is the highest. In the classical ICG application the
maximum value of the impedance cardiogram is used for calculating stroke volume and cardiac
output [16].

Successively, the best electrode configuration will be identified as having the highest rYn,mptq

value at the third time instance. There are in total 15 possible configurations when using three
injection points and five measurement sensors. To identify the ones that are worth analyzing, a
plot that shows the variance of the outputs rYn,m at peak systole is employed and displayed in Fig.
4.12. As noticeable, the highest variance is detected in configurations A2 and C4. Note that the
configuration notation identifies the injection electrode in the first and the measurement sensor in
the second. Other configurations, such as A1 and C5, also show relatively high output variability.
However, their analysis is omitted here. Configurations A2 and C4 are then considered as game
changers configurations during the simulation. Their high variation can result from volumetric
changes, which is, in this case, TBAD disease. It is now of interest to understand what is causing
this variability. The highest discrepancies are showing high variability in all the configurations.
Therefore, an analysis of the input sensitivity is required to analyze the system mechanics better.
For this purpose, the use of SA is employed. For the sake of comparison, configuration B3 is
chosen since it is often the favorite configuration in clinics.

The A2, B3, and C4 configurations are selected, and the corresponding ICG signal is illustrated
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4. On configuration optimization of simulated thoracic bioimpedance

Figure 4.11.: Value of rYn,mptq reflecting the discrepancy between the healthy and dissected conditions for
20 time steps and all proposed electrode combinations. Figure readapted from Badeli et al.
[10].
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Figure 4.12.: Variance of ICG dignal difference for the three injection and five measurement sensors. The
represented variance is computed at the peak systole of the cardiac cycle, that is the time
with maximum difference between healthy and dissected condition case. Figure readapted
from Badeli et al. [10].

in Fig. 4.13, together with the total-order sensitivity indices. It can be observed that the computed
impedance reaches values higher than 0.5 Ω s´1 at the peak systole for A2, as expected. The
sensitivity indices show the dominance of RFL on this output. Other parameters (RTL, ζH, and
αFL) appear to be uninfluential on the model output. Given this conclusion, the A2 configuration
appears to be a strong candidate for a valuable electrode configuration to identify TBAD.

A different conclusion stands for the B3 configuration, where the signal appears to depend
on both radii equally. In addition, the ICG discrepancy between healthy and dissected cases
is not as high as desired. A different scenario is present for configuration C4. As visible, this
configuration produces the highest discrepancies between the healthy and dissected cases. The
higher value of ´|dZ{dt| is registered in this configuration at the peak systole. In addition, the
RFL is the most sensitive parameter during the whole heart cycle, suggesting that the secondary
volume, i.e., the FL, is the critical element in the ICG measurement from this configuration. The
sensitivity analysis of the difference between the healthy and the dissected cases shows that RFL
has the highest sensitivity, thus enforces the highest impact on the output rYC,4ptq followed by
RTL, while ζH and αFL are not sensitive.

Both configurations, A2 and C4, are valuable candidates to be the best configuration in TBAD
detection. However, it is crucial to notice the role of RFL in those scenarios. While the radius
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4. On configuration optimization of simulated thoracic bioimpedance

Figure 4.13.: (top) Difference ICG signal rY for the electrode configurations A2, B3, and C4. (bottom)
Sensitivity analysis results of rY . The total order sensitivity indices are related to RTL
(continuous line), ζH (dotted line), RFL (dashed line), and αFL (dash-dotted line). Figure
readapted from Badeli et al. [10].

of the FL is constantly dominant in the ICG process for the first configuration, its influence
is slightly decreasing in time for the C4 arrangement. Therefore, further analysis may help to
identify the solution optimization.

In Fig. 4.13, the total sensitivity index ST
i is displayed. The first sensitivity index is omitted.

For completeness, the difference between total- and first-order sensitivity indices is reported
in Fig. 4.14. The C4 configuration is subject to a shallow interaction rate, which can be seen
in the low value of the indices difference. However, the A2 configuration again shows a more
stable behavior of the sensitivity indices. Naturally, the RFL is the dominant factor in the model,
showing the highest interaction term. However, the interaction rate of the model can be considered
neglected due to its low value in A2 and C4. This low interaction is a significant feature since
factors’ interactions could affect the final result in a non-predictable way. Thus, as expected, the
discrepancy between the impedance cardiograms of the healthy and dissected cases primarily
originates from the random variable RFL and, consequently, the damage factor DF.

In Fig. 4.15, rYmax, i.e., the ICG difference at peak systole, is shown as a function of the damage
factor DF for each electrode configuration. rYmax increases almost linearly with the damage
factor, which means that the probability of identifying an aortic dissection grows as the disease
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Figure 4.14.: Interaction level imposed by each input random variable on the ICG signal difference. The
interaction is computed by the difference between the total and first order Sobol indices.
The sensitivity indices are related to RTL (continuous line), ζH (dotted line), RFL (dashed
line), and αFL (dash-dotted line).

progresses. As a confirmation of the previous results, the DF can represent the progression of
the aortic dissection, and the ICG difference between the healthy and diseased cases increases
together with the damage factor. The injection from both A and C sensors appears to be the
strongest in all the measuring sensors. The quadratic behavior visible for the B3 configuration,
and the high interaction between the input factors, drive towards the conclusion that the side
injection is not a valuable candidate for high TBAD detectability.

The same visualization purpose is displayed in Fig. 4.16. Here, rYmax is plotted for different
values of the damage factor DF for the three selected configurations. Again, the B3 configuration
fails in representing a clear cut between a healthy and a diseased measurement. The other two,
i.e., A2 and C4, are characterized by a clear distinction of values in the systolic and early diastolic
phases. Therefore, their importance in TBAD detection from ICG measurement is confirmed. In
addition, these changes are also observable in the evaluation of SV and CO.

To summarise, in the first stages of the TBAD, in which the existence of the FL does not make
apparent changes to the rheology of the blood flow, the presence of the disease by impedance
cardiography might not be noticeable. However, as soon as the dissection creates remarkable
pathological changes in the cardiovascular system, the changes in the measured impedance
cardiogram due to the development of the disease, such as FL expansion and FL thrombosis,
might be trackable. The best configuration for the diagnosis purpose is assumed to be the one
with the highest rYmax value, which the configurations A2 and C4 reach. Furthermore, a FL
expansion changes the blood flow significantly in both lumina. Thus, rYmax is accounted for
tracking the status of the disease.
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Figure 4.15.: Change of rYmax by the damage factor DF for each injection source (A, B, and C) and each
measurement sensor pairs (m1 to m5). Figure readapted from Badeli et al. [10].
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Figure 4.16.: Visualization of rYn,mptq variation by increasing the damage factor DF in the three config-
urations A2, B3, and C4. The healthy case, DF “ 0, is represented as a continuous line
with asterisk markers (*). Diseased conditions are denoted by DF “ 0.07 (continuous line),
DF “ 0.28 (dashed line), DF “ 0.07 (dot-dashed line), and DF “ 0.07 (dotted line). Figure
readapted from Badeli et al. [10].
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5. On thrombus formation
The focus is here on a phenomenological thrombus formation model and its variation when
uncertainties are plugged in. Tuning model parameters have developed this particular model to fit
a quantitative patient-specific result, i.e., the amount of thrombus produced. However, and again,
physiological uncertainties were never taken into account. Jafarinia et al. [84] have performed an
exciting outcome on the effect of blood hematocrit. Here, they claim that increasing the level of
red blood cells will eventually lead to less thrombus formation. Much is unfortunately still to
discover.

In the following work, the investigation is focused more on the model parameters. Therefore,
the published work of Melito et al. [103] is here illustrated. The following sections are hence
based on this publication.

5.1. Introduction
The hemodynamic conditions in the FL, including flow disturbance, recirculations, and significant
variability in the wall shear stress (WSS), presumably promote the formation and growth of
thrombi [106]. In Tsai et al. [167], it is shown that partial thrombosis is associated with a
higher mortality rate, whereas complete thrombosis of the FL improves patients’ prognosis
[14, 137]. Up to now, it is not entirely clear what circumstances favor thrombosis following aortic
dissection. Thrombus formation models may play a vital role in the analysis of hemodynamics in
cardiovascular environments.

Thrombosis formation represents an uncertain field of research. It is a complex phenomenon
that involves hemodynamics, physics, and biochemical reactions, to cite a few. It has been
challenging to determine the actual process of thrombus formation, especially in TBAD. Recent
studies [7] showed that the formation of the FL enhances thrombus growth in low shear rate
areas. This process is due to the recirculation areas in proximity to the lumina tears.

Furthermore, the new hemodynamic situation intensifies herein the platelets activation and
aggregation [71]. The formation of thrombus is therefore coupled to hemodynamics and particles’
mechanics. Indeed, the blood is usually considered as a suspension with non-Newtonian rheological
behavior. The principal element in the blood is the RBC, which is usually modeled as the solid
in the solution. The volume percentage of RBCs is indicated as hematocrit, which is extremely
sensitive to thrombus formation [84].

In Menichini and Xu [106] and Menichini et al. [107], a hemodynamic-based model capable
of predicting false lumen thrombosis in TBAD is developed. However, because the model is
primarily phenomenological, the model’s parameters may not be determined from the chemical
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or biological characteristics of the blood. Instead, the parameters will usually be obtained from
inverse modeling, i.e., fitting to measured data. However, suitable time-resolved data of thrombus-
formation is very sparse, so it is vital to narrow down the number of model parameters. A global
sensitivity analysis is suggested to understand the influence of the parameters [158]. In particular,
a variance-based SA is employed, and the computation of the sensitivity indices is performed
through a PCE, which functions as a surrogate model.

The model performs well in predicting the location of thrombus formation; however, it cannot
reproduce the growth rate as observed in in-vivo and in-vitro studies. More insight into the
model parameters and their role in thrombus growth is needed to bridge the gap between
numerical simulations and real-life studies. This work identifies the most critical parameters for
the thrombus growth model, and further analysis of the thrombus characteristic growth time
indicates the parameters that could accelerate or inhibit the process of thrombus formation.

5.2. Methods
This section will describe the models and methods used to solve the problem at hand. Initially, the
thrombus formation model is concisely described, concerning the initial and boundary conditions
and the coupling with the fluid model described in the previous chapters. Finally, a brief review
of the SA techniques used in this application is provided. A schematics of the study and of the
thrombus formation model is provided in Fig. 5.1.

5.2.1. Thrombus growth model
The description of the model is collected and readapted from Jafarinia et al. [83]. The constitutive
model of Menichini et al. [107] is adapted to model thrombus formation in the FL. The model
controls the formation of thrombus based on wall shear stress (WSS), shear rate, residence time,
and the concentrations of coagulant, and resting, activated, and bounded platelets. The model
achieves reasonable simulation times for thrombus formation since it employs cycle-averaged field
variables.

The amount of thrombus formation is influenced by the threshold values of the cycle-averaged
WSS xτwyt, shear rate x 9γyt, residence time xTRyt, as well as concentrations of bounded platelets
cBPt and coagulant cct. Note that the subscript t denotes a threshold value and that a high
concentration of bounded platelets is indication of thrombus existence. Regions with a high
concentration of bounded platelets are associated with thrombus formation, which inhibits blood
flow. This effect is captured by the modification of the momentum balance in Eq. 3.10. The
conversion of platelets from activated to bounded is given by

BcBP
Bt

“ kBP
c2

c
c2

c ` c
2
ct

xTRy
2

xTRy2 ` xTRy2t

x 9γty
2

x 9γy2 ` x 9γty2
cAP, (5.1)

where kBP represents the reaction rate constant and cAP describes the contraction of activated
platelets. Activated platelets are generated by activating resting platelets through the following
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Figure 5.1.: The diagram of the thrombus formation study is here described. The model mechanics are
illustrated. The rounded boxes represent model field variables, and the plus (+) and minus (-)
signs express the increase and decrease of such variables. The volume fraction of thrombus
and the characteristic growth rate are the quantities of interest used to decode the model
mechanics.
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transport equations

BcRP
Bt

` uuu∇cRP “ Dp 9γ∇2cRP ´ k1cRPcAP ´ k2cRPxTRy (5.2a)

BcAP
Bt

` uuu∇cAP “ Dp 9γ∇2cAP ` k1cRPcAP ` k2cRPxTRy , (5.2b)

where k1 and k2 being the reaction constants. The first accounts for the effect continuous
activation of resting platelets, and the second considers the activation of platelets by thrombin
exposure.

Red blood cells have a shear-dependent effect on platelets transportation. As already proposed
[83, 107], the diffusion coefficient of platelets Dp 9γ is enhanced with an additional term, which
includes the shear rate 9γ and the parameter βth, as

Dp 9γ “ Db ` βth 9γ, (5.3)

where Db represents the Brownian diffusivity.
The coagulant concentration cc represents the lumped effect of all underlying biochemical

reactions in the coagulation cascade [107], which can be described by

Bcc
Bt
` uuu ¨∇cc “ Dc 9γ∇2cc ` kc

c2
BP

c2
BP ` c

2
BPt

x 9γy2t
x 9γy2 ` x 9γy2t

, (5.4)

where kc is a reaction constant for coagulant production. The effective diffusion coefficient Dc 9γ
gets enhanced in areas of low cycle-averaged shear rates [107]

Dc 9γ “ Dc
x 9γy2t

x 9γy2 ` x 9γy2t
, (5.5)

where Dc is the coagulate diffusivity.
The reactive source term in Eq. (5.4) shows that the coagulant cc is produced where cBP is

sufficiently higher than its threshold value cBPt and where x 9γy is lower than its threshold value
x 9γyt. However, the decisive production of coagulant concentration, initially assumed to be zero,
occurs at the vessel wall via Neumann boundary conditions. The coagulant flux into the domain
through the wall, denoted by the subscript w, is given by

Dc 9γ
Bcc
Bnnn

ˇ

ˇ

ˇ

ˇ

w
“ kcw pxτwy, cBPq , (5.6)

where kcw is the coagulant reaction constant. If the cycle-averaged WSS exceeds the threshold
value xτwy ě 0.2 Pa and, simultaneously, the concentration of bounded platelets at the wall is
greater than cBP ě 2ˆ 105 nmol{m3, the reaction constant is equal to zero, i.e., kcw “ 0. The
cycle-averaged residence time TR is normalized by its maximum value in the corresponding cycle
and defined as

xTRy “
1

maxpTRq
¨

1
T

ż pn`1qT

nT
TRpx, y, z, tqdt . (5.7)
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Table 5.1.: Model parameters of the thrombus model. Table readapted from Melito et al. [103].

Value Unit
Bounded platelets concentration threshold cBPt 2ˆ 104 nmol{m3

Coagulant concentration threshold cct 1ˆ 104 nmol{m3

Residence time threshold xTRyt 9ˆ 10´1 -
Shear rate threshold x 9γyt 50 s´1

Constant sink term kth 1ˆ 107 kg{m3{s
Reaction rate bounded platelets kBP 8ˆ 10´10 nmol{m3{s
Reaction rate coagulant kc 2ˆ 106 nmol{m3{s
Reaction rate constant platelets activation k1 1.2ˆ 10´14 m3{s
Reaction rate constant platelets activation k2 5ˆ 10´1 s´1

Brownian diffusion coefficient Db 1.6ˆ 10´13 m2{s
Diffusion coefficient of coagulant Dc 1.6ˆ 10´8 m2{s
Coagulant reaction const. at wall kcw 2ˆ 104 nmol{m2{s
Shear-enhancing coefficient βth 1.6ˆ 10´3 m2

Blood self-diffusion coefficient DTR 1.14ˆ 10´11 m2{s

Finally, the residence time TR of the liquid components or the platelets in the field is determined
by the following transport equation

BTR
Bt

` u ¨∇TR “ DTR∇
2TR ` 1 , (5.8)

where DTR is the self-diffusivity of blood. The values of the constants applied in the thrombus
formation model are listed in Table 5.1.

The thrombus growth is acting in the fluid model of Eq. (5.9). Here, the sinking term ´kthφthuuu

includes the kth coefficient that stops the flow in presence of thrombus, and the degree of local
thrombosis 0 ď φth ď 1.

5.2.2. Coupling with rheological model

The fluid model is coupled with the thrombus model for several applications. In this case, the
coupling process imposes some changes in the governing equations of the fluid. The central
assumption of incompressible fluid and constant fluid density ρ is still valid. The Navier-Stokes
equation in Eq. (3.10) includes the thrombus growth. Therefore, the blood flow model is described
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by

ρ

„

Buuu

Bt
` puuu ¨∇quuu



“ ´∇p`∇ ¨ τττ ´ kthφthuuu , (5.9)

where φth is considered the degree of local thrombosis in the range 0 ď φth ď 1, as in

φthpcBP, cBPtq “
c2

BP
c2

BP ` c
2
BPt

. (5.10)

where cBP is the concentration of bounded platelets. The thrombus is added by considering it a
sink term, i.e., ´kthφthuuu, in the fictitious domain method. The value of kth is sufficiently low to
stop the flow where the thrombus is created.

5.2.3. Initial and boundary condition
For the inlet boundary condition of the velocity, a uniform velocity profile resulting in Reynolds
number of 490 was imposed, with the no-slip condition for the walls. The only non-zero component
of the inlet flow velocity uuu is ux, while the second component uy is set to zero given the 2D
nature of the model geometry. The pressure gradient is equal to zero on all the boundaries except
the outlet, which is considered to have a fixed value of zero. As discussed in Sect. 5.2.1, there are
five equations to be solved for the thrombus formation model. For solving residence time TR in
equation Eq. (5.8), which is initially zero, the inlet value of TR is fixed to zero, and the normal
gradient on all the other boundaries is also set to zero. Initial values of resting platelets RP and
activated platelets AP in the blood are taken from Menichini and Xu [106]. The inlet values
of RP and AP in Eq.s (5.2a) and (5.2b) are fixed to their initial values. Zero normal gradients
of AP and RP is imposed on all the other boundaries. For the coagulant equation in Eq. (5.4),
the Neumann boundary condition discussed in Sect. 5.2.1 is implemented for the walls, while a
zero fixed value at the inlet and a zero normal gradient at the outlet are applied. The bounded
platelets equation is solved with zero initial concentration of bounded platelets.

5.2.4. Backward-facing step benchmark
The thrombus formation simulation starts at 12 seconds from the steady-state flow solution. A
Reynolds number of 490 is chosen to be consistent with in-vitro results in Taylor et al. [162] and
numerical simulations in Taylor et al. [161]. To test the performance of numerical simulations,
the reattachment length RL at the back of the step for four Reynolds numbers is compared to the
numerical results of Biswas et al. [20]. For this comparison, the expansion ratio of 1` S{2R “ 2
is adopted. The Reynolds number Re is computed as in Eq. (3.21), with hydraulic diameter equal
to 4R, blood density ρ “ 1060 kg{m3, and blood viscosity η “ 4.7ˆ 10´3 m2{s [161]. The inlet
velocity is spatially averaged over the inlet diameter and indicated as ux. Fig. 5.2 shows that the
present results are in good agreement with the benchmark solutions [20]. Mesh and time-step
sensitivity analysis resulted in 20 000 elements and a time-step of 0.005 s.

90



5.2. Methods

Figure 5.2.: Normalized reattachment length with respect to step height versus Reynolds number. The
results are validated with the results of Biswas et al. [20]. Figure readapted from Melito et al.
[103].

Figure 5.3.: Streamlines and magnitude of velocity indicating recirculation at the back of the step. Figure
readapted from Melito et al. [103].

In Fig. 5.3, the recirculation area behind the step is highlighted by the streamlines superposed
on a density plot of the magnitude of the fluid velocity. The model predicts thrombus formation
in the recirculation area behind the step which qualitatively matches with in-vitro results in
Taylor et al. [162] and numerical simulations in Taylor et al. [161], see Fig. 5.4.

The model adopted here is, however, invariant in time. Therefore the time averaging of the
model quantities is neglected. OpenFOAM software is used for solving the blood flow and
thrombus formation equations. The blockMesh utility in OpenFOAM is used for generating a
structured hexahedral mesh. Blood is modeled as a Newtonian fluid. The geometry is characterized
by a step depth of S “ 2.5 mm , inlet height 2R “ 7.5 mm, and a total length L “ 120 mm.
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Figure 5.4.: Evolution of thrombus in time at the back of the step. The thrombus has reached 16 mm
length in 50 s. Figure readapted from Melito et al. [103].

5.2.5. Sensitivity analysis
The analysis aims to identify which are the model factors that influence the produced thrombus
the most. The sensitivity analysis is employed in this study, particularly the variance-based
method with the aid of a surrogate model PCE for each output. Only the first- and the total-order
indices, Si and ST

i , are used in this application, both for a scalar and vectorized output.
Each model input factor is treated as a uniformly distributed random variable on a given

interval since their actual values and distributions are unknown, see Tab. 5.2. The sample is
produced with LHS sampling techniques with size Ns equal to 450. The number of simulations
is bounded by the high computational cost of the model and fulfills the requirements for the
construction of the PCE. The latter is solved with the regression LARS method through the
Matlab toolbox UQlab [99], where the polynomial degree is set to 3.

5.3. Application
The input parameters that are considered to represent uncertainty are listed in Tab. 5.2. To
adequately cover and understand the sensitivity of thrombus formation on the selected parameters,
the volume fraction of the thrombus, the thrombus growth rate, and a characteristic growth
time tc are considered the quantities of interest. The volume fraction of thrombus expressed as a
percentage is defined as

φthptq “
1
Ω

ż

Ω
φthpx, y, z, tqdΩ ¨ 100 , (5.11)

where Ω is the domain volume and the thrombus growth rate (% s´1) as

9φthptq “
d
dt

`

φthptq
˘

. (5.12)

It seems promising to introduce an indicator that describes the development of the thrombus
in time. This indicator could improve model fitting to experimental data, introduce a time scale
in thrombus growth, or both. Therefore, a characteristic growth time tc is therefore introduced,
which is defined by the maximum peak of the thrombus growth rate, thus the time after which
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Figure 5.5.: Example of thrombus growth rate in time. A black circle indicates the characteristic growth
time tc. Figure readapted from Melito et al. [103].

the thrombus growth rate decreases significantly. At tc, the thrombus formation is considered
almost complete, and the thrombus is said to be developed, i.e., its volume will no longer change
significantly in time. An example of tc identification is illustrated in Fig. 5.5, where the growth
rate of one typical simulation is plotted over the simulation time. The characteristic growth time
tc is unique for each simulation. However, not all simulations reached a growth rate peak in the
simulation time, preventing the assignment of the characteristic growth time. Such simulations
were excluded from the sensitivity analysis.

The developed thrombus and its characteristic growth time are directly connected. Acceleration
or deceleration of the thrombus formation results in a variation of tc in the model. For an in-depth
understanding of the growth characteristics, this relationship should be analyzed in detail.

5.4. Results and discussion
The sensitivity indices Si and ST

i for the maximum volume fraction of thrombus are listed in
Tab. 5.3. By looking at the first column, one observes that the first-order sensitivity indices do
not sum up to one, which occurs in the presence of non-additive model behavior. Circa 90 % of
the output variance can be attributed to cBPt, kBP, and cAP. The bounded platelets threshold
cBPt accounts alone, i.e., without considering interactions, for about 64 % of the volume fraction
variation of thrombus. By subtracting the first-order from the total-order indices of Tab. 5.3, the
interaction effect is estimated.

Since the thrombus develops in time, it is essential to understand how its development evolves
in time. The results show several trends (Fig.s 5.6 and 5.7). Increasing variability in time is
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Table 5.2.: Input parameters of the thrombus model and their probabilistic distribution used for the
sensitivity analysis. All input parameters follow a uniform probability distribution on the
indicated interval. Table readapted from Melito et al. [103].

Notation ppxiq Unit
Activated platelets cAP U [1ˆ 10´10, 1ˆ 10´6] mol{m3

concentration
Coagulant diffusivity Dc U [2ˆ 104, 2ˆ 106] m2{s
Coagulant kinetic constant kc U [8ˆ 10´11, 8ˆ 10´9] mol{m3{s
Bounded platelets reaction rate kBP U [1000, 100 000] mol{m3{s
Coagulant concentration cct U [2000, 200 000] mol{m3

threshold
Bounded platelets cBPt U [0.1, 3] mol{m3

concentration threshold
Coagulant kinetic constant kcw U [100, 100 000] mol{m3{s
at wall
Residence time threshold TRt U [0.75ˆ 1013, 2.25ˆ 1013] -
Bounded platelets cBPwt U [100, 250 000] mol{m3

concentration threshold at wall

visible, especially towards the end of the simulation time. In Fig. 5.6, at 50 s of simulation time,
the distribution of the recorded maximum volume fraction of thrombus varies from the absence
of thrombus to a thrombus coverage of circa 30 % of the volume domain. Such variability is
critical for a model in which the computation of the thrombus volume is an important goal.

The results of the generalized total-order indices for the volume fraction of thrombus and
the thrombus growth rate are shown in Fig 5.8. The sensitivity analysis results do not differ
for the two quantities of interest in Eq.s (5.11) and (5.12); therefore, only one plot is shown.
Furthermore, the first-order index does not display a trend that differs from the total-order index,
suggesting a low degree of interaction between the input random variables [104]. In Fig 5.8, the
sensitivity analysis of the volume fraction of thrombus and thrombus growth rate in time shows
the significant influence of the bounded platelets concentration threshold cBPt. Besides this, only
the bounded platelets reaction rate kBP shows a comparably strong effect on the volume fraction
of the thrombus.

The other input random variables mostly have a small or negligible effect on the output
and might be model constants. The only exception is the significant role of the residence time
threshold TRt in the early stage of thrombus initiation. However, this parameter is responsible
primarily for sparking off the formation of the thrombus, while its effect on the final thrombus
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Table 5.3.: Sobol indices of the input random variables on the maximum volume fraction of thrombosis.
Table readapted from Melito et al. [103].

Si ST
i ST

i ´ Si

cBPt 0.638 0.730 0.093
kBP 0.198 0.277 0.078
cAP 0.043 0.060 0.017
Dc 0.012 0.017 0.004
TRt 0.007 0.014 0.007
kcw 0.001 0.008 0.007
cBPwt 0 0.005 0.004
ct 0 0.005 0.005
kc 0 0.001 0.001
Total 0.900 1.117 0.218

size is also negligible. The influence of the coagulant diffusivity Dc shows a small peak right after
the first formation of the thrombus but remains low throughout the simulation time.

As may be read from Eq. (5.1), bounded platelets are generated from activated platelets in
areas with low shear rate, high residence time, and high coagulant concentration. The bounded
platelets can stop the flow if their concentration is sufficiently higher than the threshold value,
cBPt. Any variation of the bounded platelets concentration threshold will significantly change
the process of thrombus formation, i.e., it essentially controls where and how fast the thrombus
can form. Moreover, the reaction rate kBP determines how fast the concentration of bounded
platelets may reach the threshold value cBPt.

The interconnected roles of the two parameters kBP and cBPt on thrombus formation advocate
the idea that there might be a correlation between these parameters and a characteristic time
of the thrombus formation process. A sensitivity analysis is also performed for this quantity of
interest to verify if the characteristic growth time tc is the right candidate for characterizing the
thrombus growth rate.

The sensitivity analysis results for the characteristic growth time tc of the thrombus are shown
in Fig. 5.9. Here, the sensitivity indices are shown in a bar plot, where the first- and total-order
indices are shown side-by-side to highlight the presence of potential interactions, given by their
difference in value. The main parameters affecting the shift in tc are the bounded platelets
concentration threshold cBPt and the bounded platelets reaction rate kBP.

From the sensitivity analysis results for tc in Fig. 5.9, the characteristic growth time is a
function of cBPt and kBP. Because a high threshold cBPt delays thrombus growth, while a
high reaction rate kBP has an accelerating effect, the ratio between them is introduced as a
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Figure 5.6.: Volume fraction of thrombus. The continuous line shows the mean value; the dashed line
represents the 2 standard deviations of the data. Figure readapted from Melito et al. [103].

Figure 5.7.: Thrombus growth rate in time. The central continuous black line identifies the median value;
the gray area represents the interquartile range; the dotted lines are the maximum and
minimum data points. Figure readapted from Melito et al. [103].

characteristic growth rate 9Φc of the model,

9Φc “
kBP
cBPt

, (5.13)

with the dimension of a cubic meter per second (m3{s). Its relationship to the characteristic
growth time tc is shown in Fig. 5.10. Here, the data are produced with the computation of
the metamodel for the characteristic growth time considering all input parameters, except for
cBPt and kBP, as constants. The data was fit with non-linear regression. A low value of the
characteristic growth rate 9Φc leads to high values of tc, which can be interpreted as delayed
thrombus growth. Such behavior is a consequence of a low value of bounded platelets reaction
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Figure 5.8.: Generalized total Sobol index for the volume fraction of thrombus φthptq. Figure readapted
from Melito et al. [103].

Figure 5.9.: Sensitivity analysis results for the characteristic growth time of thrombus tc. Figure readapted
from Melito et al. [103].

rate kBP, and a high bounded platelets concentration threshold cBPt. In the case of high cBPt, the
required number of bounded platelets to form a thrombus has to be higher, reducing its growth.

The data have been fitted by

tc
ux
2R “ a

˜

9Φc
Q

¸b

, (5.14)

where ux{2R is the model convection time given by the ratio of inlet velocity magnitude ux and
inlet height 2R, Qs “ ux ˚A is the volumetric flow rate, where the area A is the product of inlet
height 2R and geometry depth 1 m. The constants a and b are computed by non-linear regression
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Figure 5.10.: Variation of characteristic growth time of thrombus tc normalized by convection time ux{2R
as a function of the characteristic growth rate 9Φc normalized by volumetric flow rate Qs.
Figure readapted from Melito et al. [103].

analysis. Their values, together with their 95 % confidence intervals, are: a “ 0.33˘ 2.21ˆ 10´2,
and b “ ´3.36ˆ 10´1 ˘ 2.80ˆ 10´3. The coefficient of determination R2 “ 0.93.

Such a formulation of the characteristic growth time of the thrombus appears as a promising
tool for the modeling phase. By varying the characteristic growth rate of the problem, it is
possible to accelerate or inhibit the thrombus formation.
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6. Conclusions and outlook
In this chapter, the conclusion of the various studies is exposed. Further conclusions on the role
of sensitivity analysis in the medical engineering field is left in the last section, as a conclusive
remark to the work that has been produced.

6.1. On model assumptions for electrical conductivity of
flowing blood

The study described in Chapter 3 showed how to reduce the uncertainty of electrical conductivity
of flowing blood and analyzed the impact of different model assumptions on such blood property.
The conductivity model is coupled with three different fluid mechanics model assumptions:
i. Newtonian fluid and steady flow, ii. Newtonian fluid and harmonically pulsating flow, iii.
non-Newtonian fluid and harmonically pulsating flow. A global sensitivity analysis is performed
within fluid mechanics models to understand the impact of such assumptions better. Given the
study’s scope to reduce the variability in the model outputs, a variance-based method and a
surrogate model, i.e., polynomial chaos expansion, are employed. The surrogate model is solved
either with ordinary least squares or with the least-angle regression, which selection is due
to the computational cost of each model assumption. The computation of the Sobol indices
as quantitative measures of input factors sensitivity is performed through the solution of the
surrogate model. Other sensitivity analysis methods, e.g., non-parametric or density-based, are
discarded from this study due to the undefined behavior of the model before the analysis.

Two outputs are considered quantities of interest: the average value over one cardiac cycle
of the blood conductivity change and its amplitude, namely x∆σbly and ∆pσbl. Initial analysis
of the distribution of the results underlines the inability of a steady flow model assumption in
representing the natural behavior of the blood conductivity changes and, as might be expected,
its amplitude response. Therefore, a steady flow model assumption is left out from the sensitivity
analysis and considered inadequate for the aim of the study.

The sensitivity analysis shows that the hematocrit level of the blood generally has the highest
effect on the average value of the conductivity change of blood for both a Newtonian and non-
Newtonian formulation of the fluid in a pulsating flow domain. The theoretical formulation of the
problem confirms this result. It is indeed evident the effect that non-conductive red blood cells
have on the computation of blood conductivity. However, switching to a shear-thinning generalized
model for the computation of the conductivity change amplitude, the effect of the hematocrit
level loses its influence dominance in favor of the flow rate ratio between pulsating and steady
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flow and the undeformed RBCs axes ratio. This change in model mechanics better represents the
physicality of the electrical characteristics of blood. The non-Newtonian formulation enables a
different path for the computation of the blood conductivity changes, emphasizing the effect of
the flow’s pulsation and the RBCs’ patient-specific characteristics on the outcome. The latter
random variable was demonstrated to be more influential than the hematocrit level, contrary
to the common belief that hematocrit represents the driving force of conductivity variation. In
conclusion, given the different results from the sensitivity analysis for the two model responses, the
choice of the quantity of interest for any further computation has to be thoughtfully considered.
Further development of the flow model, including physiologically accurate volumetric flow rates
and pipe wall elasticity, may deepen these investigations and initiate new scientific challenges.

6.2. On configuration optimization in ICG
In Chapter 4, a preliminary study is initially performed on the effect of an impedance cardiography
model in detecting blood volumes changes caused by aortic dissection. The study aims at detecting
the highest impedance variation given by the signal oscillations, typical of the human body. A
simple model is developed in the software COMSOL multiphysics, including the thorax and the
aorta affected by aortic dissection. In the preliminary study, two sensitivity analysis methods are
employed to eliminate most of the input uncertainties. An initial screening is performed with
the elementary effect method. Then, the resulting most influential variables are analyzed with
the variance-based method, particularly with the aid of a polynomial chaos expansion. Since the
variance-based method becomes complex for many random variables, such an approach is highly
recommended.

During a deep analysis of the model’s needs, the uncertainty is imposed on some input variables.
They are successively divided into the following groups. The geometric variables vary the radius
of the aortic arch, the radius of the true and false lumen, and the plane angle between the
lumina. The physical-electrical variables include a blood velocity variable, the hematocrit of blood,
and the conductivities of blood and thorax. The first group is shown to affect the impedance
measurement more than the second group of physical-electrical variables. This result is justified
by the nature of the methodology, i.e., impedance cardiography, which focuses precisely on blood
volumetric changes. The computational model of the thorax with TL and FL can be defined
as suitable, or verified, for the identification of AD because it is sensitive to geometric changes
produced precisely by the FL.

In summary, the variables that produce the most outcome variation are the radius of the FL,
the relative position of the FL to the aorta, the value of electrical conductivity assigned to the
thorax, and finally, the variation of the radius of the TL. These results are taken into account
to increase the model’s complexity and implement new geometries in the thorax, such as the
lungs and the heart. The following modeling steps consider the illustrated results, increasing the
awareness of the modeler about the inherent model uncertainty before the next modeling phase.

The subsequent study examines different electrode configurations for measuring the discrepancy
in impedance cardiography measurements between healthy and type B aortic dissection patients.
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For this purpose, a numerical simulation model is set up using a simplified chest geometry taken
from the previous study. A global sensitivity analysis on the computed signal is implemented
to quantify the model output variance, due to the many uncertainties regarding the model
parameters. Sensitivity analysis of the model output shows that the highest difference in impedance
cardiograms between healthy and diseased patients occurs when the velocity is highest in the
aorta, i.e., during the systolic peak produced by the heart.

To define how the maximum cardiographic impedance value varies between healthy and
diseased patients is necessary to determine the electrode configuration with the highest likelihood
of identifying aortic dissection. As the analysis results, the most significant outcome variation is
verified with injection sensors at the front and back of the chest with measuring sensors in their
vicinity. Such a conclusion is reached by analyzing the highest outcome variation produced by
different electrode configurations. As known, the imposed input uncertainty drives this model
fluctuation. Therefore, the focus of the analysis is on the outcome with the most significant
variation. Hence, a sensitivity analysis of the input parameters is performed for the mentioned
electrode configurations to discover which output is most affected by the FL radius variable.

It has already been verified that the size of the false lumen has an enormous effect on the
impedance cardiogram in patients with type B aortic dissection. Indeed, pathological changes
caused by the FL can result in various hemodynamic conditions, easily measured by impedance
cardiography rather than by other methods. In the course of aortic dissection, events like false
lumen expansion and false lumen thrombosis cause pathological changes that alter the measured
impedance cardiogram. Thus, applying impedance cardiography to track pathological changes can
be helpful for the medical management of this disease. Future works will consider the electrical
conductivity changes of the blood in the case of disturbed aortic flow. The possibility of tracking
false lumen thrombosis by impedance cardiography will be investigated in future studies.

6.3. On thrombus formation model
Thrombus formation in aortic dissection represents a critical topic, as it can easily represent a
benefit or a problem for the patient and his clinical condition. Thrombus modeling is currently a
challenge in the engineering field due to the lack of data on which to rely and reconstruct the
thrombus growth system.

Some models of thrombus formation do exist, and the one used in this manuscript is phe-
nomenological, meaning that no biochemical reactions are modeled. The employed model has high
variation due to the inherent uncertainty of the input parameters, which are usually collected
from different sources in the literature. The input variation is modeled with uniform probability
distributions for nine random model input variables, and a sensitivity analysis is performed by
constructing a polynomial chaos expansion surrogate. The quantities of interest are the thrombus
volume fraction, the thrombus growth rate, and the instant at which the peak of the growth rate
is recorded, i.e., the characteristic growth time.

Input parameters such as the bound platelet reaction rate and the activated platelet concen-
tration threshold show high sensitivity indices. Therefore, although determining their exact value
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undoubtedly requires very complex investigations, they considerably reduce model uncertainty
when adequately assessed. In general, input parameters involving platelet mechanics control most
of the process, except for the concentration of bounded platelets at the wall.

All other random input variables, including coagulant-related parameters, have little or no
influence on the considered outputs and thus can be assumed as constants without altering the
model response. The sensitivity analysis results for the model outputs show that the threshold
of bounded platelets concentration exerts the most substantial influence. The reaction rate
of bounded platelets plays the second most crucial role in thrombus growth rate and volume
fraction.

These results are, of course, significant for the proper calibration of the model. Despite these
results, this model is still based on phenomenological aspects, and consequently, it is difficult to
determine the accuracy of the terminology used for the various input parameters. However, this
model can adequately represent thrombus formation, especially in FL; therefore, the sensitivity
results are undoubtedly helpful to improve the computational model.

Calibration of this model remains a very desirable goal in this scientific field. Therefore,
thanks to the isolation of the most sensitive variables of the model, it was possible to define the
characteristic growth rate given by the ratio between the reaction rate and the concentration
threshold of bounded platelets. This new quantity seems to be a promising indicator for the
rate of thrombus formation. This characteristic rate should be helpful in fitting model results to
experimental results, improving the hemodynamics-based model in predicting thrombus formation
on an appropriate time scale.

6.4. General conclusions and remarks
In this thesis, sensitivity analysis solved essential questions that often plague modelers and
engineers when developing new analytical or numerical models, especially in medical engineering.
Models are necessary to fit experimental results in medical engineering and provide reliable
statistical information about a given phenomenon. However, it is interesting to note that building
a model requires statistical input and output information. In medicine, such information is usually
complex to obtain.

The engineering field often successfully implements appropriate solutions that greatly simplify
the diagnosis and treatment of various diseases through the assumption of such simplifications. It
has been seen that a link between physicians and engineers is often challenging to obtain. There
is a rampant skepticism of computational models in the medical field. This is understandable
considering that formulated models are often built on simplifying assumptions and that different
scientific background is sometime insurmountable.

Sensitivity analysis comes into play by reinforcing a link that can bring the two scientific fields
closer together. On the one hand, it pushes computational models to higher performance through
statistical information, i.e., reducing uncertainty and identifying uncertainty propagation paths
within the model. On the other hand, it creates a more accessible environment for clinicians
to analyze models more familiarly, i.e., through statistics. Unfortunately, sensitivity analysis
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is a relatively new scientific field and consequently struggles to emerge as an interdisciplinary
medium.

Patient-specific models are having great success in the medical and biomechanical fields
because of the ability to obtain data from an individual patient and compare it to the model
itself. Fine-tuning of initial parameters is essential in these cases. These models are very accurate
in representing a specific disease condition or patient but, unfortunately, lack the flexibility to
investigate the disease problem from a broader perspective. Customization (or personalization)
of models underestimates the implementation of sensitivity analysis in the modeling process. In
this process, the focus is on tuning a minimal set of parameters, often singularly, rather than the
entire input domain.

This thesis shows that sensitivity analysis can enter the modeling cycle by analyzing the
intrinsic mechanics of the model. In sensitivity analysis and uncertainty quantification, models
are often considered black boxes, similar to machines that produce a finished product given a
specific initial input. Formalizing the problem in this way can be quick for the analyst who does
not have to delve into the depths of mathematical formulations, although at the same time, it
may leave out critical constructive details of the model. Typically, any computational model
must undergo a rigorous verification and validation process before being used in any scientific
field. This assumption is maintained in this text, and the notion of a black box treats this feature
as guaranteed.

The process of modeling natural systems can be conducted in various ways. Many models
are created based on concepts and assumptions observed by the modeler and linked together by
mathematical formulations. Such models are called "physics-based models" and must follow a
rigid creation process. In this process are included the verification and validation phase. The first
one is to check that the mathematical implementation reflects the developer’s intended concept.
The second phase of validation controls how much the model, when used for the prefixed scope,
is approached to represent reality. These phases, when satisfied, are usually followed by a further
phase of calibration and experimentation.

It has been seen that sensitivity analysis can enter the production cycle of a computational
model at an early stage to quantify the weight of different hypotheses. As in the case of the blood
electrical conductivity study, this mathematical tool can analyze and quantify the influence of
several primary hypotheses. In this study, the focus was on the fluid type and flow hypothesis. In
engineering, one is always looking for alternative and simplified solutions to model reality, as these
are easier to calculate. However, in this specific case, these simplifications are disadvantageous in
calculating the electrical conductivity of blood. Consequently, it is better to consider blood as a
non-Newtonian fluid, especially in the case of pulsating flow.

Nowadays, the advancement of technology and computer science makes it possible to accumulate
and save an enormous amount of data about various aspects of life. We often hear that we now
live in the "data age." In this context, it is possible to create computational models that, instead
of being based on assumptions and notions, are created by analyzing large amounts of data.
Such models are referred to as "data-driven models." After collecting the data, it is cleaned and
organized, classified, and regressed to extract the necessary features.
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Sensitivity analysis in this thesis has been applied only to physical models derived from
observations or intuitions and not measurements. Some of the models illustrated are unfortunately
still very young and are in a weak state of validation, which is necessary to continue towards
the experimental phase. Therefore, the sensitivity analysis has been used as a tool to support
modeling. As noted by the framework illustrated in the introduction, a process of uncertainty
quantification and sensitivity analysis should be carried out iteratively with the aim of reducing
the variability of the model under study as much as possible. In some of the cases illustrated,
such iteration has not been possible as there is a lack of experimental data related to the studied
phenomenon that could validate or not such models.

Of course, creating data-driven models would be an advantage as many aspects of reality could
be implemented. Reality, human body, and natural phenomena include a high complexity and
multi-modality that is often difficult to describe with physics-driven models. Unfortunately, at
the same time, in the medical field, it is not easy to obtain a large number of measurements and
data. The need to respect the ethical value of patients and doctors slows down and complicates
the process of data assimilation, and subjecting patients to lengthy data collection treatments is
often inappropriate.

The optimal situation would be to have limited but sufficient medical measurements available
to validate and calibrate the presented models. Also, especially in the medical field, it is difficult
to identify the parameters that lead to certain conditions or pathologies of a patient due to the
high human variability. Consequently, appropriate use of sensitivity analysis must be introduced,
including verifying the domain in which the model will operate.

The implementation of sensitivity analysis also allows for creating a new concept, such as that
of virtual patients. This concept is based on creating data that might reflect a particular disease
condition and a random patient. The data, or sampling, results from the simple implementation
of uncertainty quantification and sensitivity analysis in the modeling phase, as the level of
variability is imposed to analyze the variation in the system in question. Each combination of
inputs truly represents a hypothetical medical patient. Therefore, the model increases its power
of diagnosis and prediction.

In the future, the models analyzed in this text must undergo a rigorous validation and
calibration process. In this way, we can move in a direction in which these tools can be used as a
resource in detecting or monitoring TBAD. Before achieving this, it has been seen that the use
of sensitivity analysis as a tool aimed at deep model analysis has led to a significant reduction in
model uncertainty.
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