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Al applied to Granular Systems

Stefan Radl

> April 26, 2023, TUSAIL School “EVENT 4”



0 Overview

Schedule

(1) Al Basics
(2) ML in Flow & Granular
Systems

(3) Exercise (Orange3)
(4) Feedback

Break(s) as you wish...



1 Al Basics

Ty

Naming Basics

Artificial
Intelligence

Machine
Learning

Deep
Learning

Artificial intelligence (Al), early ,expert
systems” (rule-based algorithms),
machine learning (ML), and Deep
Learning (DNN) are separate things!

,data-driven” is often synonomous for
ML. We will focus on ML today

Most of the time people mean ML and
not the larger topic Al

Zhu et al., Ind. Eng. Chem. Res. 2022, 61, 9901-9949



1 Al Basics ﬂ-!;g.
4 . .
. Naming Basics
A :/ y
/]
Regression b
> * Classification versus
Regression
Underfitting Ideal fitting Overfitting
* Overfitting versus
Underfitting

Classification

Underfitting Ideal fitting Overfitting

Zhu et al., Ind. Eng. Chem. Res. 2022, 61, 9901-9949
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Ty

Naming Basics

MName Type
1 ésepal length m numeric
2 sepalwictn (@ numeric
3 petal length m numeric
4 petal width 0 numeric

5 C

Orange3d ,iris“ example

Role

feature

feature

feature

feature

Values

an ,instance”is one row in the dataset. It
consists of features (marker) and
target(s).

a feature is a descriptor of a certain state
of a system, and hence the input (,,what
we know“, ,,what is easy to evaluate®)

a target is what ,,we want to predict” In
case we have a classification problem,
the target is a category (or class, or type)

,sample”is a set of features we give as
an input



1 Al Basics ﬂ-lt;g.
ﬂ Naming Basics

Training data Train ML Supervised ML Results / outputs

(inputs, outputs) - Classification
B—|, a%® Spopiem
ﬁ {4 ': C .' :
z 4 ; .. ‘
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X
. pr 2 " New : Regression
ﬁ et T &
e (inputs) ; ' .....,g.w
Test data T /| | ) oo
(inputs, outputs) B | 33 ®
Y . v! . | ;
..- .o. P ..o e | \_
Raw . 7y * ,supervised” ML uses already
ata i | 0, “
3 -~ - labelled (,targeted”) data.

e unsupervised” ML aims at the
identification of labels. It attempts to

Lombardo et al., Chem. Rev., 122, 2022 label the ,,unseen”
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Ty

Naming Basics

the simple k-Nearest Neighbors (,,kNN“)
algorithm is based on a 2-step
procedure: (i) identify a number of k
nearest neighbors in the original dataset,
(ii) calculate mean (or median) of the
neighbors’ target value from the
feature(s) of our input

The kNN algorithm is a non-learning
(,untrained”) Al, and essentially a simple
yinterpolation” algorithm. It is Al
without explicit ML.
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Lombardo et al., Chem. Rev., 122, 2022



1 Al Basics ﬂ"G'U

Naming Basics

Iris-setosa
33.3%, 50/150
JJrees“ and random ,forests” are a e 5!
sub-type of ML algorithms. petal length

[
\> 1.900

Iris-versicolor
50.0%, 50/100 O

“(decision) trees” are if-then
decision structures.

petal width

[
\ > 1.700

Iris-virginica
97.8%, 45/46

They are typically used for
classification problems

Orange3d ,iris“ example
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ﬂ Naming Basics

* a,(decision) forest” is an ensemble
of trees. This makes the prediction
more stable and accurate. Also, it
can be used as a regressor and not
only as a classifier

* Since forests are often ,randomized”
(i.e., random feature selection for
individual trees), they are called
,random forests” (RFs), or Random
Forest Regressors (RFRs)

Tausendschon, PhD thesis, 2023

. Tree 1

Input sample

® - ©
Tree 2 Tree n

Prediction 1

Prediction 2 Prediction n

N

S

Take Average

RFR Pred.
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Naming Basics

gradient boosting is an
approach similar to RFs
However, decisions are
arranged sequentially
rather than in parallel
Typically, trees are used as
sub-units, but other
decision units can be used
as well

Tausendschon, PhD thesis, 2023

Input sample

Tree 1

Prediction 1

Prediction 2

L

XGB Pred.

Treen
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Naming BaSiCS Artificial neural network
; Input
* A Neural network (NN) is a system of neurons that R A== i
is organized in multiple layers
. <= Hidden
* NNs are an important sub-type of ML algorithms ﬁ;fﬂ;@:h&zi e " layers
* A neuron is characterized by (i) a weight-bias- SRS ® ® 6.
summation operation, and (ii) and an activation 'm
function (or just the ,,activation”). More complex
neurons (or ,cells”) are possible (e.g., LSTM, RNN) Architecture of a neuron

* The set of weights w; and biases b (offset) for
each neuron, and the NN structure defines a NN

Activation

Summin
g function

function

w;: Weight
b : Bias

Zhu et al., Ind. Eng. Chem. Res. 2022, 61, 9901-9949
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Naming Basics

 ,ensemble (deep) NNs“ (eDNNS) can be

1
|
|
1
used as well ! ;
| DNN1 | i
I I !
* NNs are used as level 0 models. These | | !
. . . I I o~ ~ ~
models are trained independently first. ! 17 1 Zers s Zeyans
I I :
: ' DNN 2 : : !
 alevel1l,metalearner”is subsequently : , ! !
introduced. This is a separate NN and is : : . Meta Learner
. . I |
trained by a separate data set. During ! !
M M o
,meta training” level 0 models are not :__ P __:
changed. i

( Training data 0 ( Training data O
Tausendschén, PhD thesis, 2023 level 0 level 1
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Naming Basics

Training is the process of parameterizing an ML-algorithm. This is an
optimization problem.

Training is often the most time-consuming part of the solution (i.e., the
computational work). Hence, the optimizer is often just called ,,solver®.

,hyperparameter search” is the process of searching (i.e., optimizing) the
settings of an ML-algorithm. It is often ,,an optimization of the optimizer”
and of course of the ML-algorithm details (e.g., the tree depth).
Hyperparameters are the ,architecture” of an ML model. The
hyperparameter search uses a separate validation data set.



1 Al Basics

Ty

Neural Network Details - Optimizers

The optimizer (solver) is the central algorithmic element in a
NN model.

It determines the speed, convergence behavior, memory

requirement, and computational (resource) efficiency of the
training process.

It implements the logic (i.e., the true ,artificial
intelligence”), i.e., how the parameters of the NN are
updated. It is the ,learner” of the network



1 Al Basics

Ty

Neural Network Details - Optimizers

The Gradient Descent (GD) method
works by initial randomization of the
weights and biases.

Then, the gradient of the response
surface (,loss curve”, ,loss”L) is
calculated, and the new parameter
set is updated.

How strong the gradient is weighted
in the update is controlled with the

,learning rate” o parameter.

wikimedia.org
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Neural Network Details - Optimizers

oL
(t+1) _ ()
w; =w; = a—j

this update process (for a single
weight) can be visualized as shown
on the right: the update to w; is
proportional to the slope of L!

Note: this algorithm is different
from the Newton method (or
Newton-Raphson algorithm)

25

20

1

2 4
w-dw *w

Optimizer updates parameters .--~
on the horizontal axis

https://ketanhdoshi.github.io/O
ptimizer-Techniques/

Gradient = di/dw
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Neural Network Details - Optimizers

The practical challenge is that
the loss function has a
complex shape with (possibly
many) local minima.

Other challenges are saddle
points, or narrow ravines
(valeys) in the loss function
topology.

Thus, naive GD methods are
unsuitable as training methods
of complex NNs

https://arxiv.org/pdf/1712.0991
3.pdf
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Neural Network Details - Optimizers

Stochastic (and other ,,mini-batch“) Batch Gradient Descent Mini-Batch Gradient Descent
Gradient Descent (SGD) methods use
just a few randomly selected instances
(,,mini-batch”) of the dataset to
calculate the loss curve.

This mini-batch of instances changes
for each training step (,iteration”),
and hence the loss function. This
allows to ,,jump” out of local minima
Note: an entire (training) epoch is
completed once the whole dataset is
passed thru a NN. www.analyticsvidhya.com
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Neural Network Details - Optimizers

AdaM (Adaptive Moment estimation) is a
stochastic gradient-based optimizer. It was
highly influential (#1 most cited paper of
Kingma and Ba
https://arxiv.org/abs/1412.6980. >143k
citations since 2015).

It is based on parameter-individual learning
rates and uses the idea of ,momentum®: it
considers the history of past derivates of

. SGD bounces back and forth from Using Momentum the zig-zag

the IOSS fU nction. one side of the valley to the other cancels out, while the direction
. . . | th lley is reinf d

AdaMax is a variant of AdaM (it uses a Fiong e valey s reitores

different norm for the weight udpate). https://icml.cc/Conferences/2010/papers/458.pdf


https://arxiv.org/abs/1412.6980

1 Al Basics ﬂ-lgrl;z'.
Neural Network Details - Optimizers

* RMSProp (root mean square propagation) and AdaGrad (Adaptive gradient)
are predecessors of AdaM. They belong to the ,SGD advanced family“ of
algorithmes.

 ,L-BFGS-B“is an advanced algorithm and stands for Limited-memory Broyden-
Fletcher-Goldfarb-Shanno with Bound constraints. It is a quasi-Newton
method. It is memory sparse (i.e., efficient) and allows bounding of weights
and biases. The latter reduces the overfitting tendency.
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Ty

Neural Network Details — Activation Functions

...should be simple to
compute, but nonlinear
(most problems cannot
be modeled well with
linear relationships)
RelU is the standard.
,Leaky ReLU” improves
performance by adding a
shallow slope for z<0.
Use others only if you
need zero-centered
functions

also ,,logistic*

Sigmoid

Tanh )
e
9(2) = e + e % Q(Z) = ma,X(U, z)
/
_=4 0 4{ | U l '

https://stanford.edu/~shervine/teaching/
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2 ML in Flow & Granular Systems

Granular & Fluid-Particle Flow Systems

Fibre Suspension Flow

Exp. Case Reynolds number Re 1300

ot o 8 DF o
0.02 0.05 010 015 0.20

Fines

Interface

¢ Wall

+
Bo = 80

Bo =20
Tausendschén, PhD thesis, 2023
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Why and When?

* Equations describing phenomena not
available or unclosed

* A numerical solution to describe the
phenomen at hand is time consuming

* Non-trivial cause-effect relationships
(e.g., hysteresis, bifurcation) exist that
rule out a simple correlation

* Multiple features influence the target

* You need a large number of correlations
that are time-consuming to develop

Tausendschon, PhD thesis, 2023

DNN "PW Tatal", 3 Marker: rif/|Rwan—il, Npib, e @8N AifAwan
true predictions vs target

10724
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True MSE Train = 7.641e-07
True MSE Valid = 7.725e-07
True MSE Test = 7.635e-07
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L
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: o target
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Why and When?

3 main application areas for flow & process topics

(1) closure construction (e.g., continuum stress models,
drag models, force/stress corrections, etc.)

(2) directly simulate motion (,learn particle movement®,
or at least correct from a simple motion rule) or overall
process performance

(3) accelerate a fundamental solution algorithm (e.g.,
linear solver used in CFD)



2 ML in Flow & Granular Systems ﬂ-l;gu

What cannot be done (fully) by ML?

* meaningful (re)scaling of features and targets

« feature selection and benchmarking (e.g., hysteresis,
bifurcation)

e Generation and curation of data

* Splitting of training, validation, and test data

e (data) workflow management

e ...and of course everything you do with the ML-empowered
model (shape optimization, etc.)

 identification of a meaningful (dimensionless) target
(unless you want to to unsupervised learning...)



2 ML in Flow & Granular Systems

Ty

What should not be done with ML?

* Replace a few simple correlations that only require
a few (1...2) markers

e Attempt to predict dimensional quantities, or
absolute quantities

* Directly use uncurated/unreviewed raw data for
training and benchmarking

» Skip the validation or testing step (i.e., a “biased
evaluation” = evaluation with training data)

Note that...

validation = evaluation of model
performance during
hyperparameter search

testing = evaluation of final
model performance
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Some Relevant Studies: NN history

e Early 1990°s

* www.ra.cs.uni-tuebingen.de/SNNS

* No NN-specific optimization algorithms
(simulated annealing, ConjGrad, Monte Carlo...)

T
IH'" Kernel on matisse .PID 2122 addes (] [ () (o ) (o) () () ()



http://www.ra.cs.uni-tuebingen.de/SNNS

2 ML in Flow & Granular Systems

Ty

Some Relevant Studies: NN history

Fuchs uses SNNS to predict sedimentation performance of sludge based on training

with 182 (!) data points
8 features (input):
o pH, COD, conductivity
O temMPreeqy, teMp,y,,
o Flow rate, O, content
in aerator

o “sludge management”

1.2 1

o o °
-~ [=:] [--] -

Scaled Transparency

Lol
N

— Gemessene Endtransprenz

—— Mit NN gerechnete Endtransparenz

Fuchs‘, Diss. TU Graz,
1999

183

203

223

243 263 283 303 323 343 363

Data set (1 unit ~ 2h time)
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Some Relevant Studies: accelerated DEM

e Overall Goal: Speed up DEM simulations

* |dea: do a naive evolution of position and velocity (“intermediate step”), and then use a
NN to correct for collision events (base idea of Ummenhofer et al.)

e Target: position correction Ax after intermediate step

e Convolutional NN with many features: velocity of neighbors.

*  “multi-scale” loss function: micro (position error) and macro (center of mass error)

N N N
Ln+l — Ofi Z‘ l Zx:ﬁl _ l Z-)"}:Hl
N3 N3 N3

~An+l

n+1
X’. — X’.

+(l-a)

2

Lu et al., Chem Eng Sci., 245, 2021.
Ummenhofer et al., ICLR 2020.
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Some Relevant Studies: accelerated DEM

* Performance for macro-quantities
(angle of repose) satisfactory after
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Lu et al., Chem Eng Sci., 245, 2021.
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...however, persistent
underprediction of T,

] 1 ] 1 T
00 25 50 75 100 125 15.0 17.5 20.0

Time (s)

Overall: ~80x speedup @ training
for each setup with ~100k frames.
Huge potential for improvement...
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Some Relevant Studies: closures for view factors

e Earlier study: estimate of view factors between particles and
particle-walls considering shadowing using simplified ,,point ray”
model

Z

e
Forgber & Radl, Powder »L

Technol, 323, 2018
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Some Relevant Studies: closures for view factors

* New Goal: faster and accurate estimate of view factors between

particles and particle-walls

Tausendschon, PhD
thesis, 2023

Particle bed
generation

via DEM

View factor
calculation
via RayFactor

Marker
Gl Training selection

dataset

Total Model
3 Traini
available e raining &
data Validation Validation
dataset

Testing of
trained
model

Test
dataset

Load
pretrained
model

Calculate

markers

Predict view
factors

Dataset
creation

Model training
and selection

Model
usage



Some Relevant Studies: closures for view factors

2 ML in Flow & Granular Systems

Ty

Feature (,,Marker”) analysis: number of particles as simple
shadowing indicator

@ @
] !
~ - N o
F 3 F 3
. . Tsearch , Tsearch
v A\ J

X
Xj Xj X;
Z
X Y X Y
Tausendschon, hypothetical hypothetical

PhD thesis, 2023 cylinder cone
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Some Relevant Studies: closures for view factors

* Results for 4 markers, particle-particle, bi- & polydisperse

T
=9
7, Poisys

Npib,i-jrmax *

_( 7j
’
[l

PPAM —

1

Tausendschon,
PhD thesis, 2023

DNN "PP Total", 4 Marker: rif|xi—j|, Mpi.i—j. tmae + FilFir
and ¢, sy - true predictions vs target

10—1 -

10—2,

104

1075 .

DNN-based prediction
target

NN

True MSE Train = 6.245e-07
True MSE Valid = 5.127e-07
True MSE Test = 4.646e-07

R?_test = 0.9835

0.2 0.4 0.6 0.8
fiflxi - (=]

RFR "PP Total", 4 Marker: if|Xi_j|, Npib,i—j fmae + Filti
and ¢, sys - true predictions vs target
o RFR-based prediction s O
1]
10 o target M
10—2 4
] RFR
—; 1073 4
|
h? .
True MSE Train = 1.815e-07
True MSE Valid = 4.032e-07
10-4 4 True MSE Test = 3.609e-07
ay
o, 2 _
. s R°_test=0.9872
0%

0.2 0.4 06 0.8
rif|xi-j| [=1
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Some Relevant Studies: closures for view factors

* Results for 4 markers, particle-wall, bi- & polydisperse

-
2
s
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