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Overview

• From the past…

…“New” NNs

…via coarse graining

…to anisotropic corrections

• …via the Need 4 Speed…

• …to new perspectives

Fuchs, Diss. TU Graz, 1999
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The Past

• “SNNS” is created in 90’s as a tool to make predictions

• Fuchs uses SNNS to predict sedimentation performance of 

sludge based on training with 182 (!) data points

Fuchs, Diss. TU Graz, 1999
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Data set (1 unit ~ 2h time)

Tool 1: “Smart” 
(ML-based) 

predictors
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The Past

• The need for coarse graining when simulating suspensions is 

demonstrated (Agrawal et al, 2001; Radl & Sundaresan, 2014)

• Refinement of E-L and E-E simulators and post-processing 

tools (Capecelatro & Desjardins, 2013)

Tool 2: Euler-
Euler, and Euler-

Lagrange 
simulators

Askarishahi et al., Ind. Eng. 

Chem. Res., 61, 2022.
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The Past

• Dedicated tools for spatial averaging were developed 

(Municchi et al., 2016)
Tool 3a: 

“Filtering” 
(averaging) 

Tools

Municchi et al., Computer Physics Communications, 207, 2016
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The Past

• New families of closure strategies were developed (“refiltering” 

idea of Schneiderbauer and Saeedipour, PoF, 30, 2018)

• …or modeling is entirely data-driven (“rCFD play back” approach 

of Lichtenegger and Pirker, Chem Eng Sci, 153, 2016).

• Anisotropy of corrections is (not surprisingly!) identified as a key 

need. This is relevant for stress and drag terms!

Tool 4: filtered 
TFM, “fast” CFD, 

novel closures

lateral direction vertical direction

Cloete et al., Chem Eng Sci, 
192, 2018 (colors indicate

filtered slip velocity).
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The Need 4 Speed

• Particles which are fine or with cohesive interactions (e.g., liquid 

bridge force) are widely used

https://www.gea.com/en/
https://burnertec.com/fcc-equipments/
https://www.industrialmeeting.club/food-processing-industry-plant-for-dry-mixed-products/

• Challenges
o agglomeration and segregation
o blockage & depositions
o inefficient mixing
o Equipment performance <20%

• Experimental route
o Expensive, difficult & dirty
o indirect & noisy data from the plant
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The Need 4 Speed

• Modeling of gas-particle flows in industrial-sized fluidized beds

− Typically, coarse-grid simulations using a “filtered” two-fluid model 

(fTFM)

• fTFMs need sub-grid closure models to approximate unresolved 

physical phenomena

− Account for the effects of the inhomogeneous particle distribution

− The drag force is essential for reliable prediction of flow behavior

• Complexity increases when considering cohesive gas-particle 

flows

− Cohesive influence on the filtered drag force closure

− Need for faster (automated) closure development 

Sundaresan et al., AIChE J., 54, 2008. Igci & Sundaresan, Ind. Eng. Chem. 

Res, 50, 2011; Yu et al., Powder Technology, 184, 2008
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Need 4 Speed: Model I

• Performing and then filtering of “fine grid” simulations

o Euler-Euler Approach

− Fluid and solid phase motion via continuum ansatz

− complex particle-particle interactions (cohesion) challenging, 

but possible. However, not the current focus…

o Euler-Lagrange Approach

− Classical continuum-based ansatz only for fluid phase

− Individual particle motion via Newton’s equation of motion

− Large variety of models for particle-particle interactions

✓ Our current focus

Tool 3b: ML-empowered 
closure development
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Need 4 Speed: Model II

• First ”filtering” step: mapping Lagrangian quantities onto 
the fine Eulerian grid

• Second filtering step: Filter all relevant quantities using a 
defined filter length → ത𝜙𝑠, 𝒖𝑔, 𝒖𝑠

𝑢𝑠𝑙,𝑧 = 𝑢𝑔,𝑧 − 𝑢𝑠,𝑧

𝒛
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Need 4 Speed: Model III

• Correction tensor  𝑯𝑑 =
𝑑𝑟𝑎𝑔 𝑖𝑛 𝒊𝒏𝒉𝒐𝒎𝒐𝒈𝒆𝒏𝒆𝒐𝒖𝒔 𝒔𝒕𝒂𝒕𝒆

𝑑𝑟𝑎𝑔 𝑖𝑛 𝒉𝒚𝒑𝒐𝒕𝒉𝒆𝒕𝒊𝒄𝒂𝒍 𝒉𝒐𝒎𝒐𝒈𝒆𝒏𝒆𝒐𝒖𝒔 𝑠𝑡𝑎𝑡𝑒

• This means it must fulfill the following properties:

o 𝑯𝑑 → 𝟏 for sufficiently small filter sizes (i.e., ”well-resolved” simulations)

o 𝑯𝑑 → 𝟏 in the dilute limit (i.e., a single particle sedimenting at its terminal speed) 

o 𝑯𝑑 → 𝟏 in the dense limit (i.e., a particle suspension sedimenting at steady state)

• Previous approach: correlation functions based on just few features (“markers”): 
ത𝜙𝑠, ∆𝑓, 𝒖𝑠𝑙:

− Complex to build, limited applicability (poor training, not rigorous)

− limited accuracy for larger filter lengths

• Novel approach: usage of neural networks

− Fast, accurate & rigorous (many markers), and easy to integrate (e.g., Keras2CPP)

− previously only applied to dry systems

Jiang et al., Chem. Eng. Sci. , 230, 2021. Lu et al., Ind. Eng. Chem. Res., 61, 2022
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Need 4 Speed: Result I

• Ansatz for the filtered drag force: ഥ𝜱𝑑,𝐴 = 𝑯𝑑 𝛽
𝑀𝑖𝑐𝑟𝑜 𝒖𝑠𝑙

• …with the closure

• The target and the prediction of the neural network is the scaled drift velocity 

𝒛 =
ഥ𝜙𝑠 𝐯𝑑

𝜙𝑠,𝑚𝑎𝑥 𝑢𝑡

• For now, we consider all off-diagonal (“lift like”) values of 𝑯𝑑 to be zero. However, 

diagonal elements of 𝑯𝑑 are not identical (anisotropic correction)
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Need 4 Speed: Result II

• Prediction based on vector-valued markers must ensure Galilean invariance

• Three basic options to formulate a drag correction

• Option 2 is selected
− An internal coordinate system, that respects rotational invariance, can be 

intuitively spanned

Tausendschön et al., Chem Eng & Technol, 2023 (in press).



14

Perform 
CFD-DEM 
simulation

Filtering 
using 

CPPPO

Total 
available 

data

Training
dataset

Validation
dataset

Test
dataset

Marker 
selection

Testing of 
trained 
model

Dataset 
creation

DNN Model training and selection

Model
Training & 
Validation

Load 
pretrained 

model

Calculate 
markers

Predict 
drag 

correction

Model usage

• Markers (“Features”) 

• All markers min/max normalized prior to usage

Need 4 Speed: Result III
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Need 4 Speed: Result IV

Tausendschön et al., Powder Technology, 364, 2020

𝜶 = 𝟑
𝑑𝑃 [µ𝑚] 450
∆𝐺 [µ𝑚] 1,350
𝑁𝑝𝑟𝑖𝑚𝑒 285,147
Parcels 10,561
𝐵𝑜 0 − 80

• Pseudo 2D & 3D CFD-DEM simulations

− Domain size is 16 ∆𝐺 x 2 (𝑜𝑟 16) ∆𝐺 x 64 ∆𝐺

− Total particle volume fraction 𝜙𝑠,𝑡𝑜𝑡 = 0.10

− Filter sizes are: 3 ∆𝐺 , 4 ∆𝐺 , 5 ∆𝐺

• Scaling of coarse graining parameters following 

Tausendschön et al.

• Dry to highly cohesive systems (cohesion from liquid 

bridges: capillary & viscous)
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Need 4 Speed: Result V

• 2D & 3D, gravitational direction 
only

• Spatial distribution of the drag 
correction functions is sensitive 
to Bond number (“diffuse” 
versus “focused” for low and 
high Bond, respectively)

• Reasonable agreement, except 
for “extreme” regions (e.g., local 
maxima in the 𝑯𝑑 field)
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Tausendschön et al., Chem Eng & Technol, 2023 (in press).
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Need 4 Speed: Result VI

• Distribution of correction values in ത𝜙𝑠– Τ𝑢𝑠𝑙 𝑢𝑡 plane

• Significant and non-trivial change with Bond number

Tausendschön et al., Chem Eng & Technol, 2023 (in press).

Gravitational direction Lateral direction
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Need 4 Speed: Result VII

lateral directiongravitational direction
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“bin-
averaged” 
data
(non-
cohesive)
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Need 4 Speed: Result VIII

gravitational 
direction (z)

Individual samples 
(“raw filtered data”)

lateral directions 
(x,y)
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New Perspectives

• The “chicken crossing a street challenge”: calibration has become a 
standard approach to make simulations “more realistic”

o Sequential direct calibration approach (Aspherix® calibration)

o Response surfaces: Superimposing the results of multiple numerically 

replicated experiments for a range of parameters

• Common challenges

o lack of graphical calibration workflows, or even the workflow
o absence of a clear & FAIR data handling strategy

Irrespective of the calibration method, the workflow needs to handle a 
huge amount of data

Coetzee, Powder Technology, 2017. Roessler et al, Powder 
Technology, 2019.  Do et al, advanced powder technology, 2018. 
Richter et al, Powder Technology, 2020
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New Perspectives

DEMvironment
A workflow environment for data management of DEM parameter 

calibration process

Key 
Features

Benefit

Impact Potentials

• Data management
• Guide for experiment 

selection
• Steers the calibration 

workflow

• User-friendly 
interface

• Automated 
parameter 
calibration

• Reproducibility of 
the process

• Open source

• Speeding up the 
process

• Increase efficiency in 
model development

• Increased 
collaboration among 
researchers and 
practitioners

• Allows steering 
more 
sophisticated 
ML algorithms

• Can be applied 
to other particle 
simulation 
techniques
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New Perspectives

DEMvironment interface 
…soon available in Orange3

https://n-ghods.github.io/workflowenv
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New Perspectives

DEMvironment interface 
…soon available in Orange3
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Conclusion

• Cohesive sedimenting suspensions are 
our daily business since many decades. 
Cohesion may require a paradigm shift 
to “closure database” approach

• Reading old PhD thesis can give 
inspiration for new features to be used 
in ML (data @ t-Dt, smart NN testing).

Fuchs, Diss. TU Graz, 1999
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Conclusion

• Anisotropy of drag and stress closures must be considered. “Hand fitting” of 
this set of 5 marker closures would be extremely time consuming→ central 
motivation for usage of DNNs.

• Huge unexploited potential when considering individual samples of the 

filtered drag force. Reasons: fundamental assumption ഥ𝜱𝑑,𝐴 = 𝑯𝑑 𝛽
𝑀𝑖𝑐𝑟𝑜 𝒖𝑠𝑙.

• Drag corrections are stronger (i.e., lower drag forces) for cohesive systems. 
Speculated reason: more compact clusters for high Bo. 

• Options for future work

o DNN-based closure for meso-scale stresses. A posteriori testing of the 
drag correction models in a fTFM simulation framework

o “Free” (tabulated, NN-based) force models for coarse graining cohesive 
powder models
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Thank you

This project has received funding from the
European Union’s Horizon 2020 research and
innovation programme under the Marie
Skłodowska Curie grant agreement No. 812638.

Filtered Gas-Particle Flow Models

Tools for Closure 
Development
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