
SPEAR-V: Secure and Practical Enclave Architecture for RISC-V
David Schrammel

david.schrammel@iaik.tugraz.at

Graz University of Technology

Graz, Austria

Moritz Waser
∗

moritz.waser@iaik.tugraz.at

Graz University of Technology

Graz, Austria

Lukas Lamster

lukas.lamster@iaik.tugraz.at

Graz University of Technology

Graz, Austria

Martin Unterguggenberger
∗

martin.unterguggenberger@iaik.tugraz.at

Graz University of Technology

Graz, Austria

Stefan Mangard

stefan.mangard@iaik.tugraz.at

Graz University of Technology

Graz, Austria

ABSTRACT
Trusted Execution Environments (TEEs) and enclaves have become

increasingly popular and are used from embedded devices to cloud

servers. Today, many enclave architectures exist for different ISAs.

However, some suffer from performance issues and controlled-

channel attacks, while others only support constrained use cases for

embedded devices or impose unrealistic constraints on the software.

Modern cloud applications require a more flexible architecture that

is both secure against such attacks and not constrained by, e.g., a

limited number of physical memory ranges.

In this paper, we present SPEAR-V, a RISC-V-based enclave that

provides a fast and flexible architecture for trusted computing that

is compatible with current and future use cases while also aiming

at mitigating controlled-channel attacks. With a single hardware

primitive, our novel architecture enables two-way sandboxing. En-

claves are protected from hosts and vice versa. Furthermore, we

show how shared memory and arbitrary nesting can be achieved

without additional performance overheads. Our evaluation shows

that, with minimal hardware changes, a flexible, performant, and

secure enclave architecture can be constructed, imposing zero over-

head on unprotected applications and an average overhead of 1%

for protected applications.

CCS CONCEPTS
• Security and privacy→ Systems security; Security in hard-
ware.

KEYWORDS
RISC-V, enclave, isolation, memory protection, memory tagging

1 INTRODUCTION
In recent years, strong software isolation has become increasingly

important. All major CPU vendors offer built-in technologies that al-

low software to run in shielded execution environments (e.g., TEEs,

enclaves, secure virtual machines). Cloud computing platforms like

Intel SGX [16] or AMD SEV-SNP [25, 46] allow tenant software

to run in isolated computing environments. These technologies

protect the encapsulated software from other, potentially malicious,

tenants and even the hypervisor or operating system (OS). This

allows removing the trust from the cloud provider by shifting it

to the underlying hardware. Unfortunately, research shows that

most of the established designs have substantial shortcomings. Intel

∗
The work was done while the authors were at Lamarr Security Research.

SGX imposes significant performance overhead on code running

in an enclave, and it does not allow for nesting enclaves or for

protecting the host from a potentially malicious enclave. Further-

more, numerous successful attacks have been mounted on both

SGX [18, 29, 29, 37, 55] and AMD’s SEV [31, 32], proving that

the isolation guarantees do not hold under certain circumstances.

Recently, several enclave technologies have also arisen from the

open RISC-V platform, such as Sanctum [15], Keystone [30], or

Penglai [22]. However, these open-source architectures also have

certain drawbacks, such as limiting memory to a few physically

contiguous regions, that must be addressed in consideration of

current and possible future use cases.

Existing work either uses insecure page tables managed by an

untrusted OS or duplicates them to a separate area, which intro-

duces large memory overheads and adds complexity to enclave

software. Thus we identify the following research question:

Can enclaves be secure while still relying on OS-managed paging
structures without the overhead of duplicating them?

In this work, we propose SPEAR-V, an enclave architecture based

on a lightweight memory tagging hardware extension for RISC-

V CPUs. SPEAR-V imposes a minimal performance overhead on

isolated software and virtually no overhead on unprotected appli-

cations. Unlike other designs, SPEAR-V allows for dynamic enclave

memory allocation, enclave nesting, and copy-free memory shar-

ing. With our approach, we can efficiently share memory from the

host to enclave and enclave to enclave, thus allowing for much

greater flexibility than existing designs. Additionally, we do not

limit sharing to strictly bijective mappings. Instead, all enclaves

running in the context of a host application can share memory with

an arbitrary number of other enclaves running in the same con-

text. In addition to solving controlled-channel attacks and contrary

to Intel’s SGX, our hardware extension can also protect the host

application from an enclave without relying on other hardware

features (e.g., MPK). Thus, we offer protection both from malicious

enclaves, as well as malicious hosts (OS or host application). Our

design demonstrates that the necessary security can be guaran-

teed without moving or duplicating page table information to a

separate protected region. Instead, we use OS-managed page ta-

bles without forfeiting any of the given security guarantees. This

approach greatly reduces the complexity of enclaves, as they do

not need to handle their own paging structures, thus avoiding the

overheads associated with self-paging [40]. We show the feasibility

of our design by implementing it on the CVA6 RISC-V CPU [65].

The imposed overhead on software running in enclaves is below

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Schrammel et al.

1% for representative benchmarks. We further demonstrate that

SPEAR-V can be used without imposing any additional latencies

on unprotected host applications.

Contributions. In short, our contributions are as follows:

• We present SPEAR-V, a lightweight enclave architecture for

RISC-V CPUs that facilitates OS-managed, yet secure, and

flexible memory management.

• We show how our architecture protects against accidental

information leakage, controlled-channel attacks, malicious

enclaves (sandboxing), and malicious hosts while also allow-

ing for efficient, arbitrarily nested enclaves.

• We evaluate the performance of our architecture, showing

minimal impact on the software running in an enclave and

virtually no overhead for unprotected applications.

• We provide a flexible and extendable hardware implementa-

tion based on the CVA6 CPU, which allows for reproducible

evaluation of our design and facilitates further research

based on page-granular memory tagging.

• We open-source our implementation to facilitate future re-

search in this area: https://github.com/IAIK/spearv

2 BACKGROUND
In this section, we briefly introduce the necessary background

knowledge about enclaves, trusted execution environments, and

controlled channel attacks.

Secure enclaves and trusted execution environments aim to pro-

vide a protected execution environment for applications and pro-

tect data from powerful adversaries. In Intel SGX, enclaves can run

within a host application and have access to that address space, but

neither the host application nor the OS has access to the code and

data within an enclave. Enclaves ensure integrity and confidential-

ity of their contained data. Existing designs provide confidentiality

by limiting access to memory regions through hardware features

(e.g., physical memory protection) and memory integrity through

memory encryption [16, 25, 46], which also protects against physi-

cal attackers. Enclaves are not meant to protect against destructive

attackers, so DoS attacks are usually out of scope.

Past research has shown that leaking data from enclaves like SGX

is possible through so-called ’controlled channel attacks’ [26, 63].

This type of side-channel attack assumes knowledge about the

application binary that is executed inside an enclave and a fully

compromised OS. The attacker monitors page faults through the

compromised OS and derives information about the processed data

inside an enclave by observing data-dependent control flow changes

and data accesses. This is usually done by unsetting the valid bit

in the page table entry (PTE) or by observing the accessed (A) and

dirty (D) bits in the PTE [8]. Mitigating such an attack requires

either manual rewriting and recompilation of an application such

that access patterns do not depend on secret data [1] or disabling

paging for enclaves on a system level. However, recent work showed

that accesses to the PTEs are also susceptible to cache attacks.

Mitigations require hardware changes to explicitly flush the cached

paging structures used by the translation lookaside buffer (TLB) [8].

3 THREAT MODEL
The CPU and a so-called security monitor (SM), which is a trusted

software component running in M-mode, form the trusted comput-

ing base (TCB) of SPEAR-V. All other hardware and software of

the system is considered untrusted and potentially malicious. Our

goal is twofold. First, in line with Intel’s SGX model, our design

should protect enclaves against software-based attacks mounted

by other enclaves or a potentially malicious OS. Second, the host

application and OS should also be isolated and protected from a po-

tentially compromised or malicious enclave. Hence we distinguish

the following two attacker models:

Compromised OS. An attacker can control the host OS and exe-

cute privileged instructions or spawn malicious enclaves. Such an

attacker may also mount controlled-channel attacks through ma-

nipulation of page tables or interrupts. In such a scenario, SPEAR-V

must guarantee that the attacker is not able to directly access mem-

ory from other enclaves. Furthermore, a compromised OS may not

adhere to the defined behaviour for syscalls. We provide a small

API to the host and enclave (e.g., to enter/exit an enclave) through

which an enclave can also make syscalls routed through the host ap-

plication. We assume that the runtime and enclave sanitizes return

values to thwart Iago attacks [11].

Malicious Enclave. An attacker-controlled enclave might try to

compromise the host application, the host OS, or other enclaves

running on the system. In this setting, the attacker is constrained

to unprivileged instructions that are executed in the context of an

enclave. The attack is successful if the adversarial enclave can read

or write any memory that is not explicitly shared with the enclave.

In both scenarios, we consider same-core side-channel attacks,

such as branch shadowing attacks [29], as part of the threat model.

We assume that the system mitigates against such side channels, as

described by Wistoff et al. [60, 61]. As our platform uses a single-

core processor, we do not consider cross-core side-channel attacks

in our baseline design. For multi-core systems, we assume that addi-

tional mitigations such as cache-line-locking [22] are implemented,

as designing secure caches is outside the scope of this paper. We

exclude physical attacks (e.g., memory-bus snooping, malicious

DRAM, physical side channel) from our threat model. However,

orthogonal techniques like memory encryption can be integrated

to protect against certain physical attacks. We assume that the SM

and enclave code are free of bugs.

4 DESIGN OVERVIEW
Our proposed design consists of two key parts that, in combination,

provide strong software isolation. First, page-granular memory

tags are used to check and enforce access permissions for enclave

memory. They are managed by our second component: A software

SM running inM-mode thatmanages enclaves, validates page tables,

and handles security-critical operations that cannot be delegated

to the untrusted OS. Both user applications and the OS can interact

with the SM through a simple API. A general overview of the

SPEAR-V design is shown in Figure 1.

Our design is motivated by several observations. 1.) Existing

tagged-memory architectures are very fine-grained (typically word-

granular). However, for sandboxing and enclave use cases, much

https://github.com/IAIK/spearv

SPEAR-V: Secure and Practical Enclave Architecture for RISC-V ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

Hardware Software
DRAM

CPU

Tag Store

TLB / PTW

Application
U-Mode

Enclave

Page Tables

ID = 42, Type = Enclave
Immutable = 1, Type = PageTable

Application Memory

Enclave Memory

Security Monitor

M-Mode

Operating System

S-Mode

SM
 A

PI

Interrupt

Read/Write

Figure 1: Design overview. The DRAM contains the tag store
which holds tags for page tables and normal pages. The SM
runs in M-mode and manages the tags.

larger granularities are desired. 2.) Page table updates by the hard-

ware or by the untrusted OS lead to leakage. If we can tag the

entire DRAM, we can also tag individual page tables such that they

become immutable. Thus, we can let the OS manage them without

compromising security. This does not require page table duplication

and provides availability guarantees, as enclave pages will always

be mapped and available. 3.) Once virtual memory is set up, OSs

do not require physical access to the DRAM anymore. Instead, all

accesses go through the MMU/TLB, where access policies can be

enforced if just a few tag bits are cached in the TLB. This leads to

a much higher context-switching performance compared to Intel

SGX, which required to flush the TLB at each switch.

Tag Store. For each page in the DRAM, we store a corresponding

tag in our tag store, which in-turn is also stored in the RAM. The

OS can configure the location and the size (i.e., which parts of the

DRAM are covered) of the tag store during system startup. For the

taggable memory range, which can cover the entire DRAM, each

tag holds information on the ownership of a memory page and is

fetched and checked by the PTW during address translation. After

a successful translation, we cache a subset of the tag bits in the

TLB entry to speed up permission checks on subsequent accesses.

Tagging page tables, and thus PTEs, has three key advantages. First,

contrary to Intel’s SGX, we do not need to duplicate any informa-

tion from the PTE. Second, we prevent controlled-channel attacks

through PTE manipulation by tagging page tables as immutable.

This ensures that all modifications have to be verified by the SM.

Finally, unlike other designs, which require all page tables to be in a

specific DRAM region [22], we do not require any OS modifications,

nor do we affect the performance of unprotected page tables.

Paging. To prevent certain (e.g., remapping) attacks, enclave ar-

chitectures need a trusted mapping from virtual to physical pages.

This often means that the page tables are duplicated or moved into a

secure area, which adds overhead and software complexity. A defin-

ing feature of SPEAR-V is the ability to securely use unmodified

OS-based paging for enclaves, which also eliminates the need for

self-paging. We achieve this by allowing page tables to be tagged

as immutable, such that write accesses are only possible through

the SM. In this setting, the OS can still create PTEs for an enclave.

However, since these mappings cannot be trusted, the SM verifies

them and sets their respective page tables to immutable. Thus, the

entire address translation process, from the virtual address and

the SATP register, which points to the root page table, to the final

physical page, becomes trusted (cf. Section 5.4). When adding a

page to an enclave, the SM checks that this page does not already

belong to another enclave by reading its corresponding tag, thus

ensuring that each enclave page has a unique mapping. If the page

table of that page is not yet immutable, meaning no valid enclave

mappings exist yet, the SM also ensures that no other PTE exists

that maps to the same physical page by validating all PTEs from

that page table. This step is repeated for all higher-level page tables

until the “root” page table, as referred to by the SATP register, is

reached. Once a page table is set to immutable, it is guaranteed

not to contain invalid mappings. The final part of the translation

process that needs to be secured is the SATP register. We link an

enclave to a single process (i.e., address space) by checking the

contents of this register when entering an enclave. At runtime, the

hardware ensures that enclave pages can only be accessed through

verified and immutable PTs. Since our security is based on checks

done by the PTW & TLB, our hardware also monitors the SATP reg-
ister for changes that would disable virtual memory, which in turn

bypasses these checks. To avoid attacks in which an OS observes

memory access patterns through PTE bits (i.e., accessed and dirty),

the hardware also respects their immutable nature and does not

update them. Note that while swapping algorithms typically de-

pend on these bits, not updating them for enclaves does not impact

the swapping performance of normal/host applications. As the OS

cannot unmap enclave pages, we also protect against attacks that

infer enclave secrets via monitoring of page faults. Thus, we protect

against side-channel attacks relying on paging information [53].

Shared Memory & Nesting. Enclaves can share memory through

the commodity shared memory interface in combination with SM

API calls. Shared pages that are tagged by the SM experience the

same hardware-based protection as regular enclave pages and can

only be accessed when given explicit access by the respective owner.

Since each enclave is also a sandbox and to facilitate more complex

use cases, we also allow them to be arbitrarily nested. By isolating

parts of an enclave memory region from the enclave itself, enclaves

can spawn protected child enclaves that are again protected from

their host (i.e., the parent enclave), but also the other way around.

Given the above components and features, we formulate the

following invariants that guarantee the security of our design:

ℐ1: The tag store is not accessible from U- or S-mode. As the

tag store plays a central role during access permission checks, we

must guarantee that memory tags are never writeable by unpriv-

ileged software or a possibly malicious OS. The tags themselves

currently do not contain secrets. However, to prevent possible fu-

ture side channel attacks we disable read access to the tag store.

ℐ2: Private enclave memory is only accessible for the owner
enclave through a unique mapping. Pages tagged as enclave

pages can only be accessed by the enclave with the respective ID,

given that the memory is not explicitly shared. Each enclave page

may only be reachable via exactly one valid virtual-to-physical

mapping. This means that each enclave page may only be pointed

to by exactly one valid immutable page table.With these constraints,

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Schrammel et al.

RAM Tag Store

Page #1

Enclave Page (4KiB)
Page #511

Page Type: Enclave

HPCE
2MiB Huge Page

Malicious Mapping

Enclave Mapping

Figure 2: When tagging a enclave page, the SM also tags the
2MiB and 1GiB regions with the HPCE bit. Thus, a malicious
OS cannot map the huge page to bypass the access checks.

we guarantee the confidentiality and integrity of enclave memory

while also protecting against aliasing attacks.

ℐ3: A shared memory region is accessible iff an enclave has
received permissions from its owner. Aswe also protect enclave
memory that is shared with other enclaves, we must guarantee

that only enclaves that have received the corresponding access

permissions may access a shared memory region. In the presence

of potentially malicious enclaves, we must ensure that enclaves

accessing shared memory have received access through a legitimate

and trusted channel, i.e., the SM.

ℐ4: The mapping (position and ordering) of enclave pages
is immutable and unique. Once pages are committed to an

enclave, their position and order may not be altered. Furthermore,

all enclaves that are accessing the same shared memory region

must map the region in the same (virtual) position and order as the

enclave sharing that region. This constraint helps to avoid attacks

that rely on the reordering of enclave pages by the OS.

ℐ5: (Unshared) host memory is inaccessible to enclaves. To
account for potentially malicious enclaves, enclaves are prohibited

from accessing host memory. Through this invariant, each enclave

is confined to performmemory accesses only within its own enclave

memory region and potentially available shared memory regions. A

host can only share memory with an enclave that has been verified

by the SM. Within an enclave, accesses to untagged memory will

fail, as the hardware cannot check if the access is legitimate.

5 HARDWARE DESIGN
During translation from virtual to physical addresses, on a TLB

miss, our hardware PTW loads the tags of the requested page and

all related page tables. A small subset of the memory tag is cached

in the TLB to speed up future access checks. Additionally, we add

new CSRs that are only accessible by the SM. They control the

behavior of the PTW and the TLB regarding tag fetching and access

permission checks. For PTEs or memory that does not reside in the

taggable memory region, tag loads and access checks are skipped.

In this section, we detail these necessary changes to the hardware.

5.1 Memory Tagging
At its core, SPEAR-V relies on page-granular memory tagging. Each

memory tag resides in the special tag store DRAM region that is

inaccessible for all software except the SM.

Protection. To protect the tag store and thus enforce ℐ1, RISC-V
physical memory protection (PMP) may be used. By configuring the

PMP registers such that the tag store may only be accessed from M-

mode, thus blocking reads andwrites fromU- and S-mode. However,

this would detract one or two entries from the already limited

number of available PMP entries. Hence, since the tag store can

cover the entire DRAM, it can also protect itself from unprivileged

access by configuring the tags of the memory pages where the

tag store lies. The SM sets this up at boot time and falls back to

PMP-based protection if the tag store is unable to protect itself due

to its memory layout. This self-protection works analogously to

protecting enclave pages: We set the owner/ID field of the tag to a

special “enclave” ID, which we reserve for the SM itself. Thus, the

SM, which owns the tag store, can be viewed as a separate enclave,

and its data is protected using the same primitive.

Huge Pages. In our design, we reserve one tag for each 4KiB of

memory. As the OS can also map so-called huge pages (e.g., 2MiB

or 1GiB), they require special consideration. Given a 4KiB enclave

page, the OSmight try to map a huge page that contains this enclave

page to another virtual address. It is vital that memory accesses to

that smaller enclave page using the huge page mapping are subject

to the same permission checks as accesses targeting the enclave

page directly. For this, our tag contains a so-called ’huge page con-

taining enclave’ (HPCE) bit, which indicates if the memory range

of this particular huge page contains pages that are relevant for

security (e.g., enclave pages). This is shown in Figure 2. Due to

memory alignment constraints of huge pages, whenever the SM

tags a critical 4KiB page, it can also set the HPCE bit for both 2MiB

and 1GiB pages that contain this 4KiB region. If the OS maps this

huge page, the PTW will detect the HPCE bit and perform an addi-

tional tag fetch for the affected 4KiB range. It also downgrades the

resulting TLB entry to a 4KiB entry. This preserves compatibility

with OSs that may use huge pages for managing their page tables

and only affects the TLB miss rate negatively for memory ranges

that actually contain enclave data. We also consider the case that

an enclave itself tries to obtain a huge page mapping. As all 4KiB

pages enclosed by the huge page belong to the enclave, we must

tag all contained pages separately, thus resulting in 512 or 512
2

subsequent tag writes. This approach only impacts the performance

of the mapping operation itself. Once the tags are set, accessing the

huge page yields the same latencies as access to a tagged 4KiB page.

Alternatively, since the tag also stores the page size, the PTW could

detect any malicious access attempts of huge enclave pages without

the necessity to tag all enclosed 4KiB regions. This, however, would

increase the TLB-miss latency, since the TLB always has to check

the 2MiB and 1GiB tags as well.

5.2 Memory Tag Fields
In the following, we detail the different fields of our memory tag

and their use. A visual representation of the fields, including those

that are cached in the TLB, is given in Figure 3.

Validated (1 Bit). When the host adds a new page to an enclave,

this field is not set until the enclave acknowledges this mapping.

Only when it is set will the page be usable by an enclave. Thus the

enclave will always be aware of any page that it has access to.

ID (16 Bit). This field stores the ID of the enclave that the page

belongs to. With this field, the TLB and PTW can validate that

the accessed page is owned by the currently running enclave. This

ensures that ℐ2 and ℐ5 hold true for all memory accesses that are

not aimed at shared memory. The size was chosen to be aligned

SPEAR-V: Secure and Practical Enclave Architecture for RISC-V ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

Immut.
(1)

PLevel (2):
4K, 2M,

1G, 512G
Future

ID (16):
EID or 0

or SHM key

Validated
(1)

PageType (3):
PT_NORMAL, PT_ENCLAVE,
PT_MONITOR, PT_SHARED

HPCE
(1)

24 Bit 8 / 40 / 104 Bit

ASID / EID
(16)

2MiB / 1GiB
(2)

...
(12)

VPN
(27)

PPN
(44)

DAGUXWRV
(8)

Valid
(1) FutureImmut.

(1)
PageType

(3)

TLB-Tag (49 Bit) TLB-Content (65 Bit)

PTE (Current Access)VPN (Current Access)

TLB

Memory
Tag

=
PT_NORMAL
PT_ENCLAVE
PT_SHARED

=
SATP.ASID

MEID

USHMCFG

Legend: Newly added

Existing PTE entry

Existing TLB Tag

Figure 3: Overview of how memory tag fields are stored inside TLB entries. For enclave pages, the ASID field in the TLB entry
stores the enclave ID. We add a field for the page type to the TLB tag, which, during a TLB lookup, decides whether the ASID/EID
is compared to the ASID field inside the SATP CSR, the MEID CSR, or the USHMCFG CSR.

with RISC-V’s address space identifier (ASID), which is also 16 bits

wide. Since we store this ID in the same position in the TLB where

the ASID is stored, we avoid adding additional bits. Thus, currently,

we are limited to a maximum number of parallel valid enclaves of

≈ 2
16
. However, if the cost of increasing the TLB size is acceptable,

this field can be enlarged to support a larger number of enclaves.

E.g., we can use the 8 reserved bits to extend the ID to support

over 16M enclaves. In Section 8 we explore the area overheads

introduced when adding such additional bits to the TLB entries.

Immutable (1 Bit). This bit is essential for SPEAR-V as it allows an

untrusted OS to manage the paging structures of enclaves. Once a

page is marked as an enclave page, all its page tables in the hierarchy

are validated by the SM and subsequently tagged as immutable.

Write accesses to immutable pages trigger an exception that traps to

the SM, where they are verified. Thus, all modifications of the page

tables of an enclave are verified by the SM. This prevents a malicious

OS from tampering with the page tables of an enclave once the

mapping is established, hence enforcing ℐ2 and ℐ4. Furthermore,

the SM may use this bit to protect its own code or data.

Page Level (2 Bit). In this field we store the size of the tagged

page. Thus, the tag holds information on whether the page is a 4KiB

page, a 2MiB page, or a 1GiB page. This can be used in addition to

the HPCE bit to enable huge enclave pages without the necessity

of tagging every 4KiB page contained inside the huge page. E.g., a

1GiB mapping only needs 1 tagging operation instead of 512
2
. The

PTW fetches tags of the corresponding 2MiB- and 1GiB-aligned

huge pages during every translation.

Page Type (3 Bit). We distinguish between five different page

types and allow for 3 future page types. Pages marked with PT_
NORMAL belong to the host application or the OS and are regularly

accessible. For enclave pages, we use the PT_ENCLAVE page type.

Pages that belong to the SM are marked as PT_MONITOR and are only
accessible from M-mode. When an enclave or a host application

decides to share a page, the corresponding page is marked as PT_
SHARED. Finally, PT_PAGETABLE is used to mark immutable page

tables if they contain an enclave mapping.

HPCE (1 Bit). This helps against huge page attacks (Section 5.1).

5.3 Control and Status Registers
To manage the tag store and enforcement of access permissions,

we add the following control and status registers. Registers that

start with M are only writable by the SM, whereas U registers are

writable by the enclave itself.

Tag Store. For the tag store itself, we add the following four regis-

ters, which are configured at boot time by the SM. First, MTAGMODE
defines the tag size that is used. While our enclave design only

requires 24-bit tags, for evaluation and exploratory purposes we

currently support 0-, 32-, 64-, and 128-bit tags. When set to 0-

bit, running enclaves is not possible, however, there is also no

memory overhead introduced since no tag store is necessary. The

MTAGBASE register holds the physical address of the tag store, and
the MDRAMBASE register holds the physical start-address of the pro-

tected/taggable address range. Both are aligned by the chosen tag

size and the largest supported huge page size, respectively. Finally,

MDRAMSIZE defines the size of the taggable DRAM region. Based on

these registers, the PTW calculates the address for the tag lookups.

The tag store may cover the complete DRAM or only a contigu-

ous, huge-page-aligned, subset of it. Furthermore, it is not necessary

that the tag store region resides in the taggable DRAM region itself,

as we can fall back to PMP-based protection. During boot, the SM

chooses an appropriate protection method (either PMP or using

the tag store for self-protection) and configures the necessary PMP

registers or tags accordingly. For the latter, the SM tags all pages of

the tag store itself such that they are only accessible by the SM.

The tag store may also cover a larger region than just the DRAM

to protect accesses to MMIO regions. E.g., this allows an enclave

or the SM itself to exclusively access an (MMIO-)programmable

interrupt controller, which, combined with an enclaved scheduler,

can give strong availability guarantees as shown by Alder et al. [3].

Enclave Operation. For basic enclave operation, we add two

more registers. The MEID register is set to 0 outside an enclave or

otherwise contains the current enclave’s 16-bit ID. It is used by the

caches, particularly by the TLB and PTW (cf. Section 5.4), to enforce

that enclave pages can only be accessed by their respective enclave

(ℐ2 and ℐ5). The MTCS register holds the unique physical address
of the thread control structure, a page that contains information

about the current enclave thread.

Memory Sharing and Host Memory Isolation. Host memory is

protected because an enclave can only access host memory if it has

been explicitly shared. It is treated the same as shared memory be-

tween enclaves. For this, we add the MSHMCFG register, which is split
into 3x 16-bit key fields and 3x 2-bit (i.e., read and write) permission

fields, respectively. Shared memory regions are represented by a

key. Within our tag structure, enclave IDs and shared memory keys

are stored in the same position (i.e., the ID field), since a memory

page can only be used for either one at the same time. When shared

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Schrammel et al.

PT2

VPN[2]

PT1

VPN[1]

PT0

VPN[0]

Page

offset

SATP

PT0 | i EPT1 | iPT2 | i 1

2

3

4

5 7

6
ECS

Figure 4: Illustration of a page table walk within an enclave.

memory regions are set up, the SM adds the respective keys to the

enclave’s metadata page (ECS) and the MSHMCFG. Enclaves may have

access to more shared memory regions than fit in this register. In

case a memory access to such a memory region happens, it triggers

an exception that traps to the SM, where the SM looks up accessible

keys in the ECS and adds it to MSHMCFG register.
To support more fine-grained protection and sandboxing capabil-

ities, we additionally define the USHMCFG register, where the enclave
itself can, at any point in time, decide which of its available keys

it allows access to. This allows an enclave to prevent accidental

information leakage, similar to x86’s SMAP (supervisor mode ac-

cess prevention), and also allows for memory safety applications

and sandboxing within an enclave itself. The register has the same

format as MSHMCFG and can hold zero to three active keys and their

desired permissions. These slots can be empty, meaning that no

shared memory is accessible, or they may contain the shared mem-

ory region keys, in which case only these memory regions are

accessible. When shared memory is accessed whose key is not in

the MSHMCFG, the SM will copy the value from USHMCFG assuming

all its keys are valid. If an enclave wants to access both shared and

private memory at the same time, it can add the ID “1”, which is

never used as an enclave ID or shared memory key, but instead

represents the enclave’s own memory. Thus, an enclave can choose

to disable access to its own memory completely when accessing

shared memory to prevent data leakage. Conversely, an enclave

can also clear the register to only allow access to its own memory.

Read and write permissions can be given independently for each

key. Execute permissions are not available on shared memory since

enclave code can only exist in the private (attested) enclave memory.

A special case is memory shared by the host itself, which always

has the ID “2”, and is accessible to any enclave running in the same

address space, assuming that the shared memory region is mapped.

5.4 TLB & Page Table Walker
We extend the PTW such that tags are fetched during the transla-

tion. There, the PTW always checks if the physical address that is

accessed next is covered by the tag store. For enclave memory, all

levels of the paging hierarchy must reside in the taggable region.

Apart from that, we do not impose any restrictions on the combina-

tion of taggable and non-taggable memory. As each translation of

taggable memory results in additional tag lookups, the translation

latency is slightly increased. To lower the performance impact of

SPEAR-V on non-enclave memory, the OS can explicitly use pages

that are not covered by the tag store for applications that do not use

enclaves. Thus, the PTW would not need to perform any additional

fetches, resulting in no performance loss.

Figure 4 shows memory translation with tagged memory. First,

the PTW reads the PPN of the root of the paging hierarchy from the

SATP register and uses it to fetch the tag of the first page table (1).

After that, it uses the PPN and part of the virtual address to fetch

the page table entry pointing to the next page table (2). The PPN

in this PTE is then used to first fetch the tag and then the next PTE.

This is repeated until a PTE pointing to a leaf page is found (3 – 6).

The PTW keeps track of the immutability of the fetched page tables

at every paging level. In the final step, the PTW fetches the tag of

the leaf page and performs access checks based on both the tags of

the related page tables as well as the tag of the leaf page itself (7).

If the leaf page belongs to an enclave, all of the corresponding page

tables have to be immutable. If this check succeeds, the PTE of the

leaf page and important tag bits that are required for access checks

are stored in the TLB. For this, we minimally extend TLB entries

by 4 bits, which avoids re-fetching the tags on future accesses.

The MMU performs access checks for all TLB hits based on the

contents of the page type, the ASID/EID field, and the immutable

bit. If the host or the OS tries to access an enclave page, the MMU

triggers an exception that traps into the SM. The same applies to

enclaves that try to access (non-shared) pages of other enclaves or

the host. Since alias mappings might exist in the TLB and to ensure

consistency, we flush affected TLB entries when tags are written.

Also, to avoid potential side-channel attacks based on memory

fetches initiated by the PTW [8], we mark such memory requests

as uncacheable within an enclave.

6 SOFTWARE DESIGN
In our design, the SM orchestrates the entire enclave lifecycle and

manages their permissions. The OS, host application, and enclaves

can use so-called SM API calls, which is implemented as a separate

instruction, to manage enclaves and their shared memory. These

are similar to syscalls, but they are handled by the SM, in the M-

mode, instead of the OS. In this paper, we focus on the isolation

mechanism and core features of a SM. In the future we foresee that

other software features like attestation or advanced syscall filtering

will be ported from other enclave systems ([22, 28, 30]) or vice versa.

However, re-implementing these features would impose significant

engineering efforts and is thus outside the scope for this paper.

In the following, we give an overview of our SM and its most

important functions concerning the enclave lifecycle.

Security Monitor. The security monitor (SM) is software running

in M-mode and is part of our TCB. All security-critical operations,

such as enclave and tagging operations, must be done through the

SM. For this, it provides several API functions that can, similar to

syscalls, be called from the enclave, host application, or the OS. We

currently provide E_CREATE for enclave creation, E_DESTROY for

enclave destruction, E_ADD/E_REMOVE for adding/removing enclave

pages, E_ENTER/E_EXIT for entering/exiting enclaves, as well as E_
SHARE and E_REVOKE for managing shared memory.

Enclave Creation. Before an enclave can be started, it has to be

created with E_CREATE. Here, the host first reserves memory for

the code, data, and stack pages of the enclave, as well as pages for

managing the enclave’s metadata (i.e., the so-called ECS (enclave

control structure) and TCS (thread control structure)), and supplies

it to the SM. Each enclave has one such ECS, and each enclave

thread has a TCS that also points to the ECS. The SM assigns a new

SPEAR-V: Secure and Practical Enclave Architecture for RISC-V ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

enclave ID and protects/tags these pages accordingly. The ECS is

tagged such that only the SM can access it, while the ownership

of the other pages is transferred to the enclave itself. Once the

pages belong to an enclave, the host can no longer access them or

change their mapping. When creating an enclave, the SM stores

the current SATP value in the ECS such that only the same address

space can be used to start the enclave. It also marks any page tables

that contain PTEs related to enclaves as immutable. This ensures a

trusted mapping of virtual to physical addresses. Furthermore, by

tagging a physical page as an enclave page, it is also ensured that

exactly one valid and immutable mapping for the given physical

page exists. Once an enclave is destroyed, its ID can be reused since

the SM ensures that no physical page, tagged with this ID, exists.

Enclave Execution. Once an enclave is set up, the host application
transfers control to the enclave by invoking E_ENTER. Upon enter-

ing, the SM stores the host execution context on the TCS page and

sets the MEID as well as the TCS register, which switches the CPU

into the enclave mode. From there, the enclave starts at a predefined

entry point. Like a function call, E_ENTER accepts a arguments that

are passed to the enclave and, when exiting, returns a return value.

Interrupt Handling. In our design, the SM may enforce a flexible

policy that can disallow external interrupts on a given core and also

enforce a minimum timer interrupt frequency. If an interrupt occurs

during enclave execution, the OS may want to schedule another

process on that core. During enclave execution interrupts always

trap to the SM, which then stores the execution context (i.e., CPU
registers) on the TCS page before restoring the host context from

TCS. Furthermore, when entering or exiting an enclave, the SM also

flushes any known microarchitectural buffers that may be prone

to leakage. For this, we integrate the work of Wistoff et al., which

provides a separate flushing instruction for the CVA6 core [60].

Enclave Nesting. For a flexible and future-proof TEE design, we

anticipate that enclaves need to spawn isolated environments them-

selves as well. Such situations can arise when an enclave depends

on third-party IP that is required to be executed in its own TEE or

sandbox. In our design, enclaves can spawn arbitrary child enclaves

with no performance impact. Assuming an enclave has access to

enough memory (either given at E_CREATE or via E_ADD), it can
call E_CREATE itself with no intervention or knowledge from the

OS or host application. In this case, ownership of the necessary

pages is simply transferred from the outer enclave to the inner en-

clave without changing host page tables. For fast context switches,

each TCS page stores three different pointers. First, a pointer to the

parent TCS, which created/entered the current enclave. Second, a

pointer to the root enclave’s TCS, which is the outermost enclave

that was created by the host application. And third, a pointer to

the TCS that is currently executing. During context switches (e.g.,

when a timer interrupt happens), we only need to look up the root

level TCS, update the currently executing enclave, and restore its

own host context. Any intermediate enclaves are skipped and only

needed when explicitly exiting an enclave, which returns control

to its respective parent. Memory accesses within a nested enclave

are treated the same as others and experience no slowdown. Dur-

ing context switches, independent of the nesting level, only the

root level TCS structure is updated. Each nested enclave page is

managed by the same paging structures as top-level enclaves or

host applications. Thus, even for arbitrarily deep enclave nestings,

memory accesses never experience performance deterioration due

to increased page translation latencies. Also, the OS does not learn

of the existence of nested enclaves because it cannot directly in-

spect the tag store to learn the true owner of the page and the SM

handles transitions such that the host application only interacts

with the outer enclave. Nested enclaves follow the same lifecycle

as top-level enclaves, with one exception: Before parent enclaves

can be destroyed, they must also relinquish control of or destroy

their child enclaves. In case the number of child enclaves, which are

tracked in the ECS, is not zero at this time, the SM can simply tra-

verse the processe’s page tables to find and destroy the remaining

child enclaves and their respective pages. These pages are easily

found since page tables that contain enclave pages are tagged as

immutable and also the enclave pages themselves are tagged.

Shared Memory. Our SM provides two API calls for memory

sharing. First, E_SHARE takes the virtual start and end addresses

of the memory to be shared, a permission flag, and the receiving

enclave (i.e., ECS page) as arguments and returns a key that is

unique for each shared memory region on the system. The SM tags

shared pages with the page type PT_SHARED and sets the ID field

to the respective key. If called by the non-enclave host application,

the key will be “2”, to which any enclave within the same process

has access. Enclaves can only access host memory if it has been

shared with them using this API call (ℐ3). If the target enclave runs
in another address space, the host is responsible for mapping that

shared memory region using the same virtual addresses. Enclaves

can only receive a shared memory request if the SM verifies the

mapping, makes sure it is immutable and marks the key as valid

within the ECS for the given enclave. During this step, the SM

ensures that the mapping for each physical and virtual page in a

shared region is also the same for the recipient’s address space. Each

enclave can further share each region it has access to with other

enclaves to the extent of their own respective permissions. The

second API call is E_REVOKE, which allows enclaves and hosts to

remove their own access to a shared memory region. Our prototype

implementation allows each enclave to have access to 64 different

shared regions. However, the maximum number is only limited by

the size of the ECS structure, which can be extended in practice.

Each of these entries also tracks its owner, recipient, as well as a

reference counter to ensure all uses can be revoked before cleanup.

Swapping. To prevent controlled-channel attacks, only pages from
enclaves that are currently not running can be swapped out. If an

enclave page is swapped out, the enclave becomes unrunnable.

Before giving the OS access to a page, such that it can be swapped

out, the SM would encrypt it and add metadata in the ECS in order

to swap it in again. The SM itself does not implement any swapping

policies. Instead, the host OS can decide to swap out any enclave

page apart from ECS pages as long as they are not currently running.

7 SECURITY ANALYSIS
Enclave and shielded execution systems provide mechanisms to pro-

tect data from being leaked or corrupted. In this section, we detail

how SPEAR-V provides the confidentiality and integrity guarantees

we introduced with our invariants in Section 4.

Malicious Memory Mappings. As our threat model assumes a

possibly compromised OS, we must account for the fact that the OS

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Schrammel et al.

can generate arbitrary malicious entries in the page tables of a host

application. This is because SPEAR-V does not have (duplicated)

page tables in a separate trusted region but instead uses the ones set

up by the OS. Thus, we have to protect against attacks that rely on

any kind of malicious page table entries. This includes remapping

enclave pages at different addresses or unmapping them entirely.

As described by our invariants ℐ2/ℐ4, enclave-private pages must

only be accessible by the enclave itself, and their unique mapping

(virtual to physical translation) must not change. Each enclave-

private page can only have one valid virtual address within a single

address space. When creating enclave pages (e.g., using E_CREATE
or E_ADD), the SM guarantees the correctness of the mappings by

performing several checks. In the following, we denote mutable

page tables (i.e., pages whose tags have the immutable bit not set) as

mPT and immutable page tables (i.e., pages whose tags are marked

as immutable and as PT_PAGETABLE) as iPT.
An enclave page is created by tagging an unprotected page (that

is already mapped) as well as the associated page tables. This re-

quires two checks, performed by the SM, to avoid violating ℐ2 &
ℐ4. First, when an enclave page is created, its respective (parent)

page tables are only set to immutable iff no other PTE contained

within points to an enclave page or an iPT. Tagging such a PT

as immutable would create an alias mapping for another already

established and valid mapping. Because of this, the SM must scan

through all PTEs of all PTs that are relevant for the translation (up

to 3 · 512 accesses). Second, the SM must verify that the page is not

already mapped within another iPT. If a page is mapped more than

once and one of these mappings is within an iPT, tagging this page

would create an alias mapping. For this reason, the SM traverses

all iPTs beginning from the SATP and checks if any PTE (within

an iPT) points to the page that is currently being added. In the

worst case, this might require up to 512
𝑛
lookups with 𝑛 being the

number of memory hirearchy levels, but this is both unrealistic as

well as optimizable. The amount of lookups is limited by both the

number of valid PTEs and the number of iPTs. Since page tables are

usually very sparse, higher-level page tables typically have very

few “valid” (read: existing) PTEs. Furthermore, the host might clus-

ter all enclave pages within a process such that they have virtual

addresses that are close to each other, thus limiting the number

of iPTs. Furthermore we implemented an optimization to avoid

scanning iPTs that only contain enclave pages. At E_ADD, we set the
“validated” bit for such last-level iPTs. Analogous, the bit in higher

level iPTs can be set if all its entries only point to such validated

iPTs. During the recursive iPT scan, we omit paths with validated

iPTs, as they cannot contain (alias) mappings to regular pages.

When entering an enclave, the SM ensures that it is run in the

same address space that it was created in by comparing the SATP
with the value stored in the ECS. When accessing enclave pages

(pages tagged as PT_ENCLAVE), the PTW checks that the ID of the

currently running enclave (MEID) matches the ID of the tag and that

each used page table is tagged as immutable and PT_PAGETABLE.
In the following, we describe the possible ways an OS can try to

create invalid (alias) mappings and how we protect against this.

Attack 1. The simplest type of aliasing is to generate a duplicated

mapping in a mutable PT for a page that will later be added as an

enclave page. Such an attack is depicted in Figure 5 (left) as the

additional connections to the leaf page (1, 2). When the leaf page

SATP

PT2

PT1

PT0

P

SATP

PT2

PT1 PT1

PT0 PT0

E
1

2

P

3

4

SATP 1

PT2

PT1

PT0

E

SATP 3

SATP 4

SATP 2

PT2

PT1

PT0

6

7

5

Figure 5: Possible malicious page table setups that could lead
to alias mappings. Green PTs are immutable.

(P) is added to an enclave, one of the virtual addresses leading to

the page is passed to the SM. As mentioned above, the SM scans

the entire page table hierarchy for other mappings to the page that

is being added. If the SM finds another PTE referencing the same

physical page number, the API call fails, the PT remains mutable,

and the page is not added as an enclave page. In the benign case

that no duplicate mapping is detected, the SM marks the page as

an enclave page and the relevant PTs as immutable.

Attack 2. Twomore complex cases are depicted in Figure 5 (center).

In the first case, a mPT points to an iPT that is part of an enclave

mapping (3). During a TLB miss, the PTW asserts that all associated

PTs are immutable, before a valid TLB entry for an enclave page is

created. Thus, in this attack scenario, the access would fail. However,

if an application tries to add the leaf page (P) to an enclave, this

would create an alias mapping (4) for the existing enclave page. The

SM detects this before adding the page because the mutable PT1

has a PTE pointing to an immutable PT (3), which is not allowed. In

the second case, an iPT contains a PTE for a normal page (4). If the

application tries to add this page to an enclave using the mapping

on the right, checking the entries of all directly involved PTs is not

sufficient to detect the created alias mapping. For this reason, the

SM traverses all iPTs and scan for potential alias mappings.

Attack 3. The OS might try to access enclave pages through other

processes, as shown in Figure 5 (right). In the simple case (5), the

enclave page is simply mapped as a leaf page in another process

(SATP 2).More complex cases (6, 7) involvemalicious processeswith

SATP values that point to existing iPTs. Our design mitigates these

attacks through a combination of the memory tag and the ECS. An

access with a mapping like (5) would simply fail because the PTs are

not immutable (cf. Attack 2). As described in Section 4, an enclave

page is only accessible if the current value of the MEID register

matches the ID stored in the tag. This implies that an enclave page

is only accessible if the current execution context matches that of

the enclave owning the page. For this reason, accessing the enclave

page through mapping (6) would trigger an exception. Furthermore,

using mapping (7) also results in an exception, but for a different

reason: The page level, stored in the tag of PT1, does not match the

PTW’s expected value. When switching the execution context to an

enclave, the SM checks that the current value of the SATP matches

that stored in the ECS of that enclave. As the ECS is inaccessible

for all software except the SM, the OS cannot forge the entry in the

ECS. The SM detects the mismatch when entering (or continuing

execution of) the enclave and prohibits enclave execution, thus

protecting against such malicious mappings.

SPEAR-V: Secure and Practical Enclave Architecture for RISC-V ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

In short, before tagging a PT as iPT, the SM ensures that none of

its PTEs points to an already existing enclave page or an iPT. And

before tagging a page as an enclave page, the SM ensures that, in

the current address space, no existing iPT has another PTE pointing

to that new page. Thus, within an address space, there exist no

immutable and valid double mappings for enclave pages. When

removing an enclave page, the SM checks all PTEs in the affected

iPTs. In case none of them point to an iPT or enclave page anymore,

the iPT itself is converted to a mutable PT. The hardware TLB &

PTW checks, the checks done by the SM during enclave entry, and

the verification of page tables allow us to protect all steps of the

address translation process, as indicated by the green arrows in

Figure 4, while the mappings are still managed by an untrusted OS.

Physical Memory Access. Attackers with physical access to the

memory are out of scope, however orthogonal memory encryption

solutions [58] can be used to also prevent such attack vectors.

Our security is based on checks done by the TLB & PTW. For

this, we require virtual memory to be active. Most OSs, like Linux,

only require physical memory access during boot. Once virtual

memory is set up, they typically also map the entire DRAM into the

virtual memory. On RISC-V the SATP register decides if memory

accesses are using virtual memory or not. Once tagging is active, our

hardware monitors writes to this register such that virtual memory

cannot be disabled anymore without the SM noticing. This does

not pose any performance or compatibility issues with Linux and

normal process scheduling since, while this register is updated at

every process context switch, the bits that decide if virtual memory

should be enabled or not will always stay the same. Hence, once

tagging is active, it is ensured that any memory access will adhere

to the permissions set within the tags.

DMA & IOMMU. Devices with direct memory access may access

the DRAM directly, which would bypass our checks. Hence, we

deny any DMA request belonging to a memory range covered by

the tag store. The OS can set up the tag store, such that part of the

DRAM is not covered by it, to support devices that may require

direct memory access. Alternatively, cores with an IOMMU can

also implement the same security mechanism as the normal MMU.

Indirect Memory Attacks. Indirect accesses are prevented by

secure interruption. At each interrupt or exception during enclave

execution, the enclave context (i.e., CPU registers) is written to

its secure ECS page. Also, microarchitectural per-core buffers are

cleared by the SM before continuing the execution of untrusted

code. While the CVA6 CPU does not have a shared (last level) cache,

and preventing attacks on such shared caches is outside the scope

of this paper, SPEAR-V is compatible with the countless already

existing cache side-channel mitigations [20, 27, 34, 43, 44, 54, 59].

Memory safety vulnerabilities within the enclave code can be

another attack vector. This is generally an active research topic on

its own. However, our USHMCFG feature, as well as nested enclaves,

help enclave developers in minimizing the potential for leaked data.

It allows the enforcement of the privilege of least principle, even

within an enclave, backed by strong hardware guarantees.

Iago Attacks. Given a malicious host OS, it is possible that the

attacker tries to compromise the enclave state by returning forged

values from syscalls. E.g., it may return already mapped enclave

memory when calling mmap instead of newly mapped memory,

which could lead to corrupting its own memory when writing to it.

We assume that the SM and enclave (runtime) already sufficiently

check any values returned from the OS. An enclave can also use the

USHMCFG register to temporarily disable access to enclave memory,

e.g., while writing to the newly mapped public memory region, to

help thwart such attacks.

Code Reuse and Memory Corruption Attacks. Code reuse

attacks, such as ROP [47] and JOP [6], link existing code gadgets
to an instruction chain that performs operations beneficial to the

attacker. The initial foothold for such an attack is a memory cor-

ruption vulnerability that allows the attacker to alter the control

flow of the program. In the past, such attacks were proven effective

against TEEs and trusted runtimes [5, 9, 13, 45]. While SPEAR-V is

not specifically designed to protect against memory corruption or

code reuse attacks, it still provides a higher degree of protection

for enclaves than for non-enclave code. As each enclave only holds

mappings to enclave memory, it is impossible to craft a gadget chain

that escapes the enclave memory region [45]. Trying to execute

gadgets outside the enclave memory will result in a page fault on a

page that is considered untrusted. Thus, the SM detects the control

flow violation and can terminate the enclave. ROP and JOP attacks

that are confined to enclave memory are, however, not detected

by this mechanism. It is still possible to reduce the impact of such

attacks by dividing an application into multiple child enclaves. One

could, for example, confine each function (or groups of related func-

tions) to a separate child enclave. Doing so reduces the impact of

JOP and ROP attacks significantly since, it is impossible to escape

the memory of a child enclave. Thus, the gadget space is limited to

the gadgets found in the child enclave. Depending on the usage of

trusted runtimes, it is still possible to perform memory corruption

attacks that target the runtime instead of the enclave code itself [5].

A holistic protection against such attacks would require a verified

error-free runtime as well as error-free enclave code.

Protecting Host Memory. In our design, host memory is never

accessible from a (sub-)enclave by default. The host has to explicitly

convert memory to shared-memory regions before both the host

and an enclave can access them. Using the API calls for shared

memory, the sharer (i.e., host) has full control over the permissions

of each shared region.

8 EVALUATION
In the following, we evaluate our design using a mix of micro-

and macro-benchmarks. We synthesized our modified CVA6 for a

Genesis 2 FPGA and used this to evaluate performance within a

Linux environment. Our design relies on memory tags that need to

be fetched at every TLB-miss. This increases the latency of every

initial access to a page that is inside the taggable memory region.

Subsequent accesses suffer no penalty since all relevant tag bits

used for access checks are cached inside the TLB. For evaluation,

we use 64- and 128-bit tags to also account for potential future

bits stored in the tags. Smaller tags (24- or 32-bit) would only save

memory, but not increase performance due to the memory inter-

face width, which is usually larger than 64-bit. We measure the

resulting memory access times and throughput using LMbench [36].

For benchmarking overall performance overhead and to compare

enclaves with nested enclaves, we use Embench [23]. Finally, we

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Schrammel et al.

aha-mont64
crc32

cubic
edn

huffbench
matmult-int

minver
nbody

nettle-aes
nettle-sha256

nsichneu
picojpeg

primecount
qrduino

sglib-combined
slre

st
statemate

tarfind
ud

wikisort
geomean

0.95

1.00

1.05

N
or

m
al

iz
ed

R
un

tim
e

1.
01

1.
01 1.

02

1.
01

1.
01

1.
01 1.
01

1.
01

1.
01

1.
01 1.

02

1.
01

1.
01

1.
01

1.
01

1.
01 1.
01

1.
01

1.
01

1.
01 1.
01

1.
01

1.
01

1.
01 1.

02

1.
01

1.
01

1.
01 1.
01

1.
01

1.
01

1.
01 1.
02

1.
01

1.
01

1.
01

1.
01 1.
02

1.
01

1.
01 1.

02

1.
01 1.
01

1.
01

1.
01

1.
01 1.
01

1.
01

1.
01

1.
01 1.
01

1.
01

1.
01

1.
01 1.

02

1.
01

1.
01

1.
01

1.
01

1.
01 1.
01

1.
01

1.
01

1.
01 1.
01

1.
01

1.
01

1.
01 1.
02

1.
01

1.
01

1.
01 1.

01

1.
01

1.
01

1.
01 1.
02

1.
01

1.
01

1.
01

1.
01 1.
02

1.
01

1.
01 1.

02

1.
01 1.
01

1.
01

64-bit Tag (Native) 64-bit Tag (Nested Enclave) 128-bit Tag (Native) 128-bit Tag (Nested Enclave)

Figure 6: Relative runtime overhead of all Embench benchmarks for both 64 and 128-bit memory tagging setups in- and outside
an enclave compared to baseline performance without memory tagging.

680

700

720

740

[n
s]

∆ = 8.4 (+1.2%)∆ = 10.9 (+1.5%)No Tag
64-bit Tag
128-bit Tag

2 KB 8 KB 32 KB 128 KB 512 KB 2 MB
80

100

Figure 7: Memory latency for different tag sizes.

use microbenchmarks to evaluate the overhead for modifying im-

mutable page tables, swapping, and page table scanning.

Embench. Embench is a collection of benchmarks for embedded

systems. They are ideal for benchmarking enclave systems because

they do not require any syscalls to function. For a baseline, we run

the benchmarks without tagging and without enclaves. Then, we

run them within a nested enclave, both with 64 and 128-bit tagging,

and repeat this 50 times. For nested enclaves, we take the total time

it takes to enter an enclave, creating and entering a nested enclave,

within which we start Embench, return the result to the outer en-

clave, and finally return it to the host application. Figure 6 shows

the relative performance overheads of all Embench benchmarks

both out and inside an enclave compared to the baseline with no

memory tagging. To account for outliers (e.g., due to Linux’s sched-

uling), we only plot the 95% percentile. The introduced overhead

stems mostly from timer interrupts, where the SM saves and swaps

the enclave’s and host’s states. Also, for memory that is tagged, the

TLB performs one additional memory access per translation level

for 64-bit tags and two additional accesses for 128-bit tags. Across

all benchmarks, the overhead caused by memory tagging alone is

1.1%, while the nested enclaves show only a 1.2% runtime overhead.

LMbench. To simulate memory-intensive workloads, we show the

worst-case overhead by using LMbench’s lat_mem_rd benchmark

to measure memory latency and the bw_mem benchmark to mea-

sure memory bandwidth. Figure 7 shows these memory latency

differences. There are two significant latency jumps. The first oc-

curs at 32 kilobytes which is the cache size of the CVA6 CPU. Bigger

working sets lead to cache misses that increase latency. The second

jump marks the end of the TLB, which, on our CPU, holds entries

for up to 64 KiB of memory. Afterwards, the latency diverges for

different configurations due to the increased TLB-miss latency for

tagged memory. On average, for working sets above 256 KiB, the

latency is increased by 1.5% for 128-bit tags. We use bw_mem to

measure memory bandwidth with a working set of 4 MiB. Table 1

shows the results of the different memory bandwidth benchmarks.

Overall the impact on memory bandwidth is less than 1%. 128-bit

tagging shows a slightly higher overhead since the memory inter-

face used by the PTW can only read one word at each cycle. The

No Tag 64-bit Tag 128-bit Tag

rd 22.00 21.86 (-0.63%) 21.79 (-0.95%)

wr 56.00 55.98 (-0.04%) 55.95 (-0.09%)

Table 1: Memory bandwidth in MB/s for different memory
tag sizes and LMBench bw_mem testbenches.

write bandwidth shows the smallest reduction with 0.09% while the

read bandwidth presents the highest reduction of 0.95%. The small

overhead for the write bandwidth is caused by write buffering of

both the CVA6 core and the AXI4 bus it is connected to.

FPGA Utilization.We evaluate the FPGA utilization of our design

in two configurations. The first configuration is optimized for our

enclave design, which uses 24-bit tags, out of which we only store

the necessary bits in each TLB entry (cf. Figure 3). The second

configuration also caches the remaining 104 “future” tag bits in

every TLB entry. In anticipation of future use cases, this simulates

the ’worst case’ scenario in terms of hardware size. The unmodified

baseline uses 68212 LUTs and 50498 Flip-Flops. Our optimized en-

clave design uses 68907 LUTs (+1.01%) and 50864 Flip-Flops (+0.72%).

Caching all tag bits in the TLB requires 3.58% more LUTs and 5.22%

more flip-flops compared to the baseline. The critical path of the

core remains unchanged for both configurations. Our hardware

changes in the PTW simply extend the existing state-machine with

an additional state to fetch memory tags. The access checks per-

formed on the cached tag bits in TLB entries evaluate in parallel to

all preexisting checks based on permission bits and privilege levels.

Immutable Page Tables. Our design requires that the SM sets

enclave-related page tables to immutable. Thus, whenever the OS

writes to these pages, they trap to the SM. This happens, e.g., when

mapping new pages near enclave pages. This increases the latency

of write operations on such page tables. We evaluate this latency

increase by allocating an enclave page and measuring the time of a

mprotect syscall on an adjacent page that is covered by the same

page table. On average, our experiment shows that the syscall takes

around 21.7% longer. The overhead stems from the exception that

is delivered to the SM, where the executed instruction and target

memory address are evaluated. If it was a write to an immutable

page table, but the write itself does not affect any enclave-related

page table entries, the SM emulates the write.

Swapping. When swapping out enclave pages, the SM is required

to encrypt them before swapping them out. Conversely, it decrypts

them when swapping them in. To estimate the additional time this

takes, we benchmark the Ascon cipher [21] and measure the time

it takes to encrypt and decrypt pages. For this, we measure 260k

cycles for encrypting a 4 KiB page and 267k cycles for decryption.

When implementing this primitive in hardware such that it is usable

SPEAR-V: Secure and Practical Enclave Architecture for RISC-V ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

8.0 KiB 32.0 KiB 128.0 KiB 512.0 KiB 2.0 MiB 8.0 MiB 32.0 MiB 128.0 MiB 512.0 MiB

0
10,000
20,000
30,000
40,000
50,000
60,000

C
yc

le
s

(p
er

4K
iB

pa
ge

)

E ADD E REMOVE mmap unmmap

Figure 8: Runtime in cycles per page for adding and removing
enclave memory compared to mmap/munmap.

as a CPU instruction [50], according to Steinegger et al., the per-

formance increases by a factor of 50. With dedicated hardware, the

time it takes to encrypt or decrypt a 4KiB memory page would only

be around 8k cycles. This is even faster than the simplest system

call (getpid) which takes 10k cycles on our system.

Page table scanning. When adding pages to an enclave, the SM

must scan the page tables to ensure that they are not mapped

twice. To measure this added overhead, we create a new enclave

and request/relinquish memory from the host with different sizes.

Thereby, the SM ensures that all added pages are mapped and are

zero-initialized and all removed pages are also zeroed. For com-

parison, we also benchmark the time of mmap and munmap on the

same memory areas. Figure 8 shows this overhead. We use the

MAP_POPULATE flag to ensure all PTEs exist before adding them to

the enclave. The previously mentioned E_ADD optimization, where

we can omit scanning PTs that only contain enclave pages, has an

effect starting at around 2MiB. For larger sizes E_ADD takes around

8.0x the time of mmap, while E_REMOVE only takes 1.8x compared

to mmap. Even at the clock speed of our FPGA at 50MHz, the added

time per page is only 0.7ms. On faster systems, or enclave work-

loads with a runtime of more than a few milliseconds, this overhead

becomes negligible. Adding 160MiB takes around 1.8 · 109 cycles
on our system. Due to different feature sets, architectures, and mi-

croarchitectures, we cannot directly compare this to other systems.

However, for reference, Ngoc et al. measure around 5 · 109 cycles
when starting an SGX enclave with the same size [38].

9 RELATEDWORK
In addition to commercial products like Intel SGX [16], research pro-

posals for enclaves like Keystone [30], Sanctum [15], Stockade [42],

Bastion [10], Elasticlave [64], SERVAS [49], and CURE [4] exist

that target application-class processors. Sancus [39], TyTan [7],

and TIMBER-V [57] implement similar memory isolation only for

lightweight devices. In contrast, our work targets CPUs with vir-

tual memory without some of the restrictions of inflexible memory

management like [15, 16, 30] and with low performance overheads.

Penglai [22] is a RISC-V-based enclave aiming to solve the prob-

lem of scalable memory protection. However, their proposal re-

quires all page tables, including unprotected ones, to reside in a

protected memory region of a fixed size. This requires non-trivial

OS modifications such that any used page table is in this region. Fur-

thermore, any write access to page tables must be verified by their

monitor, which slows down all applications running on the system.

SPEAR-V is able to only protect necessary page tables on a fine

granularity without changing the existing memory layout. Thus,

unprotected applications do not suffer from the same performance

degradations when PTEs are updated.

Park et al. [41] extend SGX to support nested enclaves. However,

in contrast to our work, their design adds latency to all access

validations for each additional nesting level.

On SGX, previous work aimed to solve the issue of malicious

enclaves by means of monitoring enclave behavior or statically

analyzing the enclave code [16]. However, these methods are ei-

ther not practical or cannot protect against dynamically generated

code. SGXJail [56] isolates enclaves in separate sandbox processes

and also proposes hardware changes based on MPK. SGXLock [12]

presents a more scalable solution based on in-process sandbox-

ing using MPK and the x86 single-step debug mode. Instead of

adding sandboxing to SGX’s design, in this work, we present an

architecture with mutual distrust at its core.
Recently, most CPU manufacturers also offer solutions for confi-

dential virtual machines. Intel’s TDX [14], in contrast to our work,

has completely separate page tables that are managed separately

by a trusted software component. AMD’s SEV-SNP [46], similar

to SGX, also uses page-granular metadata. However, compared to

our work, both have much larger memory overheads since they

require 128 bits instead of our 24 bits. Since the CVA6 CPU does not

support virtualization, we did not implement such secure virtual

machines. However, we expect that SPEAR-V can be easily adapted

for these use cases as well, given the necessary hardware support.

Memory tagging allows the enforcement of fine-grained policies.

However, existing work typically only improves memory safety

and not isolation. Previous work [17, 48, 51] used tagged memory

for dynamic information flow tracking, while others [19, 24, 35, 52]

allow for partially configurable security policies. ARM MTE [33]

and SPARC M7 [2] offer a 4-bit tag per 16 and 64 byte, respectively,

which facilitate probabilistic memory safety but not isolation.

Tagged architectures that provide isolation, such as Loki [66],

Mondrian [62], or TIMBER-V [57], do so by associating every 32-bit

word inmemorywith a 32-bit, 2-bit, and 2-bit tag, respectively. How-

ever, Loki and Mondrian provide insufficient isolation in hostile

environments. TIMBER-V, while providing strict isolation, only tar-

gets embedded devices without virtual memory. Also, these schemes

typically have a large memory overhead of 6% to 100%.

10 CONCLUSION
In this paper, we proposed SPEAR-V, a fast and flexible RISC-V-

based architecture that provides both sandboxing and enclaving

based on the same hardware primitive. Thus, providing protec-

tion against malicious hosts and malicious enclaves alike. Through

minimal hardware changes, our design, which is based on page-

granular memory tagging, allows partially trusted page tables that

can be managed by an unmodified OS while still mitigating page

table-based controlled-channel attacks. We showed how arbitrarily

nested enclaves and shared memory can be efficiently implemented.

Protected applications (i.e., enclaves) have only a small performance

overhead of 1%, while unprotected applications have no overhead.

Finally, we open-source our architecture to facilitate research and

evaluate future protection mechanisms based on coarse-grained

memory tagging.

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Schrammel et al.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback.

This project has received funding from the Austrian Research Pro-

motion Agency (FFG) via the SEIZE project (grant number 888087).

Additional funding was provided by a generous gift from Intel.

REFERENCES
[1] Shaizeen Aga and Satish Narayanasamy. 2019. InvisiPage: oblivious demand

paging for secure enclaves. In ISCA’19.
[2] Aingaran et al. 2015. M7: Oracle’s Next-Generation Sparc Processor. IEEE Micro

(2015).

[3] Alder et al. 2021. Aion: Enabling Open Systems through Strong Availability

Guarantees for Enclaves. In CCS’21.
[4] Bahmani et al. 2021. CURE: A Security Architecture with CUstomizable and

Resilient Enclaves. In USENIX’21.
[5] Biondo et al. 2018. The Guard’s Dilemma: Efficient Code-Reuse Attacks Against

Intel SGX. In USENIX’18.
[6] Bletsch et al. 2011. Jump-oriented programming: a new class of code-reuse attack.

In AsiaCCS’11.
[7] Brasser et al. 2015. TyTAN: tiny trust anchor for tiny devices. In DAC’15.
[8] Bulck et al. 2017. Telling Your Secrets without Page Faults: Stealthy Page Table-

Based Attacks on Enclaved Execution. In USENIX’17.
[9] Bulck et al. 2019. A Tale of Two Worlds: Assessing the Vulnerability of Enclave

Shielding Runtimes. In CCS’19.
[10] David Champagne and Ruby B. Lee. 2010. Scalable architectural support for

trusted software. In HPCA’10.
[11] Stephen Checkoway and Hovav Shacham. 2013. Iago attacks: why the system

call API is a bad untrusted RPC interface. In ASPLOS’13.
[12] Chen et al. 2022. SGXLock: Towards Efficiently Establishing Mutual Distrust

Between Host Application and Enclave for SGX. In USENIX’22.
[13] Cloosters et al. 2022. RiscyROP: Automated Return-Oriented Programming

Attacks on RISC-V and ARM64. In RAID’22.
[14] Intel Corporation. 2020. Intel Trust Domain Extensions (Intel TDX).

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-

trust-domain-extensions.html

[15] Costan et al. 2016. Sanctum: Minimal Hardware Extensions for Strong Software

Isolation. In USENIX’16.
[16] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology ePrint

Archive (2016).
[17] Crandall et al. 2006. Minos: Architectural support for protecting control data.

ACM Trans. Archit. Code Optim. (2006).
[18] Cui et al. 2021. SmashEx: Smashing SGX Enclaves Using Exceptions. In CCS’21.
[19] Dalton et al. 2007. Raksha: a flexible information flow architecture for software

security. In ISCA’07.
[20] Dessouky et al. 2020. HybCache: Hybrid Side-Channel-Resilient Caches for

Trusted Execution Environments. In USENIX’20.
[21] Dobraunig et al. 2021. Ascon v1.2: Lightweight Authenticated Encryption and

Hashing. J. Cryptol. (2021).
[22] Feng et al. 2021. ScalableMemory Protection in the PENGLAI Enclave. InOSDI’21.
[23] Free and Open Source Silicon Foundation. [n.d.]. Embench: Open Benchmarks

for Embedded Platforms. https://github.com/embench/embench-iot/

[24] Kannan et al. 2009. Decoupling Dynamic Information Flow Tracking with a

dedicated coprocessor. In DSN’09.
[25] David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD memory encryption.

White paper (2016).
[26] Kim et al. 2019. SGX-LEGO: Fine-grained SGX controlled-channel attack and its

countermeasure. Comput. Secur. (2019).
[27] Kiriansky et al. 2018. DAWG: A Defense Against Cache Timing Attacks in

Speculative Execution Processors. In MICRO’18.
[28] Lebedev et al. 2019. Sanctorum: A lightweight security monitor for secure

enclaves. In DATE’19.
[29] Lee et al. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves with

Branch Shadowing. In USENIX’17.
[30] Lee et al. 2020. Keystone: an open framework for architecting trusted execution

environments. In EUROSYS’20.
[31] Li et al. 2021. CIPHERLEAKS: Breaking Constant-time Cryptography on AMD

SEV via the Ciphertext Side Channel. In USENIX’21.
[32] Li et al. 2021. CrossLine: Breaking "Security-by-Crash" based Memory Isolation

in AMD SEV. In CCS’21.
[33] Arm Limited. 2019. Memory Tagging Extension: Enhancing memory safety

through architecture. https://community.arm.com/arm-community-blogs/b/

architectures-and-processors-blog/posts/enhancing-memory-safety

[34] Liu et al. 2016. CATalyst: Defeating last-level cache side channel attacks in cloud

computing. In HPCA’16.
[35] Liu et al. 2018. TMDFI: Tagged Memory Assisted for Fine-Grained Data-Flow

Integrity Towards Embedded Systems Against Software Exploitation. In Trust-
Com’18.

[36] Larry W. McVoy and Carl Staelin. 1996. lmbench: Portable Tools for Performance

Analysis. In USENIX ATC’96.
[37] Moghimi et al. 2017. CacheZoom: How SGX Amplifies The Power of Cache

Attacks. IACR Cryptol. ePrint Arch. (2017).
[38] Ngoc et al. 2019. Everything You Should Know About Intel SGX Performance on

Virtualized Systems. Proc. ACM Meas. Anal. Comput. Syst. (2019).
[39] Noorman et al. 2017. Sancus 2.0: A Low-Cost Security Architecture for IoT

Devices. ACM Trans. Priv. Secur. (2017).
[40] Meni Orenbach, Andrew Baumann, and Mark Silberstein. 2020. Autarky: Closing

controlled channels with self-paging enclaves. In Proceedings of the Fifteenth
European Conference on Computer Systems. 1–16.

[41] Park et al. 2020. Nested Enclave: Supporting Fine-grained Hierarchical Isolation

with SGX. In ISCA’20.
[42] Park et al. 2021. Stockade: Hardware Hardening for Distributed Trusted Sand-

boxes. CoRR (2021).

[43] Moinuddin K. Qureshi. 2018. CEASER: Mitigating Conflict-Based Cache Attacks

via Encrypted-Address and Remapping. In MICRO’18.
[44] Gururaj Saileshwar and Moinuddin K. Qureshi. 2021. MIRAGE: Mitigating

Conflict-Based Cache Attacks with a Practical Fully-Associative Design. In

USENIX’21.
[45] Schwarz et al. 2019. Practical Enclave Malware with Intel SGX. In DIMVA’19.
[46] AMD SEV-SNP. 2020. Strengthening VM isolation with integrity protection and

more. White Paper, January (2020).

[47] Hovav Shacham. 2007. The geometry of innocent flesh on the bone: return-into-

libc without function calls (on the x86). In CCS’07.
[48] Song et al. 2016. HDFI: Hardware-Assisted Data-Flow Isolation. In S&P’16.
[49] Steinegger et al. 2021. SERVAS! Secure Enclaves via RISC-V Authenticryption

Shield. In ESORICS’21.
[50] Stefan Steinegger and Robert Primas. 2020. A Fast and Compact RISC-V Acceler-

ator for Ascon and Friends. In CARDIS’20.
[51] Suh et al. 2004. Secure program execution via dynamic information flow tracking.

In ASPLOS’04.
[52] Venkataramani et al. 2008. FlexiTaint: A programmable accelerator for dynamic

taint propagation. In HPCA’08.
[53] Wang et al. 2017. Leaky Cauldron on the Dark Land: Understanding Memory

Side-Channel Hazards in SGX. In CCS’17.
[54] Ruisheng Wang and Lizhong Chen. 2014. Futility Scaling: High-Associativity

Cache Partitioning. In MICRO’14.
[55] Weichbrodt et al. 2016. AsyncShock: Exploiting Synchronisation Bugs in Intel

SGX Enclaves. In ESORICS’16.
[56] Weiser et al. 2019. SGXJail: Defeating Enclave Malware via Confinement. In

RAID’19.
[57] Weiser et al. 2019. TIMBER-V: Tag-Isolated Memory Bringing Fine-grained

Enclaves to RISC-V. In NDSS’19.
[58] Werner et al. 2017. Transparent memory encryption and authentication. In 27th

International Conference on Field Programmable Logic and Applications, FPL 2017,
Ghent, Belgium, September 4-8, 2017.

[59] Werner et al. 2019. ScatterCache: Thwarting Cache Attacks via Cache Set Ran-

domization. In USENIX’19.
[60] Wistoff et al. 2021. Microarchitectural Timing Channels and their Prevention on

an Open-Source 64-bit RISC-V Core. In DATE’21.
[61] Wistoff et al. 2022. Systematic Prevention of On-Core Timing Channels by Full

Temporal Partitioning. IEEE Trans. Comput. (2022).
[62] Witchel et al. 2002. Mondrian memory protection. In ASPLOS’02.
[63] Xu et al. 2015. Controlled-Channel Attacks: Deterministic Side Channels for

Untrusted Operating Systems. In S&P’15.
[64] Yu et al. 2022. Elasticlave: An EfficientMemoryModel for Enclaves. InUSENIX’22.
[65] Florian Zaruba and Luca Benini. 2019. The Cost of Application-Class Processing:

Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core

in 22-nm FDSOI Technology. IEEE Trans. Very Large Scale Integr. Syst. (2019).
[66] Zeldovich et al. 2008. Hardware Enforcement of Application Security Policies

Using Tagged Memory. In OSDI’08.

Received 15 December 2022; revised 21 April 2023; accepted 26 April 2023

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://github.com/embench/embench-iot/
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enhancing-memory-safety
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enhancing-memory-safety

	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	4 Design Overview
	5 Hardware Design
	5.1 Memory Tagging
	5.2 Memory Tag Fields
	5.3 Control and Status Registers
	5.4 TLB & Page Table Walker

	6 Software Design
	7 Security Analysis
	8 Evaluation
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

