
MEMES: Memory Encryption-based Memory Safety
on Commodity Hardware

David Schrammel∗, Salmin Sultana†, Karanvir (“Ken”) Grewal†, Michael LeMay†,
David M. Durham†, Martin Unterguggenberger∗, Pascal Nasahl∗ and Stefan Mangard∗

∗Graz University of Technology
†Intel Labs

∗{firstname.lastname}@iaik.tugraz.at
†{firstname.lastname}@intel.com

Keywords: Fine-Granular Memory Encryption, Memory Safety, Exploit Mitigation, Intel® TME-MK

Abstract: Memory encryption is an effective security building block broadly available on commodity systems from
Intel® and AMD. Schemes, such as Intel® TME-MK and AMD SEV, help provide data confidentiality and
integrity, enabling cryptographic isolation of workloads on shared platforms. However, due to their coarse en-
cryption granularity (i.e., pages or entire virtual machines), these hardware-enabled primitives cannot unleash
their full potential to provide protection for other security applications, such as memory safety. To this end, we
present a novel approach to achieving sub-page-granular memory encryption without hardware modifications
on off-the-shelf systems featuring Intel®’s TME-MK. We showcase how to utilize our fine-grained memory
encryption approach for memory safety by introducing MEMES. MEMES is capable of mitigating both spatial
and temporal heap memory vulnerabilities by encrypting individual memory objects with different encryption
keys. Compared to other hardware-based memory safety schemes, our approach works on existing commodity
hardware, which allows easier adoption. Our extensive analysis attests to the strong security benefits which
are provided at a geometric mean runtime overhead of just 16–27%.

1 INTRODUCTION

In modern CPUs, memory encryption is a ubiquitous
technology protecting either confidentiality alone or
confidentiality and integrity of data in the external
memory (DRAM). Major vendors, such as Intel® and
AMD, offer a wide variety of different protection so-
lutions. For example, AMD’s secure encrypted virtu-
alization (SEV) (AMD, 2020) technology and the se-
cure nested paging (SEV-SNP) extension enable the
CPU to encrypt data with different encryption keys to
protect confidentiality (Kaplan et al., 2020). Intel®’s
total memory encryption (TME) engine also enables
the system to transparently encrypt data in DRAM us-
ing a single encryption key. The total memory en-
cryption - multi-key extension (TME-MK) enhances
TME with multiple keys (Intel®, 2022). Furthermore,
with the introduction of Intel® TDX (Intel®, 2023),
Intel®’s memory encryption engine also provides au-
thenticated encryption to help enforce data integrity.

However, the use cases for memory encryption
on commodity hardware are currently limited by the
coarse granularity of the underlying memory encryp-

tion engine. More specifically, both Intel®’s and
AMD’s solutions are intended to encrypt memory
with different encryption keys on the page granularity.
At this granularity, current use cases focus on provid-
ing protection against physical adversaries, e.g., per-
forming cold boot attacks (Halderman et al., 2008) or
cryptographic isolation of virtual machines on shared
platforms. Other applications, such as memory safety,
require much finer granularity encryption (i.e., object
granular). Thus, we identify the following research
questions:

R1: Can off-the-shelf memory encryption be lever-
aged to enforce memory safety on commodity sys-
tems?

R2: Can we achieve sub-page encryption granu-
larity to protect individual memory objects within the
same page?

In this paper, we introduce an approach based on
page table aliasing, allowing us to achieve fine-grain
memory encryption without hardware changes on
CPUs supporting Intel®’s TME-MK. The basic idea
of page table aliasing is to map the virtual memory to
the same physical memory multiple times with differ-

ent encryption keys. Using this technique, we show
that the encryption granularity of TME-MK is only
limited by the block size of the underlying encryption
primitive, i.e., 128-bit for AES.

Moreover, we introduce MEMES (Memory
Encryption-based MEmory Safety), a software
scheme leveraging fine-granular memory encryption
for full memory safety on commodity hardware. At
its core, MEMES encrypts data objects on the heap
with different encryption keys to comprehensively
address memory safety vulnerabilities. On memory
safety errors, depending on the underlying capabili-
ties of the encryption engine, MEMES either triggers
an error or probabilistically prevents the exploitation.
Thus, MEMES can provide security similar to mem-
ory tagging but without the associated memory over-
head of traditional tagging schemes. We integrate
MEMES into a runtime library to automatically pro-
tect memory objects on the heap. Finally, we discuss
the security benefits of our encryption-based memory
safety scheme and evaluate its runtime overhead using
the SPEC CPU® 2017 benchmarks.

Contributions. In short, our contributions are as
follows:

• We introduce a mechanism that enables off-
the-shelf CPUs featuring Intel®’s TME-MK to
achieve much more fine-granular memory encryp-
tion.

• Based on this mechanism, we design MEMES to
protect individual memory objects from memory
safety vulnerabilities.

• We thoroughly analyze the security benefits and
limitations of our design.

• We implement our design as a binary-compatible
heap allocator and show its performance and
memory characteristics.

Outline. The paper is structured as follows: Sec-
tion 2 describes the required background on Intel®’s
TME-MK, virtual memory, and memory safety. Sec-
tion 3 and Section 4 provide the design and imple-
mentation of MEMES. Section 5 and Section 6 an-
alyze MEMES in terms of security and performance
overhead. Section 7 discusses related work, and Sec-
tion 8 concludes this paper.

2 BACKGROUND

This section provides background on memory safety
vulnerabilities, virtual memory, and TME-MK.

2.1 Memory Safety

Memory safety errors are a persistent problem of
software written in unsafe programming languages,
such as C and C++. Among all security bug fixes
in Windows and Chrome, 70% of them are due to
memory safety vulnerabilities (Microsoft, 2019; The
Chromium Projects, 2020). These vulnerabilities en-
able an adversary to hijack the control flow and com-
promise the target system, e.g., return-oriented pro-
gramming (ROP) (Shacham, 2007) and jump-oriented
programming (JOP) (Bletsch et al., 2011). Further-
more, an adversary can corrupt data stored in memory
(data-oriented programming (DOP) (Hu et al., 2016))
in order to attack the system. Besides control flow
and data-only attacks, an adversary can also leak sen-
sitive or secret data (Durumeric et al., 2014). For ex-
ample, the Hearbleed security bug (Durumeric et al.,
2014) enabled remote adversaries to leak data on web
servers.

Generally, we distinguish between two types
of memory safety: spatial and temporal memory
safety (Szekeres et al., 2013). Spatial memory viola-
tions exceed the intended bounds of a memory object
(e.g., buffer underflow or overflow into an adjacent
memory object). Besides adjacent memory safety vi-
olations, out-of-bounds memory accesses (i.e., arbi-
trary reads or writes) allow the adversary to tamper
with data located on an arbitrary memory location.
In contrast, temporal memory safety violations target
the object’s liveness. Use-after-free (UAF) is an er-
ror where a dangling pointer, i.e., a pointer referring
to an already freed memory object, exists. The adver-
sary can misuse this dangling pointer to manipulate
data located at the same memory location. Addition-
ally, uninitialized memory access violations allow an
adversary to leak secret data.

2.2 Virtual Memory

Modern operating systems rely on virtual memory,
which allows them to isolate multiple processes in
their own virtual address space. Applications are pre-
sented with a virtual view of the physical memory.
Such virtual (linear) addresses are translated by the
CPU to physical addresses. Specifically, the memory
management unit (MMU) translates these addresses
using page tables that are configured by the operat-
ing system (OS). In most systems, the virtual address
space is divided into fixed-size, e.g., 4 kB, contigu-
ous memory blocks, i.e., pages. For each page, ad-
dress translation information is stored in the page ta-
ble entries (PTE) of a page table. This information
comprises the mapping from virtual to physical ad-

TME-MK
Engine

Memory

Physical Address
(including key ID)

Physical Address

Key ID Key Enc. Mode
0x1A4...
0x3C9...

AES-XTS-128
AES-XTS-128

0
1

0x 1 04000 0x4000CPU
Core

Figure 1: The TME-MK memory encryption engine pro-
cesses data transferred between the CPU core and the mem-
ory controller. The key identifier encoded in the upper bits
of the physical address selects the key used for data encryp-
tion.

dresses as well as other metadata, such as permis-
sion bits. During a memory access, the system con-
ducts a page table walk to resolve the physical ad-
dress. As these page table walks are costly, address
translation information of frequently accessed mem-
ory objects are cached in the CPU’s translation looka-
side buffers (TLBs).

2.3 Intel® TME-MK

Intel®’s total memory encryption - multi-key (TME-
MK) (Intel®, 2022) is a hardware feature introduced
with the Ice Lake platform. TME-MK enables the
system to transparently encrypt all data that is stored
in the DRAM with multiple different encryption keys.

As illustrated in Figure 1, the encryption engine is
located between the core and the memory controller.
Internally, the engine maintains a mapping from key
identifiers to encryption keys and encryption modes.
Depending on the used platform, a maximum of 215

keys are available. TME-MK uses the key identifier
embedded into the upper previously unused physical
address bits to encrypt or decrypt each data object
with the corresponding encryption key. The key iden-
tifier and the rest of the physical address are set in
the page table entry. Hence, currently, the intended
TME-MK encryption granularity is page granular.

For the encryption, TME-MK currently uses AES
in the XTS mode with either 128-bit or 256-bit keys.
It uses the physical address as an input such that same
data in different locations is encrypted differently. In
this mode of operation, TME-MK provides data con-
fidentiality for the DRAM. The memory encryption
engine used in Intel®’s TDX (Intel®, 2023) enhances
TME-MK with a SHA-3-based MAC that is stored in
the ECC memory to additionally help provide data in-
tegrity (Intel®, 2020). For simplicity, in the remain-
der of this document, we use key to denote a key iden-
tifier that then maps to the actual AES key material.

3 DESIGN

In this section, we first introduce our novel fine-grain
memory encryption mechanism on unmodified hard-
ware. We then introduce MEMES, which utilizes our
fine-grain memory encryption approach to mitigate
spatial and temporal memory vulnerabilities. As heap
vulnerabilities are one of the most dominant memory
safety issues (Kim et al., 2020), we focus, in our work,
on protecting heap-allocated data. The proposed so-
lution, however, can also be adapted for other types of
data.

3.1 Fine-Grain Memory Encryption

Intel® TME-MK is only designed for encrypting en-
tire pages (i.e., 4 kB) of memory (cf. Section 2.3).
For memory safety, however, where allocations are
much smaller, this is not suitable. To cryptograph-
ically protect memory objects from each other, we
would need to place them on separate pages to use
different keys for each allocation. For allocations that
can be as small as 16 B, this means that up to 256x
more (physical) memory would be needed with that
naı̈ve approach.

In this work, we enhance TME-MK-based page-
granular memory encryption to allow for a much finer
granularity (e.g., cache line granularity), which in turn
greatly improves memory usage efficiency. TME-MK
is an inherently page-granular mechanism since the
key is encoded in the physical page number that is
stored within a page table entry (PTE). However, we
can create multiple different PTEs (i.e., aliases) that
use the same underlying physical page but with a dif-
ferent encryption key. This provides us with two dif-
ferent virtual addresses for the same physical mem-
ory page but with a distinct view of the memory. De-
pending on the address used, the page is either en-
/decrypted with one or the other key. We can scale
this to the number of available keys on the platform,
which is up to 215. Since we set the key identifiers
in the page tables, which are indexed using virtual
addresses, it effectively behaves like encoding a tag
or encryption key into the virtual address. Thus, our
approach is similar to memory tagging schemes like
ARM® MTE (ARM Limited, 2019). However, in-
stead of using dedicated tagged memory hardware,
we achieve the same functionality with memory en-
cryption, which already exists in today’s hardware.
Since we can now access the same page with differ-
ent keys, we can encrypt smaller blocks of memory
with different keys. This allows us to use existing
hardware, intended for page-granular virtual machine
isolation, to be used for fine-granular use cases like

4K
B

Page Tables

Key 1 0x10

keyID PPN

Key 2 0x10

Key 3 0x10

a = calloc(64)

b=calloc(128)

c = calloc(64)

DRAM

b
a

c
b

Virtual
Addressspace

Memory
viewed with

Key 2

00000000
80156f8c

14912b49
00000000

b1ddae2a

Figure 2: An overview of our scheme using 3 encryption
keys. On the left side, the virtual address space of a pro-
gram is shown. A memory page (shown in white) is mapped
multiple times in the virtual address space but with differ-
ent keys. Cache lines and PTEs are colored distinctly for
each key. On the left, three consecutive allocations (a,b,c)
are placed in different mappings since each of them is en-
crypted with a different key. The PTEs show that all three
pages map to the same physical page number (0x10), how-
ever, the key identifier part of the physical address is dis-
tinct. On the right side, the memory page is shown when
viewed with key 2 (i.e., with the pointer from allocation b).
Using that pointer, data adjacent to the allocation only con-
tains garbled data or, in the case of authenticated encryp-
tion, an authentication error can be triggered.

memory safety. Figure 2 gives an overview of our ap-
proach.

CPU caches are typically tagged with the physical
address, which also contain the key identifier. Thus,
from a security perspective, it does not matter if phys-
ical memory that is used with different keys maps to
the same cache set/way or to different ones. At the
cost of additional cache evictions, it allows encrypting
memory even at a sub-cache line granularity, down to
the block size of the encryption engine (i.e., 128 bit).
Note that this is the same granularity as ARM® MTE
uses.

3.2 Threat Model

MEMES repurposes the TME-MK memory encryp-
tion engine to enforce fine-grained memory safety.
In this context, we consider a threat model, simi-
lar to prior work (cf. AOS (Kim et al., 2020) and
C3 (LeMay et al., 2021)), consisting of an adversary
that exploits one or several memory safety vulnera-
bilities to attack the system. We assume the adver-
sary has access to an arbitrary read-and-write prim-
itive or a stale pointer to mount a software attack.
MEMES provides exploit mitigation for user appli-
cations. Thus, we assume that the operating system
or hypervisor is trusted and free of exploitable bugs.
Moreover, as most memory safety vulnerabilities tar-
get the heap (Microsoft, 2019), we focus only on pro-
tecting objects on the heap. Nevertheless, a similar

Secret Plaintext$§X=op% $3gP%&Z

#86T$M"25E§G% 0000000 aXY82e

char* p = malloc(128);

char* q = calloc(64);

Figure 3: Lock and key access to the memory. Two mem-
ory objects p and q are allocated and the pointers map to
two different PTEs that have a different key encoded. Ac-
cessing the memory objects with the corresponding pointers
returns the correctly decrypted plaintext. Adjacent mem-
ory encrypted with different keys are inaccessible as garbled
data is retrieved or an authentication error may be triggered.

approach can be used to achieve protection for stack
and global data by adapting our design.

Furthermore, we expect common countermea-
sures, such as address space layout randomiza-
tion (ASLR) and data execution prevention (DEP),
to be enabled. This means that the attacker does
not know the exact address layout and cannot inject
and execute arbitrary code. Additionally, we con-
sider side-channel and microarchitectural attacks out
of scope for this work.

3.3 Memory Safety through Encryption

We design our memory safety scheme, MEMES,
based on fine-grain memory encryption. At its core,
it consists of three parts. First, the TME-MK-based
fine-grain encryption mechanism introduced in Sec-
tion 3.1. Second, a kernel extension that allows
TME-MK to be used from userspace applications via
syscalls. Finally, a heap allocation library called
TMEalloc, which leverages the newly added syscalls
to provide fine-grained protection of individual heap
memory objects.
Heap allocator. A heap allocator is responsible for
managing allocations at runtime (e.g., via malloc) as
well as their associated metadata. It requests pages
from the OS and hands them out in smaller chunks,
usually 16 B, to the application. In this work, we
design our scheme as part of a heap allocator which
has some advantages. E.g., it allows our library to be
retrofitted to existing pre-compiled binaries. Thus, we
do not only achieve mere binary compatibility, but in-
stead, we can provide transparent protection even for
unaware libraries.

On a high-level, our allocator (TMEalloc) assigns
each allocation a different encryption key. This gives
us a lock-and-key access to the memory, as illus-

trated in Figure 3. Similar to memory tagging, here,
the number of keys is also limited by the hardware.
Hence not every allocation can have a distinct en-
cryption key. Thus, we provide probabilistic security,
similar to ARM® MTE, which can only distinguish
16 tags. However, the allocator can choose the keys
such that adjacent allocations always use different en-
cryption keys, which prevents linear buffer overflows
deterministically.

To facilitate multiple encryption keys per page,
each heap memory page is mapped in the virtual ad-
dress space, once for each used key on that page. We
use the available virtual address space to place these
aliases at random locations which prevents guessing a
pointer with a different encryption key.
Kernel extension. In order for the heap allocator to
utilize TME-MK, we need to add a few syscalls for
managing aliased pages with their respective encryp-
tion keys. We design our modification for the Linux
kernel and use its existing key retention facility for
creating and destroying TME-MK keys supported by
our system (i.e., AES-XTS-128). Furthermore, we
add one new syscall encrypt mprotect, such that
the userspace application can apply specific keys for
virtual memory ranges.

4 IMPLEMENTATION

We implemented our MEMES design on top of
the high-performance heap allocator mimalloc (Mi-
crosoft, 2022) developed at Microsoft. In the follow-
ing, we detail the most important aspects of our im-
plementation.
Aliasing. We use the standard mmap syscall with the
MAP SHARED which allows creating shared memory.
Note that this also allows mapping the same physical
memory multiple times within the same process. We
use this to create heap memory aliases with different
encryption keys. For this purpose, we use the previ-
ously introduced encrypt mprotect syscall, which
allows our allocator to set a unique key for each
aliased mapping.
Pointer Layout. Figure 4 shows the layout of a
pointer returned from the allocator, which points to
one of the aliases. Assuming a heap size of 16 GB,
we use the pointer bits 34 through 47 for placing the
aliases in the available address space. The upper bits
(48 to 63) are set to 0 to conform to the architectural
requirements of canonical addresses. The only other
requirement here is that the aliased regions do not in-
tersect each other. This is done by placing the respec-
tive aliases, in this case, at least 16 GB apart. For

0
63 48

R
47 0h

Figure 4: The format of a heap pointer. We use bits [h:47]
for randomization of the placement for each key, where h =
log2(heap,size). E.g., h = 34 for a heap size of 16 GB.

applications requiring more memory, this minimum
distance can be increased accordingly.
Granularity. Since cache lines are tagged with the
physical address, and thus with the key, it would
lead to significant performance degradation if multi-
ple keys per cache line were used. Hence, we align
and pad all memory allocation on the heap to the
cache line granularity, i.e., 64 B on our system. This
trade-off incurs a slight memory overhead for applica-
tions relying on very small allocation sizes, which we
analyze in Section 6. This also means that any in-line
metadata (i.e., heap library metadata that is typically
located near the allocated data) must also be aligned.
Optimizations. Our fine-grain encryption design in-
evitably leads to an increase in required TLB entries.
Hence, we opted to base our implementation around
2 MB-sized pages, to alleviate some of the TLB pres-
sure.
Page Zeroing. When a userspace application re-
quests new memory, the kernel wipes the pages by
overwriting them with 0 bytes. This is done to pre-
vent any sensitive data leakage across processes. Fur-
thermore, the mmap syscall specifies that new mem-
ory returned to the application needs to be zero-
initialized. Many applications rely on this for per-
formance optimizations. E.g., when calling calloc,
which also ensures that the returned heap memory is
zero-initialized, a heap allocator can simply pass the
memory to the user without setting it to zero, if it was
a fresh page received from the kernel. However, when
using different encryption keys for a single page, it is
not obvious which key should be used for zeroing.
Because, when viewed with a different key, a zeroed
page is no longer zeroed. Hence, in our kernel imple-
mentation, we wipe the page as usual with the default
key. In addition, we defer zeroing to our heap library,
which then uses the correct key for zeroing (e.g., the
key used for heap metadata).

5 SECURITY DISCUSSION

In this section, we discuss the security benefits pro-
vided by our design in detail. Thereby, we exam-
ine how our design facilitates both temporal and spa-
tial memory safety for heap memory during runtime.
MEMES provides different security benefits depend-
ing on the operation mode of the memory encryption

engine, i.e., encryption-only or authenticated encryp-
tion.
TME-MK Encryption-Only. By utilizing mem-
ory encryption, MEMES provides strong confiden-
tiality for the protected data. On every memory safety
violation, data would be accessed with the wrong
decryption key, which ultimately leads to reading
garbled data. Hence, an adversary cannot leak se-
cret data or inject specific data controlled by the at-
tacker. Thus, the MEMES memory encryption ap-
proach provides exploit mitigation for various types
of software-based attacks. More specifically, as the
attacker does not know the secret encryption key, de-
terministically writing data, e.g., a return address or
a function pointer, with the wrong encryption key
is not possible. This effectively mitigates powerful
exploitation techniques, such as return-oriented pro-
gramming (ROP) (Shacham, 2007) and jump-oriented
programming (JOP) (Bletsch et al., 2011).

Although by continuously reading the victim data,
an attacker could still see when the data was changed,
but they do not know the old or new plaintext value.
An attacker would only be able to roll back the value
to a previous, possibly valid, value. However, in prac-
tice, this side-channel is hard to exploit and requires
strong attacker capabilities, which we do not consider
in our threat model. Nevertheless, TME-MK can also
protect against this as shown in the following.
TME-MK Authenticated Encryption. TME-MK
also allows for an authenticated encryption mode,
which is used in TDX (Intel®, 2023). While our
system configuration did not make it possible to add
such keys to the encryption engine, using it would en-
hance MEMES with additional detection capabilities.
In particular, authentication enables the detection of
all classes of memory safety violations, i.e., tempo-
ral and spatial memory safety violations, by possibly
triggering a hardware exception where we can termi-
nate the program. This means that arbitrary read or
write memory violations (e.g., out-of-bounds errors)
would result in authentication failures of the TME-
MK memory decryption instead of returning garbled
data. Similarly, dereferencing dangling pointers (e.g.,
by mounting a use-after-free (UAF) attack) is detected
as well.
Spatial Memory Safety. For the spatial safety anal-
ysis, we differentiate between adjacent, non-adjacent,
and intra-object memory access violations. The mem-
ory allocator can ensure that two consecutive alloca-
tions are encrypted using different keys. Thus, adja-
cent memory violations, i.e., linear buffer overflows,
deterministically lead to garbled data or authentica-
tion errors.

Non-adjacent memory violations are mitigated on
a probabilistic basis (based on the number of uti-
lized keys). Therefore, we distinguish between inter-
page and intra-page access violations. The inter-
page memory access violation can result in two cases.
First, the memory access could lead to a page fault
and immediate program abortion, which is similar to
ASLR-based approaches. Second, the attacker ac-
cesses a mapped page and decrypts the memory ob-
ject with the corresponding key identifier. The prob-
ability that this key matches the correct one used for
the encryption of the memory object depends on the
number of available keys, which differs depending on
the CPU model and platform software. At maximum,
up to 215 keys are available. Similarly, the intra-page
collision probability depends on the number of uti-
lized keys. Since our allocation granularity is at least
64 B, using 64 different keys allows us to uniquely as-
sign a key for each allocation on a page. Thus, when
using at least 64 keys or larger allocations, there is no
spatial intra-page collision possible.

Intra-object memory access violations are cur-
rently not protected by our scheme. This requires
detailed knowledge of how the memory is used and
would need to be implemented in the compiler itself.
Hence, our heap allocator cannot protect against such
violations. In summary, depending on the underlying
hardware capabilities, i.e., encryption-only or authen-
ticated encryption, the spatial violation would lead to
reading/writing garbled data, or directly triggering a
hardware exception.
Temporal Memory Safety. For the temporal safety
analysis, we consider uninitialized memory and use-
after-free (UAF) attacks. UAF attacks misuse pointers
referring to already freed memory, so-called dangling
pointers. UAF is typically only security-relevant
in use-after-reallocation (UAR) cases. These occur
when a newly allocated object gets allocated on the
same chunk of memory of a previously freed ob-
ject. There, the attacker could alter the data of the
new memory object using the previous, stale, pointer.
MEMES prevents such attacks on a probabilistic ba-
sis by assigning different keys for the corresponding
memory objects. On every memory reallocation, the
allocator pseudo-randomly chooses a key and returns
the corresponding pointer. The probability that the
keys of two memory allocations coincide again de-
pends on the number of available and utilized keys (up
to 2−15). Similarly, uninitialized memory accesses are
mitigated since a memory read using the wrong key
would result in garbled data or detection of the mem-
ory violation. The immediate detection of such vio-
lations depends on the utilized TME-MK mode (i.e.,
encryption-only or authenticated encryption).

Multi-threading. Software-only exploit mitigations
(e.g., verifying a pointer before dereferencing) usu-
ally suffer from time-of-use race conditions (Wei and
Pu, 2005) that can be exploited in multi-threaded ap-
plications (Farkhani et al., 2021; Conti et al., 2015).
In contrast, our approach is hardware-based and does
not suffer from the same issue. MEMES benefits from
TME-MK, which is deeply embedded into the mem-
ory sub-system of the CPU. TMEalloc does not flush
cache lines (e.g., after freeing memory) in our ex-
periments, however, it is noteworthy that the TME-
MK specification recommends flushing caches when
changing its associated key identifier (Intel®, 2022).

6 EVALUATION

In this section, we evaluate the performance and
memory overhead of our implementation.

6.1 Performance Evaluation

For evaluating the performance of MEMES, we use
all C and C++ SPEC CPU® 2017 (Standard Per-
formance Evaluation Corporation, 2023) benchmarks
and Linux 5.15 running on an Intel® Xeon® Platinum
8480+ CPU, which has support for TME-MK. On
that system, the DRAM is always encrypted using
TME, which means that a single key, chosen at boot-
time, is used to encrypt the entire DRAM. Thus, for
our baseline, where we run SPEC CPU® 2017 with-
out protecting heap allocations, full DRAM encryp-
tion is still active. Note that authenticated encryp-
tion is currently not supported on our evaluation plat-
form. Hence, our evaluation results are based on
the encryption-only mode (AES-XTS-128). The au-
thenticated encryption variant used in TDX stores its
MAC in the ECC memory (Intel®, 2020). Thus,
while we cannot evaluate the overhead of that mode,
we do expect negligible differences because no extra
memory fetches are necessary.

We compiled all SPEC CPU® 2017 C and C++
benchmarks with our memory allocator utilizing page
table aliasing and encryption using different keys for
fine-grained memory safety. Thereby, all allocations
are aligned to 64 B. We evaluated our prototype
for different configurations: Namely “Padding only”
where we only add padding and alignment to conform
to the cache line sizes, and “1 bit” to “6 bit” where we
additionally encrypt each allocation with 21 to 26 dif-
ferent keys, respectively.

Figure 5 illustrates our experimental performance
overheads of MEMES for different configurations and
benchmarks. In addition, the figure shows the corre-

lating relative number of cache misses, TLB misses,
and page faults for each benchmark. Compared to the
baseline, encrypting all allocations but not their meta-
data with the same encryption key, i.e., configuration
“1 bit”, induces a geometric mean runtime overhead
of 16 %. Note that for “1 bit” there are still two dif-
ferent keys used in total. One for the heap allocations,
and one for the remaining memory like the heap meta-
data, code, and non-heap program data. Thus, even
this configuration can double the number of required
TLB entries compared to no heap protection. When
adding more keys, and thus aliases, we measured a
geometric mean runtime overhead between 16 % and
27 %.

This performance overhead is introduced by (i)
the memory alignment since all memory objects need
to be aligned and padded to 64 bytes. Depending
on the allocation sizes of the dedicated benchmarks,
the alignment is responsible for a large proportion
of the incurred overhead (cf. Figure 6). For exam-
ple, mcf almost exclusively allocates very small mem-
ory objects. Note that for mcf, most of the perfor-
mance overhead is due to padding as visible from the
“Padding only” bar. This alignment overhead does
not only increase the memory consumption of the pro-
gram, it also increases the runtime overhead due to
caching effects. While it would be possible to remove
any alignment and padding requirements, this would
drastically decrease performance due to the increased
number of cache evictions if multiple keys were used
for a cache line that is accessed frequently.

On the other hand, our page table aliasing ap-
proach (ii) increases the TLB pressure leading to a
performance decrease depending on the memory ac-
cess pattern and memory access frequency. This is,
because each key that is used within a page requires
one TLB entry.

Finally, the (iii) management of the heap library
introduces some overhead. The memory allocator
needs to prepare the setup of the page table aliasing
and manage the received pages from the operating
system.

The total performance overhead is the result of a
complex interplay of the following factors: Memory
allocation sizes (Figure 6), total memory usage (Fig-
ure 7), memory usage patterns, and number of used
keys per page (Figure 5). From the given figures, it is
clear that all these factors have a performance impact
with varying degrees. In the following subsection,
we detail the added memory overhead to the memory
alignment.

1.5

2

2.5

Re
la

tiv
e

Ru
nt

im
e

1.
0 1.
1 1.

3

1.
0 1.
0 1.

2

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0 1.
041.

3

1.
1 1.

2

1.
0

2.
3

1.
5

1.
0

1.
0

1.
0 1.
1

1.
0

1.
0 1.

161.
3

1.
1 1.

3

1.
0

2.
3

1.
7

1.
0

1.
0

1.
0 1.

1

1.
0

1.
0 1.

181.
3

1.
1 1.

3

1.
0

2.
3

1.
8

1.
0

1.
0

1.
0 1.

2

1.
0

1.
0 1.

201.
4

1.
1 1.

4

1.
0

2.
4

2.
1

1.
0

1.
0

1.
0 1.

2

1.
0

1.
0 1.

231.
5

1.
1 1.

4

1.
0

2.
4

2.
2

1.
0

1.
0

1.
0 1.

3

1.
0

1.
0 1.

251.
5

1.
1 1.

4

1.
0

2.
5 2.

7

1.
0

1.
0

1.
0 1.

3

1.
0

1.
0

1.
27

Padding only
1 bit

2 bit
3 bit

4 bit
5 bit

6 bit

600.perlbench
602.gcc

605.mcf
619.lbm

620.omnetpp

623.xalancbmk
625.x264

631.deepsjeng
638.imagick

641.leela
644.nab

657.xz
Geomean

100

101

102

103

104

Pa
ge

/C
ac

he
 M

iss
es

 (l
og

)

Page Faults
Cache Misses
TLB Misses

Figure 5: The performance overhead incurred by the MEMES design. We evaluate our prototype implementation using
different numbers of key ids. The number of key ids derives the amount of page table mappings leading to increased TLB
pressure responsible for the majority of the runtime overhead.

600.perlbench
602.gcc

605.mcf
619.lbm

620.omnetpp

623.xalancbmk
625.x264

631.deepsjeng

638.imagick
641.leela

644.nab
657.xz

0

20

40

60

80

100

%
 o

f a
llo

ca
tio

ns

> 16KB
<= 16KB
<= 1KB
<= 256B
<= 64B
<= 48B
<= 32B
<= 16B

Figure 6: The distribution of the allocation sizes of the
SPEC CPU® 2017 benchmarks.

6.2 Memory Utilization

As discussed in Section 3, we optimize the perfor-
mance by aligning all memory allocations on the heap
to the cache line granularity, i.e., 64 B on our system.
The memory overhead incurred by the alignment to
64 bytes largely depends on the allocation sizes of the
specific applications.

To analyze the impact on memory utilization, we
first analyzed the size of each allocation for the SPEC
CPU® 2017 benchmarks. Mimalloc already provides
debug information about allocation sizes. Thus, for
this analysis, we run the benchmarks using the un-
modified library in debug mode. Figure 6 shows the
occurrence of different allocation sizes. We group
them together into buckets for easier visualization.
Smaller buckets are shown in red to highlight that
these require alignment and padding. Especially large
allocations (i.e., larger than 1 kB) benefit from our ap-
proach by introducing a negligible performance and
memory overhead.

Furthermore, we evaluated the additional mem-
ory required due to the above memory layout con-
straints. For this, we measured the physically used
memory of each of the SPEC CPU® 2017 bench-

0

500600.perlbench
1.38x

0

10000
602.gcc

1.32x

0

5000605.mcf
1.39x

0
2500619.lbm

1.11x

250
500620.omnetpp

1.47x

500
1000

623.xalancbmk
1.22x

0

2000
625.x264

1.04x

0
5000631.deepsjeng

1.01x

0
5000638.imagick

1.10x

0

250641.leela
1.04x

0
500644.nab

1.08x Our Work Unprotected

0
10000657.xz

1.03x

Figure 7: The memory utilization of the SPEC CPU® 2017
benchmarks. This figure compares the memory usage of the
unmodified allocator with our TMEalloc that aligns every
allocation to 64 bytes. The numbers shown in blue is the
factor by which TMEalloc uses more memory.

marks during their entire execution. We place the
benchmark processes in their own cgroup and mea-
sure the memory.current field to capture the to-
tal memory usage of the benchmark. This is illus-
trated in Figure 7. Expectedly, benchmarks like lbm,
x264, deepsjeng, imagick, and xz which predomi-
nantly use larger allocation sizes, also have a negligi-
ble memory overhead of 1 % – 11 %. These bench-
marks also incur the smallest performance overhead,
as shown in Figure 5. On the other hand, perlbench,
gcc, mcf, omnetpp, and xalancbmk use much smaller
allocations that require more padding, which in turn

Table 1: Comparison of memory safety countermeasures.
Legend: Mitigated, � Cryptographic mitigation with pos-
sible detection, Probabilistic, None.

Mechanism OOB UAF Uninit. Commodity HW

SoftBound+CETS 4

C3 � � � 8

CrypTag � � � 8

ARM® MTE ‡ 4*
SPARC ADI ‡ 4

MEMES � � � 4

‡ MTE/ADI add instructions to zero the memory when setting the tag,
which helps mitigating uninitialized memory use/leaks.

* Note that CPUs with MTE are not yet widely available.

leads to an increased memory overhead of 22 % –
47 %.

The allocation sizes have a direct impact on the
memory usage, which in turn has an impact on the
performance. This is because the CPU caches are
used less efficiently if the cached data includes unused
padding bytes. That means that more cache lines need
to be used to store the same amount of data, and more
memory requests are made to fetch the data from the
DRAM.

7 RELATED WORK

In this section, we discuss the related work of mem-
ory safety and compare common approaches with
MEMES. Memory safety countermeasures proposed
by academia and industry present different trade-offs
regarding security, performance, flexibility, and mem-
ory usage. Table 1 provides an overview and compar-
ison of related memory safety countermeasures.
Bounds-checking. Several countermeasures propose
the mitigation of spatial memory safety violations
by introducing bounds checks (Akritidis et al., 2009;
Ziad et al., 2021; Duck et al., 2017; Duck and Yap,
2016; Simpson and Barua, 2013) for every memory
operation. These bound-checking mechanisms are
implemented either in software, e.g., CCured (Necula
et al., 2002) and Cyclone (Jim et al., 2002), or hard-
ware, e.g., Hardbound (Devietti et al., 2008), Watch-
dog (Nagarakatte et al., 2012; Nagarakatte et al.,
2014), and Intel® MPX (Oleksenko et al., 2018).
Typically, software-based approaches tend towards
high runtime overheads (cf. 116 % runtime over-
head for SoftBound (Nagarakatte et al., 2009) and
CETS (Nagarakatte et al., 2009)) while hardware-
enforced mechanisms typically require intrusive hard-
ware changes, which can be hard to deploy on a
large scale. Additionally, hardware bounds-checking
mechanisms, like CHERI (Woodruff et al., 2014;

Watson et al., 2015), often use so-called fat point-
ers, which co-locate the bounds information with
the pointer, thus, requiring application binary inter-
face (ABI) changes. In contrast, MEMES enables a
lightweight and encryption-based solution for mem-
ory safety that provides more flexibility while main-
taining binary compatibility.
Use-after-free Protection. Temporal memory safety
is commonly achieved by meta-information (Farkhani
et al., 2021; Nagarakatte et al., 2010; Burow et al.,
2018; Lee et al., 2015), which represents the live-
ness of memory objects. For example, CETS (Na-
garakatte et al., 2010) associates unique identifiers
managed in a disjoint data structure that is checked
on every memory access. In contrast, mechanisms
like MarkUs (Ainsworth and Jones, 2020) provide
temporal memory safety by managing a quarantine
list for freed objects. Memory is only reallocated
if no dangling pointers referring to the quarantined
memory exist. Furthermore, xTag (Bernhard et al.,
2022) utilizes pointer tagging in combination with
page aliasing to achieve temporal safety. Similarly,
MEMES utilizes heap aliasing. However, our ap-
proach combines page aliasing with memory encryp-
tion, enforcing full memory safety (i.e., temporal and
spatial safety). Arbitrary read and write violations are
a serious threat to software systems, and countermea-
sures that only target a subset of memory safety (e.g.,
only temporal safety) often lack widespread adoption.
Tagged Memory. Memory tagging (Serebryany,
2019; Jero et al., 2023; Joannou et al., 2017), of-
ten also referred to as memory coloring or lock-
and-key, provides additional meta-information asso-
ciated with every memory location. Tagged mem-
ory, implemented in software (Akritidis et al., 2008)
or hardware, allows the enforcement of fine-grained
access policies. For example, HWASan (Serebryany
et al., 2018) uses 8-bit memory tags encoded into
the pointers (enabled by hardware address mask-
ing) and implements the required tag checks in soft-
ware. Furthermore, the ARM® memory tagging ex-
tension (MTE) (ARM Limited, 2019) and SPARC ap-
plication data integrity (ADI) (Aingaran et al., 2015)
are ISA extensions that implement tagged memory
utilizing a 4-bit tag at a granularity of 16 and 64 bytes,
respectively. The memory tags are used to enforce
probabilistic memory safety. Similarly, MEMES pro-
vides probabilistic memory safety, however, the mem-
ory encryption key is not directly encoded into the
pointer. Thus, it becomes harder for attackers to leak
and forge pointers with their corresponding key val-
ues. Additionally, the memory encryption engine on
our used system allows the usage of up to 64 different
keys, increasing the probabilistic detection capabili-

ties compared to the 16 distinct tag values of ARM®
MTE and SPARC ADI. Note that TME-MK can sup-
port up to a maximum of 215 keys. Normal pages can
only hold a maximum of 64 allocations. Hence, per
page, only 64 or less keys would be used. Thus, we
assume that the performance overhead for using more
than 64 keys would remain largely unchanged as it
has no effect on the number of TLB entries needed.
In contrast, memory tagging schemes like MTE scale
much worse for each additional “key” bit. E.g., scal-
ing MTE to 15 or 16 bits would already increase the
tagged memory overhead by a factor of 4.
Encryption-based Mechanisms. Some research
proposals utilize memory encryption for memory pro-
tection. CrypTag (Nasahl et al., 2021) introduces a
scheme that, similarly to memory tagging, encodes a
memory tag into the upper bits of the pointer. How-
ever, instead of storing the tags in memory, CrypTag
uses the pointer tags to tweak the memory encryption
procedure providing object-granular memory safety.
Moreover, C3 (LeMay et al., 2021) utilizes pointer
and memory encryption for memory safety. The en-
crypted part of the pointer’s address is used to de-
crypt the corresponding data in memory. There, mem-
ory safety violations, e.g., due to corrupted or stale
pointers, are highly likely to lead to either a page
fault or garbled data. Currently, memory encryption
is primarily used for confidential computing, such as
Intel® TDX (Intel®, 2023) and AMD SEV (AMD,
2020), which isolate virtual machines. Furthermore,
SERVAS (Steinegger et al., 2021) proposes an en-
clave design that tweaks the memory encryption using
the enclave metadata. In comparison, MEMES uti-
lizes the TME-MK memory encryption engine (avail-
able on commodity hardware) in combination with
heap aliasing in order to provide fine-grained memory
safety. Moreover, EC-CFI (Nasahl et al., 2023) com-
bines Intel®’s virtualization technology with memory
encryption to provide cryptographic control flow in-
tegrity against fault attacks.

8 FUTURE WORK &
CONCLUSION

In this section, we give a brief outlook on possible
future work to improve the performance of MEMES
further and finally give a conclusion of our work.

8.1 Future Work

Our concept implementation proves the efficacy of
our design. In our implementation, we only imple-
mented optimizations that do not negatively impact

the security (e.g., cache line padding). However, there
are more possible optimizations for specific work-
loads introducing different trade-offs.

Multiple small allocations (e.g., 4x16 B) would fit
on a cache line if there is no padding. There are two
possible ways to allow for this. First, we could use the
same keys for such allocations, which would improve
both the performance and memory usage significantly
but it results in a loss in detection for intra-cache line
overflows. Second, we can optimize memory usage
without impacting security by using different keys for
each allocation within a cache line. However, the
downside to this is increased cache evictions which
lead to performance degradation.

Alternatively, it is possible to only protect a sub-
set of an application, while the majority of data would
be unencrypted. An example for this would be se-
cure keystorage used in cryptographic libraries like
OpenSSL (The OpenSSL Project, 2003).

8.2 Conclusion

In this paper, we presented a method for fine-grain
memory encryption using Intel®’s TME-MK with-
out any hardware changes. By using multiple identi-
cal mappings from virtual to physical memory pages
with different TME-MK key identifiers, we are able
to encrypt memory objects with different keys at the
smallest possible encryption granularity, i.e., 128 bit.
Based on page table aliasing, we then introduced
MEMES. MEMES mitigates memory safety vulner-
abilities on the heap by encrypting memory objects
with different key identifiers. Using this approach,
we showcased that MEMES, depending on the un-
derlying capabilities of the encryption engine, can
either detect or prevent the exploitation of memory
corruptions. Our performance analysis showed that
MEMES induces a geometric mean runtime overhead
of just 16–27% for SPEC CPU® 2017.

ACKNOWLEDGEMENTS

This project has received funding from the Austrian
Research Promotion Agency (FFG) via the AWARE
project (FFG grant number 891092). Additional fund-
ing was provided by a generous gift from Intel.

REFERENCES

Aingaran, K., Jairath, S., Konstadinidis, G. K., Leung, S.,
Loewenstein, P., McAllister, C., Phillips, S., Radovic,
Z., Sivaramakrishnan, R., Smentek, D., and Wicki, T.
(2015). M7: Oracle’s Next-Generation Sparc Proces-
sor. IEEE Micro, 35:36–45.

Ainsworth, S. and Jones, T. M. (2020). MarkUs: Drop-in
use-after-free prevention for low-level languages. In
S&P, pages 578–591.

Akritidis, P., Cadar, C., Raiciu, C., Costa, M., and Castro,
M. (2008). Preventing Memory Error Exploits with
WIT. In S&P, pages 263–277.

Akritidis, P., Costa, M., Castro, M., and Hand, S.
(2009). Baggy Bounds Checking: An Efficient
and Backwards-Compatible Defense against Out-of-
Bounds Errors. In USENIX Security Symposium,
pages 51–66.

AMD (2020). Amd sev-snp: Strengthening vm
isolation with integrity protection and more.
https://www.amd.com/system/files/TechDocs/SEV-
SNP-strengthening-vm-isolation-with-integrity-
protection-and-more.pdf. Accessed 2023-01-05.

ARM Limited (2019). Arm architecture reference
manual for a-profile architecture, v8.5a. https://
developer.arm.com/documentation/ddi0487/ea. Ac-
cessed 2023-01-05.

Bernhard, L., Rodler, M., Holz, T., and Davi, L. (2022).
xTag: Mitigating Use-After-Free Vulnerabilities via
Software-Based Pointer Tagging on Intel x86-64. In
EURO S&P, pages 502–519.

Bletsch, T. K., Jiang, X., Freeh, V. W., and Liang, Z. (2011).
Jump-oriented programming: a new class of code-
reuse attack. In AsiaCCS, pages 30–40.

Burow, N., McKee, D. P., Carr, S. A., and Payer, M.
(2018). CUP: Comprehensive User-Space Protection
for C/C++. In AsiaCCS, pages 381–392.

Conti, M., Crane, S., Davi, L., Franz, M., Larsen, P., Ne-
gro, M., Liebchen, C., Qunaibit, M., and Sadeghi,
A. (2015). Losing Control: On the Effectiveness of
Control-Flow Integrity under Stack Attacks. In CCS,
pages 952–963.

Devietti, J., Blundell, C., Martin, M. M. K., and Zdancewic,
S. (2008). Hardbound: architectural support for spa-
tial safety of the C programming language. In ASP-
LOS, pages 103–114.

Duck, G. J. and Yap, R. H. C. (2016). Heap bounds protec-
tion with low fat pointers. In CC, pages 132–142.

Duck, G. J., Yap, R. H. C., and Cavallaro, L. (2017). Stack
Bounds Protection with Low Fat Pointers. In NDSS.

Durumeric, Z., Kasten, J., Adrian, D., Halderman, J. A.,
Bailey, M., Li, F., Weaver, N., Amann, J., Beekman,
J., Payer, M., and Paxson, V. (2014). The Matter
of Heartbleed. In Proceedings of the 2014 Internet
Measurement Conference, IMC 2014, Vancouver, BC,
Canada, November 5-7, 2014, pages 475–488.

Farkhani, R. M., Ahmadi, M., and Lu, L. (2021). PTAuth:
Temporal Memory Safety via Robust Points-to Au-
thentication. In USENIX Security Symposium, pages
1037–1054.

Halderman, J. A., Schoen, S. D., Heninger, N., Clarkson,
W., Paul, W., Calandrino, J. A., Feldman, A. J., Ap-
pelbaum, J., and Felten, E. W. (2008). Lest We Re-
member: Cold Boot Attacks on Encryption Keys. In
USENIX Security Symposium, pages 45–60.

Hu, H., Shinde, S., Adrian, S., Chua, Z. L., Saxena, P., and
Liang, Z. (2016). Data-Oriented Programming: On
the Expressiveness of Non-control Data Attacks. In
S&P, pages 969–986.

Intel®(2020). Architecture Specification: Intel®
Trust Domain Extensions (Intel® TDX) Mod-
ule. https://www.intel.com/content/dam/develop/
external/us/en/documents/intel-tdx-module-1eas.pdf.
Accessed: 2023-01-30.

Intel®(2022). Intel® Architecture Memory Encryption
Technologies. https://www.intel.com/content/www/
us/en/content-details/679154/intel-architecture-
memory-encryption-technologies-specification.html.
Revision 1.4, Accessed: 2023-01-31.

Intel®(2023). Intel® Trust Domain Extensions.
https://www.intel.com/content/dam/develop/external/
us/en/documents/tdx-whitepaper-v4.pdf. Accessed:
2023-01-30.

Jero, S., Burow, N., Ward, B. C., Skowyra, R., Khazan, R.,
Shrobe, H. E., and Okhravi, H. (2023). TAG: Tagged
Architecture Guide. ACM Comput. Surv., 55:124:1–
124:34.

Jim, T., Morrisett, J. G., Grossman, D., Hicks, M. W., Ch-
eney, J., and Wang, Y. (2002). Cyclone: A Safe Di-
alect of C. In USENIX ATC, pages 275–288.

Joannou, A., Woodruff, J., Kovacsics, R., Moore, S. W.,
Bradbury, A., Xia, H., Watson, R. N. M., Chisnall, D.,
Roe, M., Davis, B., Napierala, E., Baldwin, J., Gudka,
K., Neumann, P. G., Mazzinghi, A., Richardson, A.,
Son, S. D., and Markettos, A. T. (2017). Efficient
Tagged Memory. In ICCD, pages 641–648.

Kaplan, D., Powell, J., and Woller, T. (2020). Amd sev-
snp: Strengthening vm isolationwith integrity protec-
tion and more. Technical report, Technical Report.
Advanced Micro Devices Inc.

Kim, Y., Lee, J., and Kim, H. (2020). Hardware-based
Always-On Heap Memory Safety. In MICRO, pages
1153–1166.

Lee, B., Song, C., Jang, Y., Wang, T., Kim, T., Lu, L., and
Lee, W. (2015). Preventing Use-after-free with Dan-
gling Pointers Nullification. In NDSS.

LeMay, M., Rakshit, J., Deutsch, S., Durham, D. M.,
Ghosh, S., Nori, A., Gaur, J., Weiler, A., Sultana,
S., Grewal, K., and Subramoney, S. (2021). Cryp-
tographic Capability Computing. In MICRO, pages
253–267.

Microsoft (2019). Trends, challenges, and strategic shifts in
the software vulnerability mitigation landscape. https:
//github.com/Microsoft/MSRC-Security-Research/
blob/master/presentations/2019 02 BlueHatIL/
2019 01%20-%20BlueHatIL%20-%20Trends%
2C%20challenge%2C%20and%20shifts%20in%
20software%20vulnerability%20mitigation.pdf.
Accessed 2023-01-05.

https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://developer.arm.com/documentation/ddi0487/ea
https://developer.arm.com/documentation/ddi0487/ea
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-module-1eas.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-module-1eas.pdf
https://www.intel.com/content/www/us/en/content-details/679154/intel-architecture-memory-encryption-technologies-specification.html
https://www.intel.com/content/www/us/en/content-details/679154/intel-architecture-memory-encryption-technologies-specification.html
https://www.intel.com/content/www/us/en/content-details/679154/intel-architecture-memory-encryption-technologies-specification.html
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf

Microsoft (2022). mimalloc. hhttps://github.com/
microsoft/mimalloc. Accessed 2023-01-05.

Nagarakatte, S., Martin, M. M. K., and Zdancewic, S.
(2012). Watchdog: Hardware for safe and secure man-
ual memory management and full memory safety. In
ISCA, pages 189–200.

Nagarakatte, S., Martin, M. M. K., and Zdancewic,
S. (2014). WatchdogLite: Hardware-Accelerated
Compiler-Based Pointer Checking. In CGO, page
175.

Nagarakatte, S., Zhao, J., Martin, M. M. K., and Zdancewic,
S. (2009). SoftBound: highly compatible and com-
plete spatial memory safety for c. In PLDI, pages
245–258.

Nagarakatte, S., Zhao, J., Martin, M. M. K., and Zdancewic,
S. (2010). CETS: compiler enforced temporal safety
for C. In Proceedings of the 9th International Sympo-
sium on Memory Management, ISMM 2010, Toronto,
Ontario, Canada, June 5-6, 2010, pages 31–40.

Nasahl, P., Schilling, R., Werner, M., Hoogerbrugge, J.,
Medwed, M., and Mangard, S. (2021). CrypTag:
Thwarting Physical and Logical Memory Vulnerabil-
ities using Cryptographically Colored Memory. In
ASIA CCS ’21: ACM Asia Conference on Computer
and Communications Security, Virtual Event, Hong
Kong, June 7-11, 2021, pages 200–212.

Nasahl, P., Sultana, S., Liljestrand, H., Grewal, K., LeMay,
M., Durham, D. M., Schrammel, D., and Man-
gard, S. (2023). EC-CFI: Control-Flow Integrity via
Code Encryption Counteracting Fault Attacks. CoRR,
abs/2301.13760.

Necula, G. C., McPeak, S., and Weimer, W. (2002).
CCured: type-safe retrofitting of legacy code. In
POPL, pages 128–139.

Oleksenko, O., Kuvaiskii, D., Bhatotia, P., Felber, P., and
Fetzer, C. (2018). Intel MPX Explained: A Cross-
layer Analysis of the Intel MPX System Stack. Proc.
ACM Meas. Anal. Comput. Syst., 2:28:1–28:30.

Serebryany, K. (2019). ARM Memory Tagging Extension
and How It Improves C/C++ Memory Safety. login
Usenix Mag., 44.

Serebryany, K., Stepanov, E., Shlyapnikov, A., Tsyrkle-
vich, V., and Vyukov, D. (2018). Memory Tagging
and how it improves C/C++ memory safety. CoRR,
abs/1802.09517.

Shacham, H. (2007). The geometry of innocent flesh on the
bone: return-into-libc without function calls (on the
x86). In CCS, pages 552–561.

Simpson, M. S. and Barua, R. (2013). MemSafe: ensuring
the spatial and temporal memory safety of C at run-
time. Softw. Pract. Exp., 43:93–128.

Standard Performance Evaluation Corporation (2023).
SPEC CPU® 2017. https://www.spec.org/cpu2017/.
Accessed: 2023-01-31.

Steinegger, S., Schrammel, D., Weiser, S., Nasahl, P., and
Mangard, S. (2021). SERVAS! Secure Enclaves via
RISC-V Authenticryption Shield. In ESORICS, vol-
ume 12973 of LNCS, pages 370–391.

Szekeres, L., Payer, M., Wei, T., and Song, D. (2013). SoK:
Eternal War in Memory. In S&P, pages 48–62.

The Chromium Projects (2020). Memory safety.
https://www.chromium.org/Home/chromium-
security/memory-safety/. Accessed 2023-01-14.

The OpenSSL Project (2003). OpenSSL: The open source
toolkit for SSL/TLS. www.openssl.org.

Watson, R. N. M., Woodruff, J., Neumann, P. G., Moore,
S. W., Anderson, J., Chisnall, D., Dave, N. H., Davis,
B., Gudka, K., Laurie, B., Murdoch, S. J., Norton,
R. M., Roe, M., Son, S. D., and Vadera, M. (2015).
CHERI: A Hybrid Capability-System Architecture for
Scalable Software Compartmentalization. In S&P,
pages 20–37.

Wei, J. and Pu, C. (2005). TOCTTOU Vulnerabilities in
UNIX-Style File Systems: An Anatomical Study. In
Proceedings of the FAST ’05 Conference on File and
Storage Technologies, December 13-16, 2005, San
Francisco, California, USA.

Woodruff, J., Watson, R. N. M., Chisnall, D., Moore, S. W.,
Anderson, J., Davis, B., Laurie, B., Neumann, P. G.,
Norton, R. M., and Roe, M. (2014). The CHERI ca-
pability model: Revisiting RISC in an age of risk. In
ISCA, pages 457–468.

Ziad, M. T. I., Arroyo, M. A., Manzhosov, E., Piersma,
R., and Sethumadhavan, S. (2021). No-FAT: Archi-
tectural Support for Low Overhead Memory Safety
Checks. In ISCA, pages 916–929.

hhttps://github.com/microsoft/mimalloc
hhttps://github.com/microsoft/mimalloc
https://www.spec.org/cpu2017/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
www.openssl.org

