
Secure Context Switching of Masked Software Implementations
Barbara Gigerl

Graz University of Technology

Graz, Austria

Robert Primas

Graz University of Technology

Graz, Austria

Stefan Mangard

Graz University of Technology

Graz, Austria

ABSTRACT

Cryptographic software running on embedded devices requires pro-

tection against physical side-channel attacks such as power analysis.

Masking is a widely deployed countermeasure against these attacks

and is directly implemented on algorithmic level. Many works study

the security of masked cryptographic software on CPUs, pointing

out potential problems on algorithmic/microarchitecture-level, as

well as corresponding solutions, and even show masked software

can be implemented efficiently and with strong (formal) security

guarantees. However, these works also make the implicit assump-

tion that software is executed directly on the CPU without any

abstraction layers in-between, i.e., they focus exclusively on the

bare-metal case. Many practical applications, including IoT and au-

tomotive/industrial environments, require multitasking embedded

OSs on which masked software runs as one out of many concurrent

tasks. For such applications, the potential impact of events like

context switches on the secure execution of masked software has

not been studied so far at all.

In this paper, we provide the first security analysis of masked

cryptographic software spanning all three layers (SW, OS, CPU).

First, we apply a formal verification approach to identify leaks

within the execution of masked software that are caused by the em-

bedded OS itself, rather than on algorithmic or microarchitecture

level. After showing that these leaks are primarily caused by con-

text switching, we propose several different strategies to harden a

context switching routine against such leakage, ultimately allowing

masked software from previous works to remain secure when being

executed on embedded OSs. Finally, we present a case study focus-

ing on FreeRTOS, a popular embedded OS for embedded devices,

running on a RISC-V core, allowing us to evaluate the practicality

and ease of integration of each strategy.

CCS CONCEPTS

• Security and privacy→ Software security engineering.

KEYWORDS

Side-Channel Analysis, Masking, Verification, Embedded OS, RTOS

ACM Reference Format:

Barbara Gigerl, Robert Primas, and Stefan Mangard. 2023. Secure Context

Switching of Masked Software Implementations. In ACM ASIA Conference
on Computer and Communications Security (ASIA CCS ’23), July 10–14, 2023,

This work is licensed under a Creative Commons Attribution International

4.0 License.

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0098-9/23/07.

https://doi.org/10.1145/3579856.3595798

Melbourne, VIC, Australia. ACM, New York, NY, USA, 13 pages. https://doi.

org/10.1145/3579856.3595798

1 INTRODUCTION

Embedded devices have become omnipresent in IoT, automotive,

and industrial applications and often interact with their physical

environment. This raises the need for strong cryptographic primi-

tives to preserve private and secure operations. Embedded devices

need to be protected against both theoretical and physical attacks.

Theoretical security refers to guarantees such as the resistance of

cryptography against mathematical attacks, while physical secu-

rity counteracts adversaries in physical proximity who observe a

device’s physical properties during computation. In 1999, Kocher et

al. [36] presented Differential Power Analysis (DPA), which allows

for extracting secrets like cryptographic keys from a device. DPA

is performed by observing a device’s power consumption, which

correlates with the processed data. Since then, masking has become

a very popular and well-studied countermeasure to defeat such

attacks on algorithmic level [9, 12, 15, 17, 26, 29, 34, 46]. With mask-

ing, each secret variable of a cryptographic computation, such as

the encryption key, is split into 𝑑 + 1 random shares. Consequently,

the power consumption of the device does not correlate with the

unshared secret but with the 𝑑 + 1 random shares, which exponen-

tially increases the difficulty of recovering the unshared secret. One

particular advantage of masking is that it is provably secure, i.e.,

it can be proven that an attacker cannot reveal any information

about the unshared secret by combining up to 𝑑 shares.

In the past, many works have pointed out a significant gap be-

tween the theoretical and practical security of masked implementa-

tions [6, 23, 44], often caused by physical effects such as glitches and

transitions. Masking schemes generally assume that independent

computations result in independent leakage, which is not neces-

sarily the case in a practical software or hardware implementation.

In other words, a masked software implementation that has been

formally proven to be 𝑑-th order secure in theory might not reach

this security level when executed on a CPU. Many works in the

past have discussed to which extent the CPU microarchitecture

can compromise the security of masked software implementations.

Prominent root causes of order-reducing leakage in masking are

register or memory overwrites, which leak the Hamming distance

between two shares [7, 11, 18, 44]. On top of that, many more

such potential problems have been identified that essentially boil

down to implementation specifics of the register file, SRAM, load-

store logic, data caches, or bypass mechanisms in the CPU pipeline

[20, 23, 24, 41]. In order to solve these problems efficiently, works

like [23, 24] emphasize that modifications on software level are

necessary while additional hardware changes of the CPU are advis-

able. Eventually, both the CPU hardware and the masked software

implementation need to fit together to obtain secure execution that

preserves the theoretical security of the masking.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3579856.3595798
https://doi.org/10.1145/3579856.3595798
https://doi.org/10.1145/3579856.3595798

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Gigerl et al.

In practice, with the exception of the most basic microcontrollers

or IoT devices, embedded devices execute software within an (em-

bedded) OS alongside other tasks which include bus or network

communications, and sensor data acquisition and processing. In the

case of resource-constrained embedded devices, one often chooses

dedicated embedded OSs, including real-time operating systems

(RTOS), over fully-fledged operating systems such as Linux. FreeR-

TOS [2] is a very popular choice for such an embedded OS because

it provides a wide range of supported platforms, a large community,

and is publicly available (open-source).

So far, works on the practical security of masked software im-

plementations focus on the bare-metal case and therefore assume

total control over the execution of software on a CPU [10, 19, 23, 24,

39, 40, 44, 51, 52]. More concretely, they assume that the masked

software is not interrupted during execution. The interference of

multitasking OSs, especially context switching, that leads to a viola-

tion of this assumption has not been considered in previous analysis

efforts at all. Still, context switches occur at high frequencies, e.g.,

due to periodic (timer) interrupts, and in some cases, their occur-

rence can even be controlled by the attacker. Consider, for example,

the following setting, in which an attacker first requests a certain

cryptographic operation via a common communication interface

and causes an IO interrupt at a later point in time by sending an

additional request. The attacker can easily observe repeated exe-

cutions of the cryptographic operation in which context switches

cause additional leakage, allowing to easily mount straight-forward

attacks like DPA on the additionally created leakage in the power

side-channel [36].

As a countermeasure, one could consider the option of dis-

abling interrupts during the execution of masked software; how-

ever, this option is unrealistic in practice due to (1) the starving

of other relevant tasks like sensor data acquisition/processing or

Bluetooth/UART/MQTT network communication, and (2) the gen-

erally strict scheduling requirements of RTOS systems that allows

meeting timing constraints [3, 14, 56]. There does exist one work by

Balasch et al. [8] from 2015 demonstrating successful DPA attacks

on an AES implementation executed by a Linux operating system

on an ARM Cortex-A8, and discussing the security of masked soft-

ware in this setting. The authors show that also the masked version

of the AES is not leakage-free. However, it remains unclear whether

the empirically found leakage is caused by the CPU microarchitec-

ture, the OS, or even the masking algorithm itself. On top of that,

they also do not propose a solution that can reliably prevent the

observed leakage.

Contributions. The security of masked software implementations

running as a task/process within an embedded OS has not been eval-

uated so far. It is hence unclear to what extent specific OS features

like interrupts, scheduling, and context switches cause leakage in

such situations and what corresponding protection mechanisms

can be put into place at what cost. We close this gap by providing

the first in-depth analysis of masked software executed by an OS

on a CPU. The main contributions of this work are as follows:

• We provide the first formal analysis of masked software

which runs as a task in an embedded OS on a CPU. Using

a toy example, we show that the main problems are caused

during context switching by either overwriting shares in

memory, or transitions on memory/register file read/write

ports (Section 4).

• We propose several possible strategies to solve these prob-

lems, resulting in a formally verified context switching rou-

tine hardened against side-channel leakage that requires no

assumptions on the current location of shares in the register

file. This allows masked software, verified for correctness in

the bare-metal case, to preserve security when executed on

an embedded OS. For each strategy, we provide a compar-

ison of their advantages, disadvantages, and performance

overhead (Section 5).

• We present a case study of masked software running as a

task in FreeRTOS on a RISC-V CPU. In this case study, we

show that the problems identified in our analysis also exist

in FreeRTOS and that these problems can be fixed efficiently

by the proposed strategies. (Section 6).

• Wemake the evaluation setup and all software artifacts avail-

able on GitHub
1
.

2 BACKGROUND

In this section, we first give necessary background information on

the masking countermeasure. We briefly introduce Coco, a formal

verification tool to prove that the execution of (bare-metal) masked

software on a given CPU netlist is secure. For our work, we use

Coco as a leakage detection mechanism, as well as to formally

verify the security of our countermeasures. Finally, we provide a

short introduction to embedded operating systems.

2.1 Masking

Power analysis attacks exploit the fact that the power consumption

of a cryptographic device depends on the processed data, such as

a secret key [16, 36]. The masking countermeasure breaks this de-

pendency by randomizing sensitive intermediate values processed

by the device [15, 26, 31, 42]. Each sensitive variable used in a cryp-

tographic computation is split into 𝑑 + 1 random shares, such that

the observation of up to 𝑑 shares does not reveal any information

about the corresponding sensitive value.

In the case of a 𝑑th-order Boolean masking scheme, the shares

𝑠0 . . . 𝑠𝑑 must satisfy 𝑠 = 𝑠0 ⊕ . . . ⊕ 𝑠𝑑 , where ⊕ stands for the exclu-

sive OR (XOR) operation. Hereby, 𝑠0 . . . 𝑠𝑑−1 are chosen uniformly

at random, while 𝑠𝑑 = 𝑠0 ⊕ . . . 𝑠𝑑−1 ⊕ 𝑠 , which ensures that each

share 𝑠𝑖 is uniformly distributed and statistically independent of

𝑠 . For example, a first-order masking scheme (𝑑 = 1) splits up a

sensitive variable 𝑠 into two parts 𝑠0 and 𝑠1, such that 𝑠 = 𝑠0 ⊕ 𝑠1,

𝑠0 is chosen uniformly at random, and 𝑠1 = 𝑠 ⊕ 𝑠0.

Throughout the entire implementation, a proper separation of

shares and of the output of the component functions needs to be

ensured not to violate the 𝑑th-order independence, which is com-

monly expressed in the probing model of Ishai et al. [34]. In the

probing model, the attacker has the ability to probe up to 𝑑 interme-

diate results of the masked implementation. An implementation is

said to be secure if the probing attacker cannot gain any statistical

advantage in guessing any secret variable by combining the probed

results in an arbitrary manner. While this share separation can be

easily ensured for functions which are linear over GF(2𝑛) – for

1
https://github.com/barbara-gigerl/sw-masking-rtos

https://github.com/barbara-gigerl/sw-masking-rtos

Secure Context Switching of Masked Software Implementations ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

example, the masked calculation of 𝑥 ⊕ 𝑦 can be performed share-

wise (𝑥𝑖 ⊕ 𝑦𝑖) – the secure implementation of nonlinear functions

usually requires the introduction of fresh randomness.

The probing model can directly be applied to masked hardware

circuits, in which the attacker can place probes on individual gates

and wires, which then allow observing all values at the chosen lo-

cation for an infinite amount of time. However, the probing model

is less suitable for masked software implementations executed by a

CPU. For example, the attacker could simply place one probe on

the read or write port of the register file and then observe all inter-

mediate values (including shares), which allows breaking masked

software of arbitrary protection order. Instead, recent works refer

to the time-constrained probing model [23] for masked software

implementations, which puts a time restriction of one clock cycle

on each probe. More formally, the attacker who possesses 𝑑 probes

can distribute these both spatially and temporally, allowing them

to perform measurements at different locations in the same clock

cycle, the same location in different clock cycles, or a mix of both.

For example, a first-order attacker (𝑑 = 1) in the time-constrained

probing model can only probe register file read or write ports for

the duration of one clock cycle.

Besides algorithmic correctness of masking schemes in a respec-

tive probing model, the practical security of masked cryptographic

algorithms also strongly depends on implementation specifics in

hardware [1, 17, 31, 32, 41, 42] and software [7, 13, 20, 54]. We

discuss the case of secure software masking in more detail in the

following.

2.2 Practical security of masked software

The security of masked software implementations depends on the

assumption that independent computations result in independent

leakage [7, 15, 26]. However, many works have shown that this

property is often violated in practice when executing masked soft-

ware (bare-metal) on CPUs [7, 23, 24, 39, 41, 44]. The main reason

for this is physical side-effects in the CPU, for example, glitches

and transitions, which lead to unintended combinations of shares

during execution. For example, Coron et al. [18] show that when

a share is overwritten by another share of the same sensitive vari-

able, the power consumption correlates with the combination of

both, leading to leakage. In practice, this can be observed when

overwriting shares stored in a CPU register or the SRAM. Gigerl

et al. [23, 24] report that glitches within the control logic used to

address the read/write logic of the CPU register file might make

leakage-free register file accesses impossible. Additionally, they

show that shares of the same sensitive variable must not be read

or written consecutively, independently whether they are stored

in the register file or memory, due to transitions on the respective

read/write ports. As a result, they construct a side-channel hard-

ened version of the RISC-V Ibex core (secured Ibex), which allows

leakage-free execution of masked software in bare-metal mode as

long as a few simple software constraints are followed. In our work,

we exclusively work with masked software implementation follow-

ing these constraints and use the secured Ibex core as a reference

platform for our experiments.

2.3 Coco

In order to evaluate the security of masked cryptographic soft-

ware, one can either apply empirical or formal verification methods.

Empirical verification involves manually taking power measure-

ments of CPUs during computation, followed by statistical analysis

that tries to extract sensitive information such as cryptographic

keys [16, 36]. The main downside of this approach is the inability

to identify the exact source of leakage in a system, i.e., there is no

possibility to determine if a leak was caused by the CPU microarchi-

tecture or the masked software implementation. Alternatively, one

can use the recently published tool Coco [23] to formally verify

the security of masked software executions in the time-constrained

probing model on the gate-level netlist of a CPU. Coco allows to

identify concrete gates/wires/registers in the CPU netlist as leakage

sources.

In general, Coco takes as input a masked assembly implemen-

tation backed up with some annotations and the description of a

CPU as a gate-level netlist and then reports whether the execution

is leakage-free or not. The annotations (labels) indicate which reg-

isters/memory locations contain shares or fresh randomness at the

start of the software execution. Internally, the tool then starts by

simulating the execution of the software on the CPU hardware in

order to obtain an execution trace, which contains a concrete value

for each control signal in the CPU. The verifier then propagates

the annotated labels through the CPU netlist cycle by cycle while

considering the control signals of the execution trace. If Coco finds

a gate in a specific cycle that combines all shares of the same sen-

sitive value, the gate in the netlist and the cycle is reported as a

leak. Using this information, one can then easily find out whether

the leak was caused by the software itself, or micro-architectural

side-effects of the CPU. For more details on the internal working

mechanisms of Coco, we refer to the original publication [23].

2.4 Embedded operating systems

Embedded systems requiring multitasking make use of an embed-

ded OS, which runs multiple tasks and manages shared resources

such as execution time. Some scenarios additionally require real-

time capabilities, i.e., that the OS guarantees that specific tasks or

events can be handled in a specific amount of time. Such operating

systems are called real-time operating systems (RTOS), on which

we focus in this work. Events occurring during the execution of an

RTOS are often called interrupts, such as the periodic timer inter-

rupt, which happens at specific intervals, or non-periodic interrupts

caused by IO operations or other external events. To maintain its

real-time capabilities, the OS must react and handle the interrupt

appropriately. Therefore, it activates the scheduler to select the

next task to be run and performs a context switch or task switch. In

order to do so, information related to the task in the task control
block (TCB) needs to be saved, which also contains the working

state (context), including general purpose and floating point reg-

isters. During a context switch, the TCB needs to be saved and

restored from memory. The memory area which contains the TCB

is called the TCB memory slot, which is often part of the tasks’s

working stack assigned by the OS on startup. RTOSs are currently

being used in all kinds of applications, including smart watches,

traffic light systems, and home energy monitoring. FreeRTOS [2] is

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Gigerl et al.

among the most popular RTOSs, and is built into, e.g., Amazon’s

AWS IoT, Tesla’s electric cars, and Bosch’s smart home sensors.

Other famous RTOSs include the open-source systems Zephyr [45],

RIOT [5], TockOS [37] KataOS [21], but also many closed-source

systems like MQX [48] and PikeOS [25].

3 ATTACKER MODEL

For our study, we consider a threat model in which an attacker has

physical access to a cryptographic device that runs masked software

within an embedded OS on a microprocessor. Examples of such

devices are electronic wallets, smart cards, or authentication tokens.

The attacker’s goal is to leak the cryptographic key stored on the de-

vice, which is used by cryptographic software that already features

sufficient protection against standard differential power analysis

(DPA) using masking countermeasures. The attacker does not need

to know specific details about the attacked device, such as the con-

crete source code; it is sufficient to know which cryptographic

operation is implemented. To perform the attack, the attacker (1)

connects an oscilloscope to the device such that power/EM traces

can be recorded, (2) triggers the targeted cryptographic operation

by sending an appropriate request via a communication interface,

and (3) interrupts the operation by sending some other request

with a specific delay. Consequently, all interaction with the device

is purely passive , and, e.g., no direct control of the OS runtime is

required.

Given a scenario in which an attacker can force interrupts during

the execution of masked software at specific points in time, thereby

causing potential masking-related correctness problems, what re-

mains is to record a sufficient amount of such computations for a

DPA attack to work. The concrete number of power traces required

by the adversary highly depends on the noise level of the attacked

system, i.e., a combination of the masked software, the embedded

OS, and the microprocessor. Nevertheless, we can look at some pre-

vious works that study the impact of unintentional combinations

of shares due to overwrites of shares in memory or the register

port, which is likely to occur during context switches. For example,

as shown by Papagiannopoulos et al. [44], about 50 000 traces are

sufficient on an ATMega163 8-bit microcontroller to detect memory

overwrites, which are the basis of our first proposed attack. The

authors also study a form of transitions on register file read ports,

the basis of our second proposed attack, which can be exploited by

only about 5 000 traces. In practice, these numbers can be higher,

e.g., if there is some variation in the timing of the execution of the

masked software and the following interrupt. This essentially has

a similar effect on the performance of DPA attacks as algorithmic

hiding countermeasures and hence generally do not increase the

amount of required measurements by more than a quadratic factor.

4 ANALYZING CONTEXT SWITCHES IN

MASKED SOFTWARE

In this section, we identify common problems that could arise when

running masked cryptographic software as a task on an embedded

OS. As a starting point, we use assembly implementations following

all constraints from [23], as well as their secured Ibex core for our

experiments. The assembly implementations are formally verified

for correctness in bare-metal mode using Coco. We then manually

insert additional assembly instructions at certain locations to rep-

resent a realistic context switch routine. We investigate potential

leakage using Coco, which finally reveals two major sources of

leakage introduced by context switches. In the following, we pro-

vide a more detailed description of our experiment setup and the

identified problems.

4.1 Experiment setup

We construct a toy example modeling two tasks to demonstrate the

general problem of context switches related to masked software.

The first task is executing amasked Keccak S-box (used, e.g., in SHA-

3, Shake or Ascon), while the other one is performing unrelated

non-cryptographic computations. The toy example is then verified

when running on the secured Ibex core. In the following, we give

more details about the concrete software and hardware setup.

The first task (𝑇SBOX) executes a 1st-order masked Keccak S-box

implementation protected by Domain-Oriented Masking (DOM)

[31]. In general, the implementation splits up the five 32-bit lanes

of the implementation into two shares and uses secure DOM multi-

plication gadgets to mask non-linear operations. The second task

(𝑇CNT) executes a non-cryptographic computation which is unre-

lated to the first task. We choose a simple function that keeps a

counter in a register that is constantly being incremented.

On startup, each task is assigned a specific memory location

for the stack and another memory location for the TCB (the TCB

memory slot). In practice, the TCB is either stored on the top or at

the bottom of the task’s working stack. We reserve register 𝑟2 (𝑠𝑝 on

a RISC-V architecture) to store a pointer to this memory area. We

then model the effect of real interrupts by manually calling context

switching routines from 𝑇SBOX and 𝑇CNT at certain points in time.

This represents a practical scenario where, e.g., an attacker first

requests a cryptographic operation via a common communication

interface that is then later interrupted by another IO request after

a specific amount of time. The context switching routine (context

switch) itself is based on an existing implementation included in

the FreeRTOS RISC-V port that saves the state of the current task to

memory, changes the stack pointer, and then loads the state of the

next task from memory. We sketch this function in Appendix A.1

and also further discuss it later in Section 6.1.

We use Coco to investigate the security of our toy example on

the secured RISC-V Ibex core [23]. Before starting the experiment,

we first verify that the 1st-order Keccak S-box runs securely on the

RISC-V Ibex core in bare-metal mode. Consequently, any leakage

we observe originates from the context switching activity itself and

not from issues with the masked software or the micro-architecture

of the Ibex core. In the following sections, we show that the security

guarantees derived from verifying bare-metal software no longer

hold when executing the masked software within a task.

4.2 Transitions on memory/register file

read/write port

Whenever a context switch is performed, the register file contents

of the current task are stored to memory register by register in

a sequence of store instructions. Hence, an attacker probing the

register file read port or memory write port for the duration of

one specific cycle can observe pairs of two register values of the

Secure Context Switching of Masked Software Implementations ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

lane 0 (share 0)

...

lane 1 (share 0)

lane 1 (share 1)

lane 0 (share 1)

...

Register file

x1

x3

x4

...

x17

...

spx2

RF Read port

sw x1, (sp+...)

sw x2, (sp+...)

sw x3, (sp+...)

sw x4, (sp+...)

...

clk

RF Read port lane 0 (share 0) sp lane 1 (share 0) lane 1 (share 1)

Figure 1: Transition on register file read port during context

switch

current task. In the second part of the context switch, the register

file contents of the next task are loaded from memory, and the

current register file contents are overwritten. Again, an attacker

probing the register file write port or memory read port can observe

pairs of register values of the next task.

If the current task is executing masked software, the register

file potentially contains shares of the same secret distributed over

several registers. For example, in our toy scenario, the five 32-bit

lanes of the Keccak S-box are stored in ten registers, each register

containing one share. In Figure 1, we sketch the register file contents

of 𝑇SBOX at some point during the execution right before a context

switch. The timing diagram illustrates the information an attacker

can observe by proving the register file read port cycle per cycle.

While no critical information can be deduced from the transitions

𝑥1 → 𝑥2 and 𝑥2 → 𝑥3, the transition 𝑥3 → 𝑥4 leaks the Hamming

distance between shares 0 and 1 of lane 1, which refers to the

unshared value of lane 1.

4.3 Overwriting shares in memory

The exact memory location of the TCBmemory slot is defined when

the task is created and usually remains unchanged throughout the

lifetime of the task on the bottom of the stack. With the general pur-

pose registers being part of the TCB, every context switch during

the execution will overwrite the old register contents in memory

with the new ones. An attacker probing the respective TCB mem-

ory location can therefore observe a transition of the old register

value to the new register value. If the memory location previously

contained a certain share and is then updated with its counterpart,

the attacker can probe the unshared value.

We give an illustration of this scenario using our toy example

in Figure 2, in which 𝑇SBOX starts execution, is then exchanged

by 𝑇CNT, until 𝑇SBOX resumes. After 𝑇SBOX’s second execution,

shares stored to memory in the previous context switch might get

overwritten by their counterparts. In detail, the following steps

occur:

1○ 𝑇SBOX starts execution until it gets interrupted, and the context

switch routine is triggered, which saves the register values to

the respective TCB memory slot.

2○ The register file of 𝑇CNT is restored, and the task continues

execution until the next interrupt.

3○ In the context switch, the register values of 𝑇CNT are saved to

the TCB memory slot of 𝑇CNT.

4○ The register values of 𝑇SBOX are restored from the TCB.

5○ 𝑇SBOX continues the computation. In our case, the Keccak S-

Box implementation exchanges registers 𝑥17 and 𝑥1 (due to

implementation-specific reasons), i.e., the locations of the two

shares of lane 0 are swapped in the register file. Note that this

can indeed be done securely in an implementation, e.g., with

the help of intermediate register clearings.

6○ During the context switch, the registers are saved, and the old

TCB contents of 𝑇SBOX are overwritten. More precisely, the

memory location storing the old content of register 𝑥1 still

refers to share 0 of lane 1. The new content of register 𝑥1 is now

- after the computation - the other share, which will, however,

be stored in the same memory location. Consequently, share 0

is overwritten with share 1 in memory. The attacker can again

observe the Hamming Distance between the old and the new

register value, which refers to the unshared lane 1.

4.4 Discussion

Whether the stated problems occur in a practical implementation

is still determined by many different parameters, including the

frequency of context switches (influenced by the timer interrupt

frequency and the attacker’s ability to trigger such), the exact point

at which the context switch occurs and the exact location of shares

in the register file. All these parameters make it infeasible to fix

these problems by just adapting the masked software implementa-

tion because one would need to take into account the behavior of

the embedded OS (such as the sequence in which the registers are

spilled) and consider a possible context switch after every instruc-

tion. In the next section, we hence aim for more general concepts for

secure context switch routines (realized either is software or hard-

ware) that allows masked software, verified in bare-metal scenarios,

to preserve security when executed on embedded OSs.

A masked software implementation emits leakage if two shares

are combined, e.g., by overwrites and transitions, independently

of the concrete masking scheme used. In our case, 𝑇SBOX is pro-

tected by DOM [31] as an example, but for the analysis, it would

be irrelevant which masking scheme is used. In general, DOM has

been used both in hardware [31, 32, 33, 35, 38], but also in software

[23, 24]. Threshold Implementations (TI) [42], Ishai-Sahai-Wagner

(ISW) [34], and the Unified Masking Approach (UMA) [30] are

other examples of masking schemes which have been applied to

both hardware and software implementations. Several works on

masked software implementations following no specific schemes

exist, which are usually optimized for a concrete cryptographic

algorithm [20, 27, 28, 43, 47]. Which scheme to follow depends on

the optimization constraints (for example, speed, code size, register

sizes, available RNG) of the design. The security of a masked soft-

ware implementation is, however, not influenced by the concrete

technique used because, in any masking scheme, combining two

shares will lead to leakage.

5 SCA-SECURE CONTEXT SWITCHING

In this section, we discuss basic strategies to prevent the problems

identified in Section 4 and obtain a context switching mechanism

that allows masked software, verified in bare-metal scenarios, to

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Gigerl et al.

lane 0 (share 0)

...

lane 1 (share 0)

lane 1 (share 1)

lane 0 (share 1)

...

Register file

x1

x3

x4

...

x17

...

spx2

la
n
e

0
 (

sh
ar

e
0
)

la
n
e

0
(s

h
ar

e
1
)

..
.

..
.

la
n
e

1
 (

sh
ar

e
1
)

la
n
e

1
 (

sh
ar

e
0
)

sp ..
.

TCB TENC

10

TCB TCNT

...

...

...

10

...

...

Register file

x1

x3

x4

...

x17

...

...x2

la
n
e

0
 (

sh
ar

e
0
)

la
n
e

0
 (

sh
ar

e
1
)

..
.

..
.

la
n
e

1
(s

h
ar

e
1
)

la
n
e

1
 (

sh
ar

e
0
)

sp ..
.

TCB TENC

1
0

1
9

TCB TCNT

...

...

...

19

...

...

Register file

x1

x3

x4

...

x17

...

...x2

lane 0 (share 0)

...

lane 1 (share 0)

lane 1 (share 1)

lane 0 (share 1)

...

Register file

x1

x3

x4

...

x17

...

spx2

lane 0 (share 1)

...

lane 1 (share 0)

lane 1 (share 1)

lane 0 (share 0)

...

Register file

x1

x3

x4

...

x17

...

spx2

la
n
e

0
(s

h
a
r
e
 0

)
(s

h
a
r
e
 1

)

la
n
e

0
 (
s
h
a
r
e
 1

)

(s
h
a
r
e
 0

)
..
.

..
.

la
n
e

1
 (

sh
ar

e
1
)

la
n
e

1
 (

sh
ar

e
0
)

sp ..
.

TCB TENC

19

TCB TCNT

Computations Computations
Context
Switch

Context
Switch

1

2

34

5

6

Figure 2: Overwriting shares in memory during context switch

preserve security when executed on embedded OSs. The strate-

gies are not specific to a particular embedded OS implementation

but should rather give generic concepts which can be integrated

into any embedded OS. We provide an in-depth comparison of the

different basic strategies, discuss the overhead in terms of mem-

ory and runtime, and evaluate their advantages and disadvantages.

We formally prove that each strategy allows leakage-free context

switching using Coco by integrating each strategy into the toy

example introduced in Section 4. The given basic strategies are

divided into two categories, either helping against transitions or

memory overwrites. Additionally, we discuss why solving these

problems on software level (by increasing the masking order) is

neither efficient nor feasible in practice.

In Table 1, we give an overview of the strategies, which we will

in the following describe more in detail. The table shows for each

strategy which problem is addressed, whether modifications are

necessary on OS- or CPU-level, and states the overhead compared

to the plain, unprotected context switch, which takes 125 cycles

to execute on the secured Ibex core. To determine the memory

overhead, we compare the size of the (potentially modified) TCB to

the original TCB (128 byte).

5.1 Basic strategies against transitions

In Section 4, we identified the problem of transitions on memo-

ry/register file read/write ports. In the following, we discuss two

strategies to prohibit this problem, dummy operations after every

load/store and interleaved context switches. In addition to veri-

fication of these strategies in the toy example, we add a second

verification scenario to strengthen the proposed security guaran-

tees. In the second scenario, we label all 28 registers as shares of

the same native value, perform the hardened context switch with

these registers and then check if the execution provides 27th-order

security. By that, we can show that the constructed secure context

switch is indeed SCA-secure independently of the concrete location

of shares in the register file.

5.1.1 Dummy operations after every load/store. The most simple

solution to prevent transitions between shares on read/write ports

is to insert dummy operations, such as nop instructions, after every
load or store in the context switch. This ensures that the read/write

port is always pulled to zero between two memory accesses, pre-

venting direct transitions between shares. While this solution is

very simple in terms of integration, its effectiveness and runtime

overhead is strongly determined by the underlying CPU microar-

chitecture. On the secured Ibex core, it suffices to put a single nop
instruction between two memory accesses, yielding a runtime over-

head of 46%. However, as shown in works like [24], more complex

architectures might require more dummy operations to prevent

such leakages.

Instead of using nop instructions, one could try to use instruc-

tions of the interrupt handling logic which is executed after storing

the register contents to the TCB. While this solution would make

the context switching more efficient, the feasibility of integrating

this is into an embedded OS is highly dependent on the existing

context switching/scheduling logic.

5.1.2 Interleaved context switch. A context switch first stores the

TCB of the current task selects the next task, and then loads the

TCB of the next task. We alter the sequence of these three events

to perform an interleaved context switch, which first selects the

new task, and then loads/stores the contents of the two involved

TCB blocks in an alternating (interleaved) manner. The interleaved

context switch essentially uses the load operations as dummy oper-

ations mentioned in the previous paragraph. On assembly level, this

boils down to alternating store and load instructions, as sketched

in Appendix A.2.

While this solution requires no additional runtime or memory

overhead, it is very restrictive on the task selection logic, i.e., the

scheduler, since all registers used there must not be used during

the task’s execution. For example, consider a task getting executed,

which stores some data into register 𝑥10. When it gets interrupted,

the scheduler is triggered to select the next task, and if it uses

register 𝑥10 to do so, the task’s data in the register will inevitably be

overwritten and therefore lost. Therefore, we consider this solution

suitable for our toy example where the task selection works in

a very simple round-robin fashion but show in Section 6 that it

Secure Context Switching of Masked Software Implementations ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

Table 1: Comparison of basic strategies

Basic strategy Protection against Modifications Overhead

Transitions on

RW port

TCB memory

overwrites

OS CPU Memory (TCB) Runtime (context

switch)

No protection

✖ ✖
- - 128 byte 125 cycles

Dummy operations after every load/store

✔ ✖
yes no 128 byte (+0%) 183 cycles (+46%)

Interleaved context switch

✔ ✖
yes no 128 byte (+0%) 125 cycles (+0%)

TCB clearing

✖ ✔
yes no 128 byte (+0%) 183 cycles (+46%)

Rotating TCB memory slots

✖ ✔
yes no 128 byte +

128 byte

Number of tasks

145 cycles (+16%)

Randomness-refreshed loads and stores (SW)

✖ ✔
yes no 132 byte (+3%) 201 cycles (+61%)

Randomness-refreshed loads and stores (HW)

✖ ✔
yes yes 132 byte (+3%) 143 cycles (+14%)

is infeasible for most embedded OS due to the complexity of the

scheduling logic.

5.2 Basic strategies against overwrites

In Section 4, we identified the problem of overwriting shares in

memory. In the following, we suggest strategies to prohibit this

problem.

5.2.1 TCB clearing. The most naive method to protect against

TCB memory overwrites is to clear the TCB of a task executing

masked software before saving the registers, i.e., overwriting the

memory locations with zeros. For each general-purpose register

that is saved during the context switch, this requires one additional

store operation. The clearing operations can either be executed in

one block before storing the register values or alternating with the

actual register store operations, as shown in Appendix A.3. If the

alternating order is used, it also prevents transitions on the register

file read port. However, transitions on the register file write port

are not prevented. The runtime overhead of a context switch that

clears the TCB is 46 %.

5.2.2 Rotating TCB memory slots. On startup, every task is stat-

ically assigned a TCB memory slot which is not changed during

execution. In order to prevent overwriting shares in memory, one

must ensure that the task executing the masked software imple-

mentation does not overwrite its own saved registers, which can

be done by dynamically changing the TCB memory slot with every

context switch. Since physical memory is limited on such constraint

devices, allocating a new TCB memory slot with each and every

context switch is not feasible. Instead, we need to make sure that

TCB memory slots are reused over time. A TCB memory slot can

be reused if it does not store the most recent TCB of any currently

suspended task (older copies are fine). Consequently, after a task

gets interrupted, it must not use its own current TCB memory slot

and no memory slot of any other suspended task. We ensure this by

adding one additional TCB memory slot such that there is always

at least one TCB memory slot that can be reused, and further using

a rotating assignment of TCB memory slots.

In Figure 3, we sketch this concept using our toy example. In

the beginning (1○), the two tasks use TCB memory locations TCB

#1 and TCB #2 to store their data. We add TCB #3 to ensure one

TCB memory location is always reusable. After 𝑇SBOX has been

scheduled once (2○), it uses the currently unoccupied TCB #3. It

cannot use TCB #1 because it belongs to 𝑇CNT, which is currently

suspended, and it cannot (re-)use TCB #2 because it contains its

own old data, and overwriting might lead to leakage. After 𝑇CNT
has been executed, it uses TCB #2, which previously belonged to

𝑇SBOX, and overwrites the old saved TCB of 𝑇SBOX, thus clearing

all shares stored to memory. In the next step, 𝑇CNT uses TCB #1 to

store its TCB after execution, and 𝑇SBOX uses TCB #3 (3○), leading

to a rotating assignment of TCB memory slots.

Although this method comes with almost no time overhead, one

additional TCB memory location (128 byte) must be reserved in

memory such that the tasks do not overwrite each other’s contexts.

Additionally, there must be at least one other task running which

can overwrite the old saved TCB of the task executing the masked

software. If this cannot be ensured, one can either insert a dummy

task serving this purpose or extend the kernel in a way such that it

clears the old context on purpose, i.e., if no other task was scheduled.

It is important to note that the overwrite problem persists even

though the task executing the masked software implementation is

the only one running in the operating system. Assume that only

𝑇𝑆𝐵𝑂𝑋 is actively running, and𝑇𝐶𝑁𝑇 is sleeping. Whenever𝑇𝑆𝐵𝑂𝑋

is interrupted, the working registers will be stored in the TCB. Then,

the scheduler will be run and decides that no other task should be

scheduled, and loads the register values of 𝑇𝑆𝐵𝑂𝑋 again. That is,

the registers of a task will always be stored to memory when an

interrupt occurs, independently of whether another task will finally

be scheduled or not.

5.2.3 Randomness-refreshed loads and stores. TCB memory over-

writes can also be counteracted by not storing the plain task con-

text but by adding 32 bits of randomness to each register before

storing it to memory. The same randomness can be used for all

registers saved in the context switch but must be renewed with

every occurring context switch. The randomness must be removed

when restoring the context. A task executing masked software will

therefore overwrite its old context protected with a different mask.

Randomness-refreshed loads and stores can be either implemented

in software, by modifying the context switch routine of the OS, or

in hardware, by extending the respective CPU core.

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Gigerl et al.

We construct a software implementation of this method using

our toy example. We assume that there is a certain memory region

supplying fresh randomness upon request, which may be connected

to an RNG in practice. When a context switch occurs, we first fetch

32 bits of randomness from the location using a load instruction and

store it to one of the general-purpose registers. Next, we add the

randomness to every register in the register file using a bitwise XOR

before saving the register to memory. The used random value is

then stored to the TCB of the respective process.When restoring the

registers for the process in the next context switch, the previously

used random value needs to first be obtained from the TCB again.

After issuing the load instruction, which restores a specific GPR

value, the random value needs to be added to the GPR register

value again in order to obtain the previous value. We sketch this

process in Appendix A.4. The memory overhead of this strategy is

around 3% because we need to store the most recently used value

of the fresh randomness in the respective TCB, such that it can be

fetched before the next load of registers of the respective task. The

runtime overhead mostly caused by the additional XOR instructions

when storing and restoring the context is 61%. When applying this

strategy, at least one register needs to be reserved for storing the

randomness, which must not be used in the task’s code. Similar

to clearing the TCB slot, only tasks executing masked software,

such as𝑇SBOX, need to refresh loads and stores in context switches,

but all other tasks can stick to the original routine. In practice, the

OS usually has a notion about the purpose of each task and can,

therefore, easily decide if randomness-refreshing is necessary or

not.

Additionally, we provide a hardware implementation of this

method, which eliminates most of the runtime overhead by per-

forming the XOR implicitly in the load-store unit of the secured
Ibex core instead of having to issue a dedicated XOR instruction

every time. For this purpose, we extend the core’s CSR unit by a

32-bit register which contains the randomness to refresh loads and

stores, and a 1-bit register which indicates whether randomness-

refreshed loads and stores are enabled. We leave the management

of the fresh randomness in memory to the OS, i.e., the OS needs

to load fresh randomness from memory to the CSR register itself.

In the context switch routine, one, therefore, needs two additional

CSRW instructions, one for enabling the countermeasure and one for

loading the randomness to the respective CSR register. Therefore,

the runtime overhead of such a modified context switch is 14%, as

shown in Table 1, of which the most accounts to the management

of fresh randomness for both tasks.

5.3 Lazy engineering

In 2015, Balasch et al. [7] discuss the “lazy engineering” approach

of implementing masked software with a protection order that is

higher than theoretically required to compensate for a certain loss in

practical security due to micro-architectural side-effects. Assuming

that a certain masked software implementation is (bare-metal) 𝑑-th

order secure, a standard context switch routine can generally reduce

the security down to ⌊𝑑/2⌋. For example, a transition on a register

file read/write port essentially creates leakage that combines values

of registers that are loaded/stored in immediate succession. This

can, in our case, cut the number of probes required to observe all

TCB #1

TCNT

TCB #2

TENC

TCB #1

TCB #1 TCB #2

TCNT

TCB #3

TENC

TCB #1

TENC

TCB #2 TCB #3

TCNT

1

2

3

Figure 3: Rotating TCB memory slots

shares in half, for which one compensates with a higher masking

order on level of the masked software.

To achieve a first-order secure masked Keccak S-box, we con-

struct a second-order variant, which provides 1st-order security

when using the unprotected context switch. However, the 2nd-

order implementation requires much more runtime and random-

ness: While the 1st-order masked Keccak S-Box needs 174 cycles

(without context switches) and 160 bits of fresh randomness, the

2nd-order implementation requires 283 cycles (without context

switches), which is an increase of 63%, and 480 bit of fresh random-

ness (+300%).

Therefore, we do not consider this solution feasible in practice

due to the exponential overhead for more complex microarchi-

tectures [24]. Especially for higher masking orders, the overhead

caused by lazy engineering grows with the masking order, while the

overhead of the other suggested solutions is the same independently

of the order.

6 CASE STUDY

In this section, we investigate the security of masked software

running as a task in FreeRTOS. In Section 6.1, we introduce our

evaluation environment. In Section 6.2, we discuss that the prob-

lems identified in Section 4 can indeed be found in practice in

FreeRTOS using Coco, and how the context switch in FreeRTOS

can eventually be fixed against these problems. In Section 6.3, we

provide combinations of the basic strategies which defend against

both transitions and overwrites and evaluate their performance

overhead. While a single hardened context switch comes with some

overhead, the overall system overhead is rather negligible, given

that the frequency of context switches is usually low in practice.

To the best of our knowledge, this is the first analysis of masked

software within an OS, especially on such a level of detail. This is

likely due to the considerable effort of creating a suitable analysis

environment, which we describe in the beginning of this section.

In our case, for example, this involves porting the entire FreeR-

TOS to the RISC-V Ibex core, adding peripherals to trigger timer

interrupts, and simulating the synthesized processor netlist when

executing the OS in a suitable simulator for formally verifying it

Secure Context Switching of Masked Software Implementations ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

with Coco. We plan to make our evaluation setup, along with all

software artifacts, available in a public repository.

FreeRTOS. FreeRTOS is a popular open-source embedded OS

used in many different IoT projects supported by a large commu-

nity, which makes it the third most used OS in 2019 [4]. It has been

ported to different hardware architectures and platforms, including

ARM, RISC-V, and x86-32 [49], and targets small single-core micro-

processors in embedded systems. In order to provide multitasking,

the FreeRTOS kernel uses the scheduler to assign processing time

to tasks. The scheduler is usually triggered by a (timer) interrupt

or the yield system call and selects the next task according to a

certain policy that takes into account task priorities and deadlines.

For our case study, we use the standard preemptive scheduling pol-

icy (configUSE_PREEMPTION = 1 and configUSE_TIMESLICING
= 0), which means that the task with the highest priority will be

selected by the scheduler [50].

6.1 Evaluation setup

Ultimately, our evaluation environment should allow both formal

verification and cycle-accurate performance evaluations. Hence,

we need to simulate FreeRTOS, including tasks when running on

the secured Ibex core in order to obtain a cycle-accurate execution

trace. Unfortunately, there exists no exact demo allowing such a

simulation, which is why we first need to port FreeRTOS to run

on the secured Ibex core. We base our port on the existing 32-bit

RISC-V Spike simulator demo and make several adaptions, such as

changing the addresses of the mtime and mtimecmp registers. FreeR-
TOS can only be executed properly in the presence of a periodic

timer interrupt. We use a dedicated hardware module for creat-

ing these interrupts, which is connected to the secured Ibex core.

This hardware module provides access to the mtime and mtimecmp
control registers. From a verification perspective, and compared

to the bare-metal case, the interrupt signals provide just another

set of control signals beside the executed software. Our complete

workflow can be sketched as follows:

(1) We synthesize the secured Ibex core with Yosys [55] to obtain a

gate-level netlist in Verilog format.

(2) We compile FreeRTOS, including all tasks which are later exe-

cuted.

(3) We wrap the synthesized Ibex netlist into a testbench which

includes a timer and a memory model.

(4) We simulate the testbench with Verilator [53], which produces

a cycle-accurate execution trace. This execution trace contains

a concrete value for each control signal in the netlist and can,

therefore, directly be used for performance evaluations.

(5) In order to do formal verification with Coco, we additionally

create the respective annotations (labels) indicating the location

of shares/fresh randomness at the beginning of the execution

and give these annotations, the netlist of the secured Ibex, and

the execution trace to Coco.

Besides the execution environment, another central part of the

evaluation is the tasks that are executed by FreeRTOS. In order to

demonstrate that the identified problems occur, we focus on the

same scenario as in the previous sections, i.e., that the OS runs one

task executing a masked 1st-order Keccak S-box (𝑇SBOX), and one

task which increments a counter (𝑇CNT).

Saved register values

Working stack of task

TCB control data

Saved register values

Working stack of task

TCB control data

Figure 4: Original (left) vs adapted (right) memory layout of

FreeRTOS to support rotating TCB memory slots

In order to perform a meaningful performance evaluation of

our solution, we, however, stick to a larger scenario including a

complete Ascon round (𝑇𝐸𝑁𝐶) [22], which uses the Keccak’s S-box

core, running beside 𝑇CNT. A complete Ascon round is likely to

be interrupted more often than a single Keccak S-box by a peri-

odic timer interrupt or external interrupts. Since the performance

overhead of our countermeasures stems purely from the context

switching, the results become more significant. Similar to our toy

example, both 𝑇SBOX and 𝑇𝐸𝑁𝐶 load the input data (shares) from a

predefined memory location, compute the S-box/Ascon round, and

then stores the input data back to the memory.

6.2 Hardening the FreeRTOS context switch

In this section, we describe the challenges of integrating the basic

strategies into FreeRTOS. Protection against both leakage sources

in FreeRTOS is achieved by combining the basic strategies against

transitions with those against overwrites.

Preventing transitions. Besides the problem discussed in Section 4,

we could identify a second leakage source caused by transitions

in the FreeRTOS scheduler. A context switch can generally be di-

vided into three phases: (1) storing the TCB of the current task, (2)

selecting the next task, and (3) loading the TCB of the next task.

FreeRTOS uses the same code for phases (1) and (3) as we used in

our toy example but has a slightly more complex scheduler, which

potentially creates another source of transition-induced leakage

between shares on the register file write port. For example, our

implementation of the Keccak S-Box was interrupted at a point

where registers 𝑥20 and 𝑥24 each contained a share of the same

native value. The scheduling logic (phase (2)) contains a section of

code that first overwrites 𝑥20, and in the next cycle, overwrites 𝑥24,

causing a leaking transition on the register file write port. Whether

these leaks occur is, however, highly dependent on both the con-

crete scheduler logic and the masked software implementation. A

generic solution can only be achieved when ensuring that the gen-

eral purpose register values of the task are not used anymore in the

scheduling logic, which is why we clear the registers after storing

them to memory.

In Section 5, we discuss interleaved context switches as one pos-

sible countermeasure against transition leakage, which requires

selecting the new task (phase 2) before performing storing and

loading register values in an interleaved manner. It is not feasible

to integrate this strategy into FreeRTOS because the scheduling

logic would inevitably overwrite many unsaved task registers when

running it before phase (1). Therefore, we instead focus on dummy

operations and clearing registers to defend against transition leak-

age.

Preventing overwrites. We include all four basic strategies to

prevent overwrites of shares in the TCB. Including rotating TCB

memory slot requires the most changes, as the original version of

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Gigerl et al.

Table 2: Evaluation of variants of SCA-hardened context switching in FreeRTOS

Runtime in cycles Number of context

switches

Cycles per context

switch

Total 𝑇𝐸𝑁𝐶 𝑇𝐶𝑁𝑇 Context switching

No protection 4149 1359 1221 1569 4 393

Basic strategies

Dummy operations + clear registers 5810 1366 1564 2880 6 480 (+22%)

TCB clearing 5729 1364 1648 2717 6 453 (+15%)

Rotating TCB memory slots 4203 1353 1154 1696 4 424 (+7%)

Randomness-refreshed loads and stores (SW) 5836 1395 1587 2854 6 475 (+20%)

Randomness-refreshed loads and stores (HW) 4263 1411 1152 1700 4 425 (+8%)

Combined strategies

Dummy operations + clear registers + TCB

clearing

5978 1376 1395 3207 6 534 (+36%)

Dummy operations + clear registers + rotating

TCB memory slots

5880 1349 1478 3053 6 508 (+29%)

Dummy operations + clear registers +

Randomness-refreshed loads and stores (SW)

7651 1416 1782 4453 8 557 (+41%)

Dummy operations + clear registers +

Randomness-refreshed loads and stores (HW)

5940 1410 1476 3054 6 509 (+29%)

FreeRTOS stores the TCB control data and the values of the general-

purpose registers separately. That is, the control data is stored on

the bottom of the user stack, and the registers on top. We sketch this

in the left part of Figure 4. Hence, the memory location where the

registers are stored possibly changes with every context switch, de-

pending on the height of the user stack. This makes it impossible to

implement TCB memory slot rotation because when a task uses its

stack, e.g., during a function call, it potentially overwrites another

task’s saved registers which were stored there. Instead, we adapt

the layout such that the saved register values are also stored below

the working stack of the task and can, therefore, not be overwritten

by a task’s stack usage (c.f. right of Figure 4). Another challenge

is constructing a function find to the next free TCB memory slot

before saving any general-purpose registers of the task. The func-

tion must not use any general-purpose registers, which still contain

the task’s data, because overwriting them would inevitably destroy

the task’s state. Thankfully, we can use registers 𝑥3 and 𝑥4, which

are never saved during a context switch and are generally unused

in FreeRTOS. The original purpose of these registers is to store

the thread pointer and global pointer for optimizations, which is,

however, not supported by FreeRTOS.

Fewer system changes are needed to implement randomness-

refreshed loads and stores, as we simply extend the TCB struct

of the OS by a new variable task_rand which is updated during

the context switch with the used randomness. Also in this case we

make use of 𝑥3 and 𝑥4 to load, store and xor the respective random

value.

6.3 Discussion

Table 2 shows the overhead of an SCA-hardened context switch

when used in FreeRTOS. To measure the performance overhead, we

stick to a complete Ascon round (𝑇𝐸𝑁𝐶), scheduled alternating with

𝑇𝐶𝑁𝑇 . The execution is interrupted by a periodic timer, which fre-

quency can be controlled from software using the configTICK_RATE_HZ-
define in FreeRTOS. The original configuration of FreeRTOS speci-

fies a timer interrupt every 100 000 cycles which seems plausible

considering that in a real system, context switches will not only

be triggered by timers but also by many more (non-periodic) ex-

ternal interrupts. As there are no external interrupt sources in

our evaluation environment we configure the timer interrupt to

occur every 1000 cycles, which however represents an extremely-

high-load scenario for the system. Given these numbers, one can

then easily extrapolate overheads for scenarios with less frequent

context switches.

For each evaluated scenario, we give the total number of cycles

needed to compute a full Ascon round, which is the sum of cycles

consumed by 𝑇𝐸𝑁𝐶 and 𝑇𝐶𝑁𝑇 , and cycles spent on context switch-

ing. Note that the number of cycles between two timer interrupts is

always constant (1000 cycles), and as the context switching requires

more time, less execution time will be available for the tasks, and

therefore, more context switches will be necessary in total. We

also give the number of cycles required per context switch and

the runtime overhead in percent w.r.t. to the basic scenario (no

protection).

Which combination to choose depends on the concrete use case.

If OS and hardware modifications should be kept minimal and low

runtime is not so critical, one should stick to the first option (TCB

clearing) because it is very simple to integrate into any OS. If per-

formance is more critical, rotating TCB memory slots are the best

option, although they require more OS changes and require at least

one other actively running task. Randomness-refreshed loads and

stores are more efficient when implemented with hardware support.

In software, there is no clear advantage compared to TCB clearing

or rotating TCB memory slots. As discussed above, in practice, in-

terrupts are, however, expected to occur much less frequent than

in this case study. We argue that therefore, all of the four suggested

combinations would be suitable because the amount the total run-

time of an Ascon round is increased by applying a secure context

switch when interrupted only once is negligible.

Optimizations. Further optimization of the runtime of the indi-

vidual basic strategies is most likely not possible on software level,

since they are already written in Assembly language. However,

hardware support for clearing the TCB and all registers could be

Secure Context Switching of Masked Software Implementations ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

added and would likely result in a performance gain, although the

hardware changes are expected to be much larger than the ones

suggested for randomness-refreshed loads and stores. Instead, one

could aim for further optimizations on OS level. In fact, the sug-

gested protections must only be applied when a task executing

masked software is involved in a context switch. Otherwise, the un-

protected (and comparably cheap) context switch can be executed.

An additional flag in the task’s TCB can be used to distinguish tasks

executing masked software from other unrelated tasks.

6.4 Other RTOS

In the following we briefly discuss other open-source RTOS and

the possible security implications on masked software running in a

task.

Zephyr, RIOT. Zephyr [45] is an RTOS maintained by the Linux

Foundation for resource-constrained devices with a strong focus

on security. RIOT [5] is similar to Zephyr but comes with different

scheduling strategies and supported platforms. The Zephyr and

RIOT context switching routines apply a different register order

compared to FreeRTOSwhen storing and loading the register values,

which shows why one could never make assumptions about such

aspects when designing masked software. We expect both OS are

vulnerable to the problems discussed in Section 4, and that our

countermeasures can be integrated in a similar way.

TockOS, KataOS. TockOS [37] and the recently announced KataOS
[21] are written almost completely in Rust, and both are used for

Google’s OpenTitan project, which runs the RISC-V Ibex core. The

nature of the TockOS context switch suggests the same problems

as identified above, which can be solved using the basic strategies

except for rotating TCB memory slots. TockOS keeps all processes

isolated from each other using a hardware Memory Protection

Unit (MPU). Rotating TCB memory slots requires the existence of

a common memory region which stores data (register values) of

multiple processes, which hurts the principle of isolation, while

the other suggested countermeasures are compatible with such

isolation techniques.

7 CONCLUSION

In this paper, we provide the first security analysis of context

switches for masked cryptographic software. After showing the

fundamental problems created by context switches on embedded

OSs, we propose several different mitigation strategies in hardware

or software. Ultimately, our hardened context switching routines

allow masked software from previous works, verified for security

in bare-metal execution, to remain secure when being executed on

embedded OSs. We present a case study focusing on FreeRTOS, a

popular embedded OS for embedded devices, running on a RISC-V

core, allowing us to evaluate the practicality, ease of integration, and

performance of each strategy. While the runtime of hardened con-

text switches is certainly noticeable, we expect the overall impact

on system performance to be rather negligible unless the frequency

of context switches is very high.

ACKNOWLEDGMENTS

This work was supported by the FWF SFB project SpyCoDe F8504,

and the TU Graz LEAD project "Dependable Internet of Things in

Adverse Environments". We thank the anonymous reviewers for

their valuable suggestions and comments.

REFERENCES

[1] Mehdi-Laurent Akkar and Christophe Giraud. 2001. An Implementation of DES

and AES, Secure against Some Attacks. In Cryptographic Hardware and Embedded
Systems - CHES 2001, Third International Workshop, Paris, France, May 14-16, 2001,
Proceedings (Lecture Notes in Computer Science, Vol. 2162), Çetin Kaya Koç, David

Naccache, and Christof Paar (Eds.). Springer, 309–318.

[2] Inc. Amazon Web Services. 2022. FreeRTOS. https://www.freertos.org/ https:

//www.freertos.org/. Retrieved on 15/12/2022.

[3] Farhad Andalibi and Paulo Garcia. 2021. Near-Native Interrupt Latency in Real-

Time Guests: Handler Emulation Through Memory Map Morphing. In ICCDE
2021: 7th International Conference on Computing and Data Engineering, Phuket,
Thailand, January 15 - 17, 2021. ACM, 94–98.

[4] Aspencore. 2019. 2019 Embedded Markets Study: Integrating IoT and Ad-

vanced Technology Designs, Application Development & Processing Environ-

ments. https://www.embedded.com/wp-content/uploads/2019/11/EETimes_

Embedded_2019_Embedded_Markets_Study.pdf, Retrieved on 3/11/2022.

[5] Emmanuel Baccelli, Cenk Gündogan, Oliver Hahm, Peter Kietzmann, Martine

Lenders, Hauke Petersen, Kaspar Schleiser, Thomas C. Schmidt, and Matthias

Wählisch. 2018. RIOT: AnOpen Source Operating System for Low-End Embedded

Devices in the IoT. IEEE Internet Things J. 5, 6 (2018), 4428–4440.
[6] Josep Balasch, Sebastian Faust, Benedikt Gierlichs, and Ingrid Verbauwhede.

2012. Theory and Practice of a Leakage Resilient Masking Scheme. In Advances
in Cryptology - ASIACRYPT 2012 - 18th International Conference on the Theory and
Application of Cryptology and Information Security, Beijing, China, December 2-6,
2012. Proceedings (Lecture Notes in Computer Science, Vol. 7658), Xiaoyun Wang

and Kazue Sako (Eds.). Springer, 758–775.

[7] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-

Xavier Standaert. 2014. On the Cost of Lazy Engineering for Masked Software

Implementations. In Smart Card Research and Advanced Applications - 13th In-
ternational Conference, CARDIS 2014, Paris, France, November 5-7, 2014. Revised
Selected Papers (Lecture Notes in Computer Science, Vol. 8968). Springer, 64–81.

[8] Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and Ingrid Verbauwhede. 2015.

DPA, Bitslicing and Masking at 1 GHz. In Cryptographic Hardware and Embedded
Systems - CHES 2015 - 17th International Workshop, Saint-Malo, France, Septem-
ber 13-16, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9293), Tim
Güneysu and Helena Handschuh (Eds.). Springer, 599–619.

[9] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire, François-

Xavier Standaert, and Pierre-Yves Strub. 2017. Parallel Implementations of Mask-

ing Schemes and the Bounded Moment Leakage Model. In Advances in Cryptology
- EUROCRYPT 2017 - 36th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017.

[10] Gilles Barthe, Marc Gourjon, Benjamin Grégoire, Maximilian Orlt, Clara Paglia-

longa, and Lars Porth. 2021. Masking in Fine-Grained Leakage Models: Construc-

tion, Implementation and Verification. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2021, 2 (2021), 189–228.

[11] Michiel Van Beirendonck, Jan-Pieter D’Anvers, and Ingrid Verbauwhede. 2021.

Analysis and Comparison of Table-based Arithmetic to Boolean Masking. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2021, 3 (2021), 275–297.

[12] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian

Thillard, and Damien Vergnaud. 2017. Private Multiplication over Finite Fields.

In Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III
(Lecture Notes in Computer Science, Vol. 10403). Springer, 397–426.

[13] Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu Rivain, and

Raphaël Wintersdorff. 2020. Tornado: Automatic Generation of Probing-Secure

Masked Bitsliced Implementations. In EUROCRYPT (3) (Lecture Notes in Computer
Science, Vol. 12107). Springer, 311–341.

[14] Bernard Blackham, Yao Shi, and Gernot Heiser. 2012. Improving interrupt re-

sponse time in a verifiable protected microkernel. In European Conference on
Computer Systems, Proceedings of the Seventh EuroSys Conference 2012, EuroSys
’12, Bern, Switzerland, April 10-13, 2012, Pascal Felber, Frank Bellosa, and Herbert

Bos (Eds.). ACM, 323–336.

[15] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. 1999. To-

wards Sound Approaches to Counteract Power-Analysis Attacks. In Advances
in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings (Lecture Notes in
Computer Science, Vol. 1666), Michael J. Wiener (Ed.). Springer, 398–412.

[16] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. 2002. Template Attacks. In

CHES (Lecture Notes in Computer Science, Vol. 2523). Springer, 13–28.
[17] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav

Nikov, and Vincent Rijmen. 2016. Masking AES with d+1 Shares in Hardware. In

Cryptographic Hardware and Embedded Systems - CHES 2016 - 18th International
Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings (Lecture Notes
in Computer Science, Vol. 9813). Springer, 194–212.

[18] Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff, Soline Renner,

Matthieu Rivain, and Praveen Kumar Vadnala. 2012. Conversion of Security

https://www.freertos.org/
https://www.freertos.org/
https://www.freertos.org/
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Gigerl et al.

Proofs from One Leakage Model to Another: A New Issue. In Constructive Side-
Channel Analysis and Secure Design - Third International Workshop, COSADE
2012, Darmstadt, Germany, May 3-4, 2012. Proceedings (Lecture Notes in Computer
Science, Vol. 7275). Springer, 69–81.

[19] Yann Le Corre, Johann Großschädl, and Daniel Dinu. 2018. Micro-architectural

Power Simulator for Leakage Assessment of Cryptographic Software on ARM

Cortex-M3 Processors. In Constructive Side-Channel Analysis and Secure Design -
9th InternationalWorkshop, COSADE 2018, Singapore, April 23-24, 2018, Proceedings
(Lecture Notes in Computer Science, Vol. 10815), Junfeng Fan and Benedikt Gierlichs
(Eds.). Springer, 82–98.

[20] Wouter de Groot, Kostas Papagiannopoulos, Antonio de la Piedra, Erik Schnei-

der, and Lejla Batina. 2016. Bitsliced Masking and ARM: Friends or Foes?. In

Lightweight Cryptography for Security and Privacy - 5th International Workshop,
LightSec 2016, Aksaray, Turkey, September 21-22, 2016, Revised Selected Papers
(Lecture Notes in Computer Science, Vol. 10098). Springer, 91–109.

[21] AmbiML Developers. 2022. KataOS. https://opensource.googleblog.com/2022/10/

announcing-kataos-and-sparrow.html.

[22] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.

2016. Ascon v1.2. Submission to the CEASAR Competition. https://ascon.iaik.

tugraz.at/files/asconv12.pd. Retrieved on 4/2/2021.

[23] Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and Roderick

Bloem. 2021. Coco: Co-Design and Co-Verification of Masked Software Im-

plementations on CPUs. In 30th USENIX Security Symposium, USENIX Security
2021, August 11-13, 2021, Michael Bailey and Rachel Greenstadt (Eds.). USENIX

Association, 1469–1468.

[24] Barbara Gigerl, Robert Primas, and Stefan Mangard. 2021. Secure and Efficient

Software Masking on Superscalar Pipelined Processors. InAdvances in Cryptology
- ASIACRYPT 2021 - 27th International Conference on the Theory and Application
of Cryptology and Information Security, Singapore, December 6-10, 2021, Proceed-
ings, Part II (Lecture Notes in Computer Science, Vol. 13091), Mehdi Tibouchi and

Huaxiong Wang (Eds.). Springer, 3–32.

[25] SYSGO GMBH. 2022. PikeOS. https://www.sysgo.com/pikeos https://www.

sysgo.com/pikeos. Retrieved on 14/12/2022.

[26] Louis Goubin and Jacques Patarin. 1999. DES and Differential Power Analysis

(The "Duplication" Method). In Cryptographic Hardware and Embedded Systems,
First International Workshop, CHES’99, Worcester, MA, USA, August 12-13, 1999,
Proceedings (Lecture Notes in Computer Science, Vol. 1717), Çetin Kaya Koç and

Christof Paar (Eds.). Springer, 158–172.

[27] Dahmun Goudarzi, Anthony Journault, Matthieu Rivain, and François-Xavier

Standaert. 2018. Secure Multiplication for Bitslice Higher-Order Masking: Optimi-

sation and Comparison. In Constructive Side-Channel Analysis and Secure Design
- 9th International Workshop, COSADE 2018, Singapore, April 23-24, 2018, Proceed-
ings (Lecture Notes in Computer Science, Vol. 10815), Junfeng Fan and Benedikt

Gierlichs (Eds.). Springer, 3–22.

[28] Dahmun Goudarzi and Matthieu Rivain. 2017. How Fast Can Higher-Order

Masking Be in Software?. In Advances in Cryptology - EUROCRYPT 2017 - 36th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part I (Lecture Notes
in Computer Science), Jean-Sébastien Coron and Jesper Buus Nielsen (Eds.).

[29] Hannes Groß and Stefan Mangard. 2017. Reconciling d+1 Masking in Hardware

and Software. In Cryptographic Hardware and Embedded Systems - CHES 2017 -
19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings
(Lecture Notes in Computer Science, Vol. 10529). Springer, 115–136.

[30] Hannes Groß and Stefan Mangard. 2018. A unified masking approach. J. Cryptogr.
Eng. 8, 2 (2018), 109–124.

[31] Hannes Groß, Stefan Mangard, and Thomas Korak. 2016. Domain-Oriented

Masking: Compact Masked Hardware Implementations with Arbitrary Protection

Order. In Proceedings of the ACM Workshop on Theory of Implementation Security,
TIS@CCS 2016 Vienna, Austria, October, 2016. ACM, 3.

[32] Hannes Groß, David Schaffenrath, and Stefan Mangard. 2017. Higher-Order

Side-Channel Protected Implementations of KECCAK. In Euromicro Conference
on Digital System Design, DSD 2017, Vienna, Austria, August 30 - Sept. 1, 2017.
IEEE Computer Society, 205–212.

[33] Michael Gruber, Matthias Probst, Patrick Karl, Thomas Schamberger, Lars Tebel-

mann, Michael Tempelmeier, and Georg Sigl. 2021. DOMREP-An Orthogonal

Countermeasure for Arbitrary Order Side-Channel and Fault Attack Protection.

IEEE Trans. Inf. Forensics Secur. 16 (2021), 4321–4335.
[34] Yuval Ishai, Amit Sahai, and David A. Wagner. 2003. Private Circuits: Securing

Hardware against Probing Attacks. In Advances in Cryptology - CRYPTO 2003,
23rd Annual International Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 2003, Proceedings (Lecture Notes in Computer Science, Vol. 2729).
Springer, 463–481.

[35] David Knichel, Amir Moradi, Nicolai Müller, and Pascal Sasdrich. 2022. Auto-

mated Generation of Masked Hardware. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2022, 1 (2022), 589–629.

[36] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.

In CRYPTO (Lecture Notes in Computer Science, Vol. 1666). Springer, 388–397.

[37] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pannuto,

Prabal Dutta, and Philip Levis. 2017. Multiprogramming a 64kB Computer

Safely and Efficiently. In Proceedings of the 26th Symposium on Operating Systems
Principles (Shanghai, China) (SOSP’17). 234–251.

[38] lowRISC contributors. 2019. AES HWIP Technical Specification. https://

opentitan.org/book/hw/ip/aes/index.html https://opentitan.org/book/hw/ip/aes/

index.html. Retrieved on 19/4/2023.

[39] Ben Marshall, Dan Page, and James Webb. 2022. MIRACLE: MIcRo-ArChitectural

Leakage Evaluation A study of micro-architectural power leakage across many

devices. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022, 1 (2022), 175–220.
[40] David McCann, Elisabeth Oswald, and Carolyn Whitnall. 2017. Towards Practical

Tools for Side Channel Aware Software Engineering: ’Grey Box’ Modelling for

Instruction Leakages. In 26th USENIX Security Symposium, USENIX Security 2017,
Vancouver, BC, Canada, August 16-18, 2017. USENIX Association, 199–216.

[41] Lauren De Meyer, Elke De Mulder, and Michael Tunstall. 2020. On the Effect of

the (Micro)Architecture on the Development of Side-Channel Resistant Software.

IACR Cryptol. ePrint Arch. 2020 (2020), 1297.
[42] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. 2006. Threshold

Implementations Against Side-Channel Attacks and Glitches. In Information and
Communications Security, 8th International Conference, ICICS 2006, Raleigh, NC,
USA, December 4-7, 2006, Proceedings (Lecture Notes in Computer Science, Vol. 4307).
Springer, 529–545.

[43] Elisabeth Oswald and Kai Schramm. 2005. An Efficient Masking Scheme for AES

Software Implementations. In Information Security Applications, 6th International
Workshop, WISA 2005, Jeju Island, Korea, August 22-24, 2005, Revised Selected
Papers (Lecture Notes in Computer Science, Vol. 3786), JooSeok Song, Taekyoung

Kwon, and Moti Yung (Eds.). Springer, 292–305.

[44] Kostas Papagiannopoulos and Nikita Veshchikov. 2017. Mind the Gap: Towards

Secure 1st-Order Masking in Software. In Constructive Side-Channel Analysis and
Secure Design - 8th International Workshop, COSADE 2017, Paris, France, April
13-14, 2017, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 10348).
Springer, 282–297.

[45] Zephyr Project. 2022. Zephyr OS. https://www.zephyrproject.org/ https:

//www.zephyrproject.org/. Retrieved on 14/12/2022.

[46] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid Ver-

bauwhede. 2015. Consolidating Masking Schemes. In Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 16-20, 2015, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9215).
Springer, 764–783.

[47] Matthieu Rivain and Emmanuel Prouff. 2010. Provably Secure Higher-Order

Masking of AES. In Cryptographic Hardware and Embedded Systems, CHES 2010,
12th International Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Proceed-
ings (Lecture Notes in Computer Science, Vol. 6225). Springer, 413–427.

[48] NXP Semiconductors. 2022. MQX Real-Time Operating System (RTOS).

https://www.nxp.com/design/software/embedded-software/mqx-software-

solutions/mqx-real-time-operating-system-rtos:MQXRTOS. Retrieved on

14/12/2022.

[49] Amazon Web Services. 2022. FreeRTOS Kernel Ports. https://www.freertos.

org/RTOS_ports.html https://www.freertos.org/RTOS_ports.html. Retrieved on

5/11/2022.

[50] Amazon Web Services. 2022. FreeRTOS Scheduling. https://www.freertos.org/

implementation/a00005.html https://www.freertos.org/implementation/a00005.

html. Retrieved on 5/12/2022.

[51] Madura A. Shelton, Lukasz Chmielewski, Niels Samwel, Markus Wagner, Lejla

Batina, and Yuval Yarom. 2021. Rosita++: Automatic Higher-Order Leakage

Elimination from Cryptographic Code. In CCS ’21: 2021 ACM SIGSAC Conference
on Computer and Communications Security, Virtual Event, Republic of Korea, No-
vember 15 - 19, 2021, Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi

(Eds.). ACM, 685–699.

[52] Madura A. Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni, Markus

Wagner, and Yuval Yarom. 2021. Rosita: Towards Automatic Elimination of Power-

Analysis Leakage in Ciphers. In 28th Annual Network and Distributed System
Security Symposium, NDSS 2021, virtually, February 21-25, 2021. The Internet

Society.

[53] Wilson Snyder. 2022. Verilator. https://www.veripool.org/wiki/verilator. Re-

trieved on February 2nd, 2021.

[54] Junwei Wang, Praveen Kumar Vadnala, Johann Großschädl, and Qiuliang Xu.

2015. Higher-OrderMasking in Practice: A Vector Implementation ofMasked AES

for ARM NEON. In Topics in Cryptology - CT-RSA 2015, The Cryptographer’s Track
at the RSA Conference 2015, San Francisco, CA, USA, April 20-24, 2015. Proceedings,
Kaisa Nyberg (Ed.). Springer.

[55] Claire Wolf. 2016. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/.

Retrieved on February 2/2/2021.

[56] Peifeng Zhang, Hong Li, and Zhigang Gao. 2009. PIL: A Method to Improve

Interrupt Latency in Real-Time Kernels. In International Conference on Scalable
Computing and Communications / Eighth International Conference on Embedded
Computing, ScalCom-EmbeddedCom 2009, Dalian, China, September 25-27, 2009,
Keqiu Li, Geyong Min, Yongxin Zhu, Meikang Qiu, and Wenyu Qu (Eds.).

https://opensource.googleblog.com/2022/10/announcing-kataos-and-sparrow.html
https://opensource.googleblog.com/2022/10/announcing-kataos-and-sparrow.html
https://ascon.iaik.tugraz.at/files/asconv12.pd
https://ascon.iaik.tugraz.at/files/asconv12.pd
https://www.sysgo.com/pikeos
https://www.sysgo.com/pikeos
https://www.sysgo.com/pikeos
https://opentitan.org/book/hw/ip/aes/index.html
https://opentitan.org/book/hw/ip/aes/index.html
https://opentitan.org/book/hw/ip/aes/index.html
https://opentitan.org/book/hw/ip/aes/index.html
https://www.zephyrproject.org/
https://www.zephyrproject.org/
https://www.zephyrproject.org/
https://www.nxp.com/design/software/embedded-software/mqx-software-solutions/mqx-real-time-operating-system-rtos:MQXRTOS
https://www.nxp.com/design/software/embedded-software/mqx-software-solutions/mqx-real-time-operating-system-rtos:MQXRTOS
https://www.freertos.org/RTOS_ports.html
https://www.freertos.org/RTOS_ports.html
https://www.freertos.org/RTOS_ports.html
https://www.freertos.org/implementation/a00005.html
https://www.freertos.org/implementation/a00005.html
https://www.freertos.org/implementation/a00005.html
https://www.freertos.org/implementation/a00005.html
https://www.veripool.org/wiki/verilator
http://www.clifford.at/yosys/

Secure Context Switching of Masked Software Implementations ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

A APPENDIX

A.1 Unprotected context switch

task_switch:

sw x1, (sp)

sw x2, 4(sp)

sw x3, 8(sp)

sw x4, 12(sp)

...

Select next task

...

lw x1, (sp)

lw x2, 4(sp)

lw x3, 8(sp)

...

ret

A.2 Interleaved context switch

task_switch_interleaved:

mv sp, x30 # Reserve x30, never use in code

...

Select next task

...

sw x1, (x30)

lw x1, (sp)

sw x2, 4(x30)

lw x2, 4(sp)

sw x3, 8(x30)

lw x3, 8(sp)

sw x4, 12(x30)

lw x4, 12(sp)

...

ret

A.3 TCB clearing

task_switch_clear_tcb:

sw x0, (sp) #x0 is constantly tied to 0

sw x1, (sp)

sw x0, 4(sp)

sw x2, 4(sp)

sw x0, 8(sp)

sw x3, 8(sp)

sw x0, 12(sp)

sw x4, 12(sp)

...

Select next task

...

lw x1, (sp)

lw x2, 4(sp)

lw x3, 8(sp)

...

ret

A.4 Randomness-refreshed loads and stores

(SW)

task_switch_rand_refresh_sw:

li x30, addr_prng # Reserve x30, never use in code

lw x30, (x30) # x30 now contains fresh randomness

xor x1, x1, x30

sw x1, (sp)

xor x2, x2, x30

sw x2, 4(sp)

xor x3, x3, x30

sw x3, 8(sp)

xor x4, x4, x30

sw x4, 12(sp)

Store x30 to TCB

...

Select next task

...

Load randomness used in previous store from TCB to

x30

lw x1, (sp)

xor x1, x1, x30

lw x2, 4(sp)

xor x2, x2, x30

lw x3, 8(sp)

xor x3, x3, x30

...

ret

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

	Abstract
	1 Introduction
	2 Background
	2.1 Masking
	2.2 Practical security of masked software
	2.3 Coco
	2.4 Embedded operating systems

	3 Attacker model
	4 Analyzing Context switches in masked software
	4.1 Experiment setup
	4.2 Transitions on memory/register file read/write port
	4.3 Overwriting shares in memory
	4.4 Discussion

	5 SCA-secure context switching
	5.1 Basic strategies against transitions
	5.2 Basic strategies against overwrites
	5.3 Lazy engineering

	6 Case Study
	6.1 Evaluation setup
	6.2 Hardening the FreeRTOS context switch
	6.3 Discussion
	6.4 Other RTOS

	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Unprotected context switch
	A.2 Interleaved context switch
	A.3 TCB clearing
	A.4 Randomness-refreshed loads and stores (SW)

