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THE k-XORSAT THRESHOLD REVISITED

AMIN COJA-OGHLAN, MIHYUN KANG, LENA KRIEG, MAURICE ROLVIEN

ABSTRACT. We provide a simplified proof of the random k-XORSAT satisfiability threshold theorem. As an extension

we also determine the full rank threshold for sparse random matrices over finite fields with precisely k non-zero entries

per row. This result is an extension of a result from [Ayre, Coja-Oghlan, Gao, Müller: Combinatorica 2020]. The proof

combines physics-inspired message passing arguments with a surgical moment computation. MSc: 60B20, 15B52

1. INTRODUCTION

The random 3-XORSAT problem was one of the first random constraint satisfaction problems whose satisfiability

threshold could be pinpointed precisely. A random 3-XORSAT instance consists of a conjunction of XOR-clauses,

rather than OR-clauses as in the common k-SAT problem. The goal is to find the maximum number of ran-

dom XOR-clauses such that the formula remains satisfiable with high probability. The seminal article of Dubois

and Mandler [14] that first solved this problem introduced an influential technique, namely the second moment

method applied to a pruned problem instance. In their very last sentence Dubois and Mandler asserted that their

proof extends to k-XORSAT for any k ≥ 3. However, because of the analytic difficulties associated with estimating

the second moment for k > 3, this generalisation turned out to be far from straightforward. The first complete

proof, covering over 30 pages and involving an (avoidable) bit of computer assistance, was published by Pittel and

Sorkin [26] more than a decade later. Subsequently a different but still fairly complicated proof that relies on cou-

pling arguments rather than moment calculations was suggested by Ayre, Coja-Oghlan, Gao and Müller [4]. That

result covers not only k-XORSAT but also an extension to random matrices over finite fields.

The present contribution develops a relatively short, self-contained derivation of the k-XORSAT threshold as

well as said extensions to random matrices via a novel approach that differs significantly from both [4, 26]. The

new proof is partly inspired by statistical physics ideas and by recent work on a vaguely related random matrix

problem [5, 21]. To elaborate, we first derive a quantitative characterisation of a typical solution to a random k-

XORSAT formula by means of what physicists would call a ‘quenched’ argument. The quenched argument employs

Warning Propagation (‘WP’), a physics-inspired message passing technique. Then we follow up with a surgical

moment computation confined to scenarios that match the precise characteristics predicted by WP. In physics

jargon this second bit amounts to an ‘annealed’ computation. Usually annealed estimates fail to be tight due to

large deviations effects. They also tend to be painfully intricate. But because the present specimen carefully homes

in on solutions with the correct ‘quenched’ properties, the calculations are tight as well as elegant.

Let F = F k (n,m) be a random k-XORSAT instance with n Boolean variables and m random XOR-clauses of

length k. To be precise, the clauses are drawn independently and uniformly from the set of all possible 2k
(n

k

)

XOR-

clauses on the variable set x1, . . . , xn . The following theorem, first established in [14] for k = 3 and in [26] for k > 3,

provides the k-XORSAT threshold.

Theorem 1.1. For k ≥ 3 and d > 0 let

Φd ,k (α) = exp
(

−dαk−1
)

+dαk−1
−

d(k −1)

k
αk

−
d

k
and dk = sup

{

d > 0 : max
α∈[0,1]

Φd ,k (α) = 1−d/k

}

. (1.1)

For any ε> 0 w.h.p. the random k-XORSAT formula F is

(i) satisfiable if m ≤ (1−ε)dk n/k,

(ii) unsatisfiable if m ≥ (1+ε)dk n/k.
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award of the Alexander von Humboldt Foundation (AUT 1204138 BES).
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In a nutshell, the k-XORSAT satisfiability threshold equals dk /k. The threshold admits an explicit combinatorial

interpretation, an observation that was a vital to the original derivations [14, 26]. To elaborate, we rephrase the k-

XORSAT formula F as a linear system over F2 as follows. Set up a random m ×n-matrix A whose i -th row has

one-entries in precisely the k columns j such that variable x j appears in the i -th clause of F . Thus, each row of A

represents a clause. Further, define y i = 1 iff k plus the number of negations in the i -th clause is odd. Then every

solution σ ∈ F
n
2 to the linear system Aσ= y renders a XOR-satisfying assignment of F , and vice versa. Because the

signs of the literals are independent of the identities of the underlying variables, the vector y is independent of A.

Therefore, the random XOR-formula F is satisfiable w.h.p. iff A has full row rank m w.h.p.

Now consider the following process that prunes A down to a minor A(2):

while there exists a column with at most a single non-zero entry, remove that column along with

the row where its non-zero entry appears (if there is one).

This is just the random hypergraph 2-core peeling process phrased in terms of the matrix A . Therefore, it is possible

(albeit non-trivial) to track the pruning process so as to determine the likely size of A(2) [23]. This analysis evinces

that dk n/k marks the threshold beyond which A(2) has more rows than columns w.h.p. In effect, for m ≥ (1+

ε)dk n/k the minor A(2) cannot have full row rank anymore, nor can the original matrix A. Consequently, F is

unsatisfiable for m ≥ (1+ε)dk n/k.

Although for m ≤ (1−ε)dk n/k the minor A(2) has fewer rows than columns, it is by no means a foregone con-

clusion that A(2) also has full row rank w.h.p. Indeed, in [14, 26] the main technical difficulty lies in demonstrating

this fact via the second moment method. The necessary calculations turn out to be delicate because they operate

with the outcome A(2) of the pruning process, a matrix whose rows are stochastically dependent. The second mo-

ment therefore involves subtle large deviations trade-offs. Luckily, the proof strategy that we propose here requires

neither an explicit analysis of the pruning process, nor complicated large deviations arguments.

Theorem 1.1 admits a natural generalisation to matrices over finite fields beyond F2. Let q ≥ 2 be a prime power

and let A = (Ai j )i , j≥1 be an infinite matrix with entries Ai j ∈ Fq \ {0}. Further, given integers m,n > 0 and k ≥ 3

let (e i )i≥1 be a family of independent uniformly random subsets of [n] of size |ei | = k and define a random m ×n-

matrix A = A(k,m,n, q,A) over Fq by letting

Ai j =Ai j 1{ j ∈ e i } (i ∈ [m], j ∈ [n]). (1.2)

Thus, A has precisely k non-zero entries per row. The positions of the non-zero entries are determined by the e i ,

while the entries themselves are copied from A. Naturally, in the case q = 2 we simply obtain the matrix induced

by the k-XORSAT formula F . Therefore, the following theorem encompasses Theorem 1.1 as a special case.

Theorem 1.2. For any k ≥ 3, any prime power q ≥ 2 and any infinite matrix A composed of non-zero elements of Fq

the following is true. Let dk be the threshold from (1.1). Then for any ε> 0,

(i) if m ≤ (1−ε)dk n/k, then A has full row rank w.h.p.

(ii) if m ≥ (1+ε)dk n/k, then A fails to have full row rank w.h.p.

Theorem 1.2 complements [4, Theorem 1.1], where only random matrices with identically distributed rows were

considered. By contrast, in Theorem 1.2 the matrix A may proscribe different non-zero entries for each row. That

said, in hindsight the theorem shows that the full rank threshold is independent of both q and A. We proceed to

outline the strategy upon which the proof of Theorem 1.2 is based.

2. PROOF STRATEGY

The main difficulty lies in proving the positive statement Theorem 1.2(i). Suppose we could argue that for m <

(1− ε)dk n/k w.h.p. a random vector σ ∈ ker A is approximately ‘balanced’ in the sense that every value s ∈ Fq

appears in σ about n/q times. Since a straightforward moment calculation shows that the expected number of

balanced σ ∈ ker A equals (1+o(1))qn−m , we could then conclude that |ker A| = (1+o(1))qn−m w.h.p., and thus

that A has full row rank w.h.p.

However, we will not be able to prove directly that a random σ ∈ ker A is balanced w.h.p. Instead we will work

with a matrix A† obtained from A by a small but consequential perturbation called ‘pinning’. The matrix A† con-

tains A as its top m ×n-minor, but A† has O(logn) additional rows. Pinning guarantees that A† has only relatively

few ‘short linear relations’, a property that will pave the way for us to bring the Warning Propagation (‘WP’) mes-

sage passing scheme to bear. Ultimately we will argue that random σ† ∈ ker A† are balanced w.h.p. As outlined in

the previous paragraph, this will imply that A† has full row rank w.h.p., whence the same is true of A.
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The purpose of WP is to show that the vectors in the kernel of A† have a peculiar structure. Specifically, there

are certain coordinates j ∈ [n] that are ‘frozen’ in A†, meaning that σ j = 0 for all σ ∈ ker A†. By contrast, the values

assigned to the unfrozen coordinates are essentially balanced. Hence, if αn variables are frozen, then in a random

σ† ∈ ker A† each non-zero value s ∈ Fq \ {0} appears about (1−α)n/q times. Ultimately we will argue that α= o(1)

w.h.p., which implies that σ† is balanced w.h.p.

But the proof that α = o(1) w.h.p. requires a few more steps. First, from WP we learn that the probability that

j ∈ [n] is frozen depends on the number of non-zero entries in the j -th column of A†. In fact, WP renders detailed

‘local’ information about the distribution of the frozen coordinates. In the quenched part of the analysis, we will

extract this information carefully to obtain a quantitative picture of the structure of the kernel vectors in terms of

the as yet unknown value of α. Moreover, we will see that the messages exchanged by WP satisfy a certain fixed

point property.

Subsequently, we will develop an ‘annealed’ (moment computation) argument that allows us to bound the num-

ber of WP fixed points associated with any conceivable value of α. Moreover, we will compute the expected num-

ber of vectors σ ∈ ker A† that are consistent with a given WP fixed point. This calculation will reveal that w.h.p.

for m < (1− ε)dkn/k no WP fixed point with Ω(n) frozen coordinates gives rise to qn−m−o(n) kernel vectors, the

number of vectors that we know the kernel of A† must contain because its rank and its nullity sum to n. Hence, we

deduce that α= o(1) w.h.p., as desired.

In the rest of this section we discuss in more detail the proof of Theorem 1.2(i). We begin with the pinning

operation in Section 2.1, then discuss WP and the quenched and annealed analyses. The proof of the second

assertion Theorem 1.2 (ii) is but an afterthought. Indeed, as mentioned in Section 1 this second assertion could

be derived from known results about the size of the minor A(2). Nonetheless, Section 5 contains a self-contained

proof based on the interpolation method that avoids the analysis of the pruning process.

2.1. Pinning. Adding a few rows to a matrix, the randomised pinning operation mostly removes ‘short linear rela-

tions’. The operation, devised in this form in [7], actually works on any matrix, not just on the random matrix A.

Hence, let A be any Fq -matrix of size M×N . For an integer t ≥ 0 obtain A[t ] from A by adding t new rows that each

contain a single non-zero entry, namely a one in a random position chosen independently and uniformly from the

N columns.

The purpose of this operation is to diminish the number of short relations. To be precise, following [7] we call a

set J ⊆ [N ] of columns a relation of A if there exists a vector y ∈ F
M
q such that

supp(y⊤A) =
{

j ∈ [N ] : (y⊤A) j 6= 0
}

is a non-empty subset of J . In other words, the non-zero entries of the linear combination y⊤A 6= 0 of the rows of

A are confined to J . Further, call j ∈ [N ] frozen in A if the singleton { j } is a relation of A. Thus, j is frozen iff σ j = 0

for every σ ∈ ker A. Let F (A) be the set of all frozen j ∈ [N ].

In addition, call J 6= ; a proper relation of A if J \ F (A) is a relation of A. Finally, we say that A is (δ,ℓ)-free if A

possesses fewer than δ
(N

h

)

proper relations I of size |I | = h for any 2 ≤ h ≤ ℓ. This definition is meant to express

that A contains few relations of size ℓ that are not ‘just’ composed of frozen j ∈ [N ].1

Lemma 2.1 ([7, Proposition 2.4]). For any δ > 0,ℓ > 0 there exists T0 = O(ℓ3/δ4) > 0 such that for any T ≥ T0 and

any matrix A for a random t ∈ [T ] we have P
[

A[t ] is (δ,ℓ)-free
]

> 1−δ.

Setting T = ⌈logn⌉, we let A† = A[t ] for a random t ∈ [T ]. Since T0 in Lemma 2.1 is independent of the size of A

and scales polynomially in ℓ,δ, we obtain the following.

Corollary 2.2. Let ω= ⌈log logn⌉. W.h.p. A† is (ω−1,ω)-free.

Thanks to the scarcity of short proper relations provided by Corollary 2.2 we will be able to characterise the

frozen set F (A†) in terms of the WP message passing scheme, which is the next item on our agenda.

1Lemma 2.1 is the only statement beyond textbook knowledge that we apply without a proof in order to derive Theorem 1.2. The proof,

which relies on a potential function argument and a bit of linear algebra, is neither long nor difficult.
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2.2. Warning Propagation. Since we will need to work not just with A† but also with a few other matrices derived

from it, we introduce WP for a general matrix A of size M × N . The matrix A naturally induces a bipartite graph

G(A) called the Tanner graph. Its vertex set comprises a set VN = {v1, . . . , vN } of variable nodes and another set

FM = {a1, . . . , aM } of check nodes. The former represent the columns of A and the latter the rows. An edge ai v j is

present in G(A) iff Ai j 6= 0. For a vertex u ∈VN ∪FM let ∂u = ∂Au denote its set of neighbours. Moreover, for a set

S ⊆VN ∪FM let A \ S be the minor of A obtained by deleting all rows i such that ai ∈ S as well as all columns j such

that v j ∈ S. In defining the WP scheme we follow [5].

The thrust of WP is to characterise the set F (A) of frozen variables in terms of just the immediate local interac-

tions between variables and their adjacent checks. To this end we associate messages with the edges of the Tanner

graph. Specifically, each edge v j ai of G(A) comes with one message directed from v j to ai and a message in the

reverse direction. The messages take the symbolic values {u,f} to represent ‘unfrozen’ and ‘frozen’. Let

M(A) =
{

m= (mv→a ,ma→v )v∈VN ,v∈∂A a :mv→a ,ma→v ∈ {u,f}
}

be the set of all possible collections of messages. Further, define the standard messages of A by letting

mv j →ai
(A)=

{

f if j ∈F (A \ {ai })

u otherwise
mai→v j

(A)=

{

f if v j ∈F (A \ (∂v j \ {ai }))

u otherwise
(i ∈ [M], j ∈ [N ]). (2.1)

Thus, mv j →ai
(A)= f indicates that variable v j is frozen in the matrix obtained from A by deleting row ai . Similarly,

mai→v j
(A)= f if variable v j is frozen in the matrix obtained from A by deleting all rows ah ∈ ∂A v j except for ai .

If indeed freezing were a perfectly local phenomenon transmitted along the edges of the Tanner graph, then

the messages (2.1) should remain invariant under the Warning Propagation update WPA : M(A) → M(A), m =

(m ·→· ) 7→WP(m)= (m̂ ·→· ), which is defined by

m̂v j →ai
=

{

f if ∃ah ∈ ∂v j \ {ai } :mah→v j
= f,

u otherwise,
m̂ai→v j

=

{

f if ∀xh ∈ ∂ai \ {v j } :mxh→ai
= f,

u otherwise.
(2.2)

Indeed, the first update rule m̂v j →ai
expresses that we expect v j to be frozen in A \ {ai } iff some other check ah

‘freezes’ v j . Similarly, one might expect that ai causes v j to freeze iff all the other variables xh adjacent to ai

freeze, thereby leaving no other option to satisfy ai but to always set x j to zero as well.

Finally, in order to extract the set of frozen variables from the WP messages, we define {u,s,f}-valued labels to

go with the variable and check nodes: for m∈M(A) let

mv j
=











f if ma→v j
= f for at least two a ∈ ∂v j ,

s if ma→v j
= f for precisely one a ∈ ∂v j ,

u otherwise,

(2.3)

mai
=











f if mv→ai
= f for all v ∈ ∂ai ,

s if mv→ai
= f for all but one v ∈ ∂ai ,

u otherwise.

(2.4)

Here the new label mv j
(A) = s (‘slush’) indicates that v j is ‘barely’ frozen as there is only one incoming f-message.

At first glance the s-label may seem superfluous as it could just be subsumed by f in the case of mv j
, and by u in

mai
. However, under (2.2) the s-labeled vertices ‘return’ different messages than those labeled f or u. For instance,

if mv j
= s, then m̂v j →ai

= u if mai→v j
= f, whereas in the case mv j

= f we have m̂v j →ai
= f for all ai ∈ ∂v j . Let

mv j
(A), mai

(A) denote the labels extracted via (2.3)–(2.4) from the standard messages m ·→· (A) from (2.1).

It is easily verified that the WP messages (2.1) coincide with the updated messages if G(A) is acyclic, i.e.,

mv j →ai
(A)= m̂v j→ai

(A), mai→v j
(A)= m̂ai→v j

(A), (2.5)

for all i , j such that ai ∈ ∂A v j . But it is equally easy to come up with cyclic Tanner graphs where (2.5) is violated.

Nonetheless, the following proposition shows that (2.5) is satisfied on the random matrix A† for all but o(n)

adjacent pairs ai , v j w.h.p. The proposition also shows that the labels extracted via (2.3) correctly identify the set

F (A†), up to at most o(n) exceptions. Furthermore, in most kernel vectors the values of the unfrozen variables

are about ‘balanced’. Let α= |F (A†)|/n be the fraction of frozen variables of A† and let σ† be a uniformly random

element of ker A†. Moreover, let dA† (v j ) denote the degree of a variable node v j in G(A†).
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Proposition 2.3. Let d > 0,k ≥ 3. W.h.p. we have

m
∑

i=1

∑

v j ∈∂A† ai

1

{

mv j →ai
(A†) 6= m̂v j →ai

(A†)
}

+ 1

{

mai→v j
(A†) 6= m̂ai→v j

(A†)
}

= o(n), (2.6)

∣

∣

∣

{

j ∈ [n] :mv j
(A†) 6= u

}

△F (A†)
∣

∣

∣= o(n), (2.7)

∑

s∈Fq

∑

ℓ≥0

∣

∣

∣

∣

∣

n
∑

j=1

1{dA† (v j ) = ℓ, mv j
(A†) = u}

(

1{σ†
j
= s}−1/q

)

∣

∣

∣

∣

∣

= o(n). (2.8)

Observe that (2.8) posits that the unfrozen variables are not just ‘balanced’ overall (in the sense that every value

s ∈ Fq occurs with frequency about 1/q), but that balance even holds once we break things down to unfrozen

variables of some specific degree ℓ ≥ 0. The proof Proposition 2.3, which we carry out in Section 3, rests on the

scarcity of short linear relations provided by Corollary 2.2.

2.3. Quenched analysis. Recall that our goal is to show that σ† is approximately balanced w.h.p. Proposition 2.3

reduces this task to showing thatα= o(1) w.h.p. To this end we are going to extract some more detailed information

about the WP messages that the variable and check nodes exchange. Specifically, we are going to estimate the

number of variables/checks with specific labels according to (2.3)–(2.4). In fact, we even need to know the number

of variables/checks with specific labels and with specific numbers of incoming/outgoing message pairs. Hence,

our next goal is to derive such formulas in terms of the (as yet) unknown random variable α.

To account for the numbers of message pairs received/sent by the various nodes let L be the set of all vectors

ℓ= (ℓuu,ℓuf,ℓfu,ℓff) ∈Z
4
≥0. For ℓ ∈L , a label z ∈ {f,s,u}, a matrix A and a collection of messages m ·→· ∈M(A) let

∆z,ℓ(m ·→· ) = {v ∈V (A) : (mv = z)∧ (∀s, t ∈ {u,f} : |{a ∈ ∂v :ma→v = s, mv→a = t }| = ℓst )} , (2.9)

Γz,ℓ(m ·→· ) = {a ∈ F (A) : (ma = z)∧ (∀s, t ∈ {u,f} : |{v ∈ ∂a : mv→a = s, ma→v = s}| = ℓst )} . (2.10)

Thus, ∆z,ℓ comprises variable nodes labelled z by (2.3) that receive/send out numbers of WP messages as detailed

by ℓ. To be precise, the first label s of ℓst encodes the incoming message, while the second index t specifies the

outgoing messages. Similarly, Γz,ℓ counts checks with a given label and given message statistics.

We are going to calculate |∆z,ℓ(m ·→· (A†))|, |Γz,ℓ(m ·→· (A†))| in terms of the fraction α of frozen variables. As

a first step, the following sets comprise the conceivable vectors ℓ to go with the various types of variable/check

nodes, in line with (2.3)–(2.4):

D(u)= {ℓ ∈L : ℓfu = ℓuf = ℓff = 0} , G (u)= {ℓ ∈L : ℓuf = ℓff = 0,ℓuu ≥ 2,ℓfu = k −ℓuu} , (2.11)

D(s)= {ℓ ∈L : ℓfu = 1,ℓff = ℓuu = 0} , G (s)= {ℓ ∈L : ℓuu = ℓff = 0,ℓuf = 1,ℓfu = k −1} , (2.12)

D(f)= {ℓ ∈L : ℓuu = ℓfu = 0,ℓff ≥ 2} , G (f)= {ℓ ∈L : ℓuu = ℓuf = ℓfu = 0,ℓff = k} . (2.13)

Further, we hypothesise that the incoming messages at a check node ai are essentially independent. This seems

plausible as the Tanner graph G(A†) is a sparse random graph with bounded average degree d on the variable side

and constant degree k on the check side. Therefore, typically the neighbouring variable nodes ∂A† ai should end up

being far from each other in G(A† \ {ai }), and far apart vertices might conceivably decorrelate. By a similar token,

we expect that the messages received by a typical variable node v j ought to be nearly independent. If so, and if we

presume that variable-to-check messages take the value f with some probability 0≤α≤ 1, then check-to-variable

messages should take the value f with probability αk−1; for according to (2.2) a check-to-variable message should

be f iff all of the check’s other k − 1 incoming messages are f. In light of (2.11)–(2.13) we can thus predict the

frequencies for the variable/check nodes of the various types. For instance, if α =α, then we expect to see about

δ̄(α,u) = exp(−dαk−1)n variables v j with mv j
(A†) = f. This is because by (2.11) such a variable v j must not receive

any f-messages, while the mean number of such incoming messages should be dαk−1. Similarly, we arrive at

predictions for the frequencies of the other node types:

δ̄(α,u) = exp(−dαk−1), δ̄(α,s) = dαk−1 exp(−dαk−1), δ̄(α,f) = 1−exp(−dαk−1)(1+dαk−1), (2.14)

γ̄(α,u) = 1−k(1−α)αk−1
−αk , γ̄(α,s) = k(1−α)αk−1, γ̄(α,f) =αk . (2.15)

Finally, extending the reasoning outlined in the previous paragraph, we can derive predictions as to the fre-

quencies of nodes with various labels and given statistics ℓ ∈ L of incoming/outgoing messages. With Po≥2(λ)
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and Bin≥2(N , p) denoting the conditional Poisson/Binomial distributions given an outcome of at least two, we

obtain the following expressions:

∆̄u,ℓ(α) = δ̄(α,u)1{ℓ ∈D(u)}P[Po(d(1−αk−1)) = ℓuu], (2.16)

∆̄s,ℓ(α) = δ̄(α,s)1{ℓ ∈D(s)}P[Po(d(1−αk−1)) = ℓuf], (2.17)

∆̄f,ℓ(α) = δ̄(α,f)1{ℓ ∈D(f)}P[Po≥2(dαk−1) = ℓff]P[Po(d(1−αk−1)) = ℓuf)], (2.18)

Γ̄u,ℓ(α) = γ̄(α,u)1{ℓ ∈G (u)}P [Bin≥2(k,1−α) = ℓuu] , (2.19)

Γ̄s,ℓ(α) = γ̄(α,s)1{ℓ ∈G (s)}, (2.20)

Γ̄f,ℓ(α) = γ̄(α,f)1{ℓ ∈G (f)}. (2.21)

The following proposition shows that the aforementioned predictions are accurate w.h.p.

Proposition 2.4. Let d > 0,k ≥ 3. Then
∑

z∈{f,s,u}

∑

ℓ∈L

E

∣

∣

∣|∆z,ℓ(m ·→· (A†))|−n∆̄z,ℓ(α)
∣

∣

∣+E

∣

∣

∣|Γz,ℓ(m ·→· (A†))|−mΓ̄z,ℓ(α)
∣

∣

∣= o(n).

Thus, |∆z,ℓ(m ·→· (A†))|, |Γz,ℓ(m ·→· (A†))| approximately equal ∆̄z,ℓ(α)n, Γ̄z,ℓ(α)m evaluated at the actual frac-

tion α of frozen variables of A†, which is a random variable. The proof of Proposition 2.4, which can be found in

Section 3.3, is based on coupling arguments. In particular, the proof does not reveal the likely value of α.

2.4. Annealed arguments. In light of (2.8) from Proposition 2.3 our main task is to show that α = o(1) w.h.p. if

d < (1−ε)dk /k. To this end we are going to combine Proposition 2.4 with a first moment argument that shows that

for d < (1− ε)dk /k only the scenario α = o(1) w.h.p. can account for the qn−m+o(n) vectors that the kernel of the

(m +o(n))×n-matrix A† must inevitably contain. In other words, we are going to show that WP fixed points with

Ω(n) frozen variables come with too small a number of kernel vectors.

In this respect the present argument differs significantly from prior proofs of Theorem 1.1 [14, 26]. Instead

of first investigating the likely shape of vectors in the kernel (specifically, that they ‘come from’ WP fixed points

with certain statistics), these analyses directly estimate the expected number of vectors in the kernel with a given

Hamming weight; of course, this kind of argument is workable only in the case q = 2. The drawback of a blunt

moment computation is that even extremely rare events make a contribution. Such large deviations effects tend

to lead to intricate and technically demanding analytical optimisation problems.

The present ‘annealed’ argument (viz. moment computation) consists of two layers. First we estimate the ex-

pected number of WP fixed points with the ‘correct’ statistics as provided by (2.16)–(2.21). To be precise, reminding

ourselves of the update rules (2.2), we call m ·→· ∈M(A†) an α-WP fixed point if

m
∑

i=1

∑

v j ∈∂A† ai

1

{

mv j→ai
6= m̂v j →ai

}

+ 1

{

mai→v j
6= m̂ai→v j

}

= o(n) and (2.22)

∑

z∈{f,s,u}

∑

ℓ∈L

∣

∣|∆z,ℓ(m)|−n∆̄z,ℓ(α)
∣

∣+
∣

∣|Γz,ℓ(m)|−mΓ̄z,ℓ(α)
∣

∣= o(n). (2.23)

Thus, we ask that most messages be invariant under the update (2.2), and that the counts |∆z,ℓ(m)|, |Γz,ℓ(m)| be in

line with Proposition 2.4. Performing relatively simple manipulations of the formulas (2.16)–(2.21), we will ulti-

mately see that the expected number of α-WP fixed points is sub-exponential for any 0 ≤α≤ 1.

As a next step, we will estimate the number of kernel vectors σ that come with a particular WP fixed point. To

be precise, call σ ∈ ker A† an extension of m ·→· ∈M(A†) if

n
∑

i=1

1{mvi
6= u, σi 6= 0}+

∑

s∈Fq

∑

ℓ≥0

∣

∣

∣

∣

∣

n
∑

i=1

1{dA† (vi ) = ℓ, mvi
= u}(1{σi = s}−1/q)

∣

∣

∣

∣

∣

= o(n). (2.24)

Thus, σ is required to (mostly) respect the variables that m ·→· deems frozen under (2.3) by actually setting them to

zero. Moreover, the variables deemed unfrozen according to m ·→· need to be assigned in a balanced manner, even

when broken down to specific values ℓ of the variable degree, just like in (2.8). In fact, Propositions 2.3 and 2.4

show that a random kernel vector σ† is an α-extension of the standard messages m ·→· (A†). Hence, letting X α

be the number of pairs (m ·→· ,σ) such that m ·→· is an α-WP fixed point of A† and σ is an extension of α, we see

that |ker A†| ∼ X α w.h.p. By comparison, the following proposition, which we prove in Section 4, provides a first

moment upper bound on X α for any 0≤α≤ 1 in terms of the function Φd ,k from (1.1).

6



Proposition 2.5. Let d > 0,k ≥ 3. W.h.p. for all α∈ [0,1] we have E[X α |D]≤ qnΦd ,k (α)+o(n).

Since for d < dk the function Φd ,k attains its unique maximum at α = 0 and qnΦd ,k (0) = qn−m , it is not very

difficult to derive the estimate α = o(1) w.h.p. from Proposition 2.5. From this, in turn, we can deduce that w.h.p.

most vectors in the kernel are ‘balanced’, i.e., contain every value s ∈ Fq with about equal frequency. To be precise,

for a vector σ ∈ F
n
q let ρ(σ) = (ρs (σ))s∈Fq be the vector with entries ρs (σ)= 1

n

∑n
i=1

1{σi = s}.

Corollary 2.6. Let ε> 0. If m < (1−ε)dk n/k, then w.h.p. we have

E

[

‖ρ(σ†)−q−1
1‖2 | A†

]

= o(1). (2.25)

It is quite easy to calculate the expected number of vectors σ ∈ ker A† with ‖ρ(σ)−q−1
1‖2 = o(1). Recall that we

obtained A† from A by adding t extra rows with a single non-zero entry each. In Section 4.4 we prove the following.

Lemma 2.7. For any d > 0,k ≥ 3 there is η> 0 such that E
∣

∣{σ ∈ ker A† : ‖ρ(σ)−q−1
1‖2 < η} | t

∣

∣≤ (1+o(1))qn−m−t .

Proof of Theorem 1.2 (i). Since the top m rows of A† are equal to A, it suffices to prove that A† has full row rank

w.h.p. Hence, let y † ∈ F
m+t
q be a uniformly random vector that is conditionally independent of A† given t . In order

to conclude that A† has full row rank w.h.p., we just need to show that

P

[

∃σ ∈ F
n
q : A†σ= y †

]

∼ 1. (2.26)

Let Z be the number of solutions σ to A†σ= y †. Because y † is independent of A† given t , we have

E [Z | t ]= qn−m−t . (2.27)

Further, let B be the event that A† enjoys the property (2.25). By Corollary 2.6 the mean of Z on B comes to

E [Z ·1B | t ] =
∑

A†∈F
(m+t )×n
q

y†∈Fm+t
q ,σ∈Fn

q

1

{

A†σ= y†, A†
∈B

}

P

[

A†
= A†, y †

= y†
| t

]

= qn−m−t
P

[

A†
∈B

]

∼ E[Z | t ]. (2.28)

Similarly, Lemma 2.7 yields

E
[

Z 2
·1B | t

]

= E

[

Z |ker A†
| ·1B | t

]

=
∑

A†,y† ,σ

1

{

A†σ= y†, A†
∈B

}

|ker A†
|P

[

A†
= A†, y †

= y†
| t

]

= qn−m−t
E

[

|ker A†
| ·1B | t

]

≤ (1+o(1))q2(n−m−t ). (2.29)

Combining (2.27)–(2.29) with Chebyshev’s inequality, we see that Z ∼ qn−m−t > 0 w.h.p., which implies (2.26). �

2.5. Discussion. Preceding the seminal contribution of Dubois and Mandler [14] that determined the precise 3-

XORSAT threshold, Creignou, Daudé and Dubois [11] obtained upper and lower bounds by means of the first and

the second moment methods. These methods went on to become a mainstay of the theory of random constraint

satisfaction problems, with numerous important additions [2, 13]. Independently of [26], a rigorous derivation of

the k-XORSAT threshold for general k was outlined in [12], where the threshold was needed for an application to

cuckoo hashing. The k-XORSAT threshold was further investigated from the viewpoint of the physicists’ replica and

cavity methods [22]. Moreover, the contributions [1, 17] conduct a detailed study of the geometry of the solution

space of random k-XORSAT formulas.

Various different analyses of the pruning process have been put forward [8, 9, 15, 18, 20, 27, 29]. The methods

employed in these works range from differential equations to branching processes to enumerative arguments.

Since none of the proofs are particularly simple, we consider the fact that, in contrast to [14, 26], the present

derivation of the k-XORSAT threshold gets by without an explicit investigation of the pruning process a significant

plus.

The derivation of the full rank threshold [4] also avoided an analysis of the pruning process and instead relied

on the Aizenman-Sims-Starr coupling argument from mathematical physics [3]. The main result of [4] is a variant

of Theorem 1.2 with identically distributed rows. Specifically, the non-zero entries in the rows are drawn inde-

pendently from a given distribution on (Fq \ {0})k . The present proof method can be easily adapted to cover this

scenario, but also allows for the non-zero entries to be copied from a given infinite matrix A, in which case the

rows need not be identically distributed anymore. Prior to [4], which still covers over 50 pages, an extension of
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the k-XORSAT threshold result to random matrices over F3 was obtained [16] by a generalisation of the moment

method from [14, 26]. The article of over 80 pages requires computer assistance.

The techniques developed in [4] were extended to more general random matrix models with identically dis-

tributed rows [6]; the main result of that paper also implies the k-XORSAT threshold, but the proof is rather com-

plicated. Additionally, for a still more general model of random matrices over general (not necessarily finite) fields

an asymptotic formula for the normalised rank was obtain via the Aizenman-Sims-Starr scheme [7]. Furthermore,

an independent result yields the asymptotic rank of the random matrix A over F2, albeit without obtaining the pre-

cise full rank threshold [10]. Here we employ the pinning technique from [7] (Lemma 2.1), which is an adaptation

of the more general pinning method for discrete probability distributions developed in [24, 28].

Finally, a recent article [5] studies sparse square random matrices over F2 with independent entries. The main

results, pertaining to the structure of the kernel of such a random matrices, evince a somewhat remarkable bifur-

cation that contrasts with the zero-one behaviour otherwise characteristic of probabilistic combinatorics. In the

present paper we employ the mathematical formalisation of the WP message passing scheme developed in [5].

Furthermore, the article [5] also employed a moment computation similar to the one that we use to prove Proposi-

tion 2.5, but for a substantially different matrix model and towards a somewhat different overall result (an analysis

of the kernel geometry rather than a proof that the matrix has full rank).

2.6. Preliminaries. We need to reflect on the function Φd ,k and its maxima. Let

φd ,k (α) = 1−exp(−dαk−1). (2.30)

A tiny bit of calculus reveals that the functions φd ,k from (2.30) and Φd ,k from (1.1) are closely related as

Φ
′
d ,k (α) = d(k −1)αk−2

(

φd ,k (α)−α
)

, (2.31)

Φ
′′
d ,k (α) = d(k −1)(k −2)αk−3

(

φd ,k (α)−α
)

−d(k −1)αk−2
(

1−φ′
d ,k (α)

)

. (2.32)

Thus, the fixed points α ∈ [0,1] of φd ,k coincide with the stationary points of Φd ,k . In fact, the stable fixed points of

φd ,k are precisely the local maxima of Φd ,k . Moreover, a few lines of calculus reveal the following.

Fact 2.8. Let d > 0,k ≥ 3. The function φd ,k has at most three distinct fixed points in the unit interval, which we

denote by αu(d ,k) ≤αs(d ,k) ≤αf(d ,k). There exists a critical value 0 < d∗
k
< dk such that

• for d < d∗
k

we have αu(d ,k) ≤αs(d ,k) ≤αf(d ,k) = 0,

• for d = d∗

k
we have 0 =αu(d ,k) <αs(d ,k) =αf(d ,k) < 1,

• for d > d∗
k

we have 0 =αu(d ,k) <αs(d ,k) <αf(d ,k) < 1.

For d < dk the function Φd ,k attains its unique maximum at 0, while αf(d ,k) is the unique maximiser for d > dk .

Additionally, we need the following elementary fact from linear algebra.

Fact 2.9 ([7, Lemma 2.5]). Let A,B,C be matrices of sizes M × N , M ′ × N and M ′ × N ′, respectively. Moreover, let

I ⊆ [N ] be the set of non-zero columns of B and obtain B0 from B by replacing for every i ∈ I ∩F (A) the i -th column

of B by zero. Unless I is a proper relation of A we have

nul

(

A 0

B C

)

−nul A+ rk(B0 C ) = N ′.

Further, we make a note of the degree distribution of the Tanner graph G(A†). Because the rows are chosen

independently, the degrees of the variable nodes are asymptotically Poisson. More precisely, routine arguments

show that the following is true.

Fact 2.10. W.h.p. we have
∑

ℓ≥0 exp(ℓ)
∣

∣P [Po(d) = ℓ]−
∑n

i=1
1{dA† (vi ) = ℓ}

∣

∣= o(n).

For the entropy of a probability distribution p on a finite set Ω we use the symbol

H(p) =−
∑

ω∈Ω

p(ω) log p(ω),

with the convention that 0log 0 = 0. Finally, for a vector ξ ∈ F
N
q we write ‖ξ‖h for the ℓh-norm of ξ, with the con-

vention that ‖ξ‖0 = |suppξ| = |{i ∈ [N ] : ξi 6= 0}|.
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3. WARNING PROPAGATION

In this section we prove Propositions 2.3 and 2.4. We begin with some ruminations on short linear relations.

3.1. Short linear relations. The following lemma shows that if a matrix A possesses few short proper relations,

then the same is true of any matrix A′ obtained from A by adding a single row. Moreover, A and A′ have more or

less the same frozen variables.

Lemma 3.1. For any δ′ > 0, ℓ′ ≥ 2 there exist δ> 0,ℓ≥ 2, N0 > 0 such that for any N > N0, M > 0, any M ×N -matrix

A and any matrix A′ obtained from A by adding a single row the following is true. If A is (δ,ℓ)-free, then

(i) A′ is (δ′,ℓ′)-free, and

(ii) |F (A′) \F (A)| < δ′N .

Proof. Set ℓ = 2ℓ′ and δ = δ′22−ℓ−16. Assume for contradiction that A is (δ,ℓ)-free but that A′ fails to be (δ′,ℓ′)-

free. Let I
′ be the set of all proper relations I ′ of A′ of size |I ′| = ℓ′ that fail to be proper relations of A. Since

F (A)⊆F (A′), for any y ∈ F
M+1
q with

; 6= supp(y⊤A′) ⊆ I ′ \F (A′) ⊆ I ′ \F (A)

we have yM+1 6= 0. Furthermore, for sufficiently large N0 the set I
′ ×I

′ contains at least (δ′
(N
ℓ′

)

)2/8 pairs (I ′, I ′′)

such that I ′ ∩ I ′′ = ;. Given such a pair (I ′, I ′′) let y, z ∈ F
M+1
q be such that ; 6= supp(y⊤A′) ⊆ I ′ \ F (A′) and ; 6=

supp(z⊤A′) ⊆ I ′′ \F (A′). Since yM+1, zM+1 6= 0, there exists ζ ∈ Fq \ {0} such that yM+1 +ζzM+1 = 0. Hence,

; 6= supp(((y1 · · · yM )+ζ(z1 · · · zM ))⊤A) ⊆ (I ′∪ I ′′) \F (A) and ((y1 · · · yM )+ζ(z1 · · · zM ))⊤A 6= 0.

Consequently, I ′∪I ′′ is a proper relation of A of size 2ℓ′. Thus, A possesses at least (δ′
(N
ℓ′

)

)2/8 such proper relations.

However, choosing N0 large enough, we obtain (δ′
(N
ℓ′

)

)2/8 > δ
(N
ℓ

)

, in contradiction to the fact that A is (δ,ℓ)-free.

Concerning (ii), let j , j ′ ∈F (A′)\F (A) be two distinct indices that are frozen in A′ but not in A. Then there exist

vectors y, z ∈ F
M+1
q such that supp(y⊤A′) = { j } and supp(z⊤A′) = { j ′}. Since j , j ′ 6∈F (A) we have yM+1 6= 0 6= zM+1.

Hence, there exists ζ ∈ Fq \ {0} such that yM+1 +ζzM+1 = 0. Moreover,

supp(((y1 · · · yM )+ζ(z1 · · · zM ))⊤A) = { j , j ′}.

Thus, { j , j ′} is a proper relation of A. We therefore conclude that A possesses at least
(

|F (A′)\F (A)|
2

)

proper relations

of size two. Consequently,
(

|F (A′)\F (A)|
2

)

< δ
(N

2

)

, whence the desired bound |F (A′) \F (A)| < δ′N follows. �

Repeated application of Lemma 3.1 shows the following.

Corollary 3.2. There exists 1≪ω′ =ω′
n ≪ω=ωn such that the following is true. Suppose that A is (ω,1/ω)-free and

that A′ is obtained from A by adding at most ω′ rows. Then A′ is (ω′,1/ω′)-free and |F (A′) \F (A)| ≤ n/ω′.

3.2. Proof of Propositions 2.3. Proposition 2.3 posits that the standard WP messages from (2.1) are an approxi-

mate fixed point of the update rule (2.2) and that the labels defined in (2.3)–(2.4) match their intended semantics.

The starting point of the proof is that the distribution of the random matrix A† remains asymptotically invariant

under the following resampling operation.

Fact 3.3. Let A+ be the matrix obtained from A† via the following operation.

Choose a variable node v ∈ {v1, . . . , vn } randomly, then independently for all a ∈ ∂A† v resample the

neighbours of a other than v uniformly without replacement from {v1, . . . , vn} \ {v }.

Then A† and A+ are identically distributed.

To establish the fixed point property (2.6) we are going to show that

mv→a (A+) = m̂v→a (A+) for all a ∈ ∂A+ v w.h.p.; (3.1)

then Markov’s inequality implies that
∑n

j=1

∑

a∈∂
A† v j

1{mv j →a(A†) 6= m̂v j →a(A†)} = o(n) w.h.p. More specifically, we

are going to exhibit an event E with P [E ] ∼ 1 such that (3.1) holds on E deterministically.

To define the event E pick a sequence ∆=∆(n) ≫ 1 that diverges slowly enough as n →∞. Moreover, obtain A−

from A+ by deleting all checks a ∈ ∂A+ v . Now, let E be the event that the three following conditions hold.

E1: The second neighbourhood ∂2
A+ v = {v j : ∃a ∈ ∂A+ v : v j ∈ ∂A+a} \ {v } has size precisely (k −1)|∂A+ v | ≤∆.
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E2: ∂2
A+ v is not a proper relation of A−.

E3: For all a ∈ ∂A+ v we have F (A+ \ {a})∩∂A+a \ {v } =F (A−)∩∂A+ a \ {v}.

Claim 3.4. We have P [E ] = 1−o(1).

Proof. Condition E1 asks that v have degree at most ∆/(k − 1) and that the subgraph of G(A†) induced by the

vertices of distance at most two from v be acyclic. Fact 2.10, Fact 3.3 and the independence of the positions of

the non-zero entries in the different rows of A† imply that this is indeed the case w.h.p. Moreover, E1 and the

construction of A+ ensure that ∂2
A+ v is nothing but a random set of variable nodes of G(A−) of size at most ∆.

Since A+ contains the same t rows with ones in random positions that we added to A† by way of the pinning

operation, Lemma 2.1 shows that A+ is (ω,1/ω)-free with probability 1−o(1/ω) for a certain ω≫ 1. Consequently,

∂2
A+ v is not a proper relation of A+ w.h.p., provided that 1 ≪ ∆≪ ω diverges sufficiently slowly. Hence, E2 holds

w.h.p. Finally, A+ \{a} is obtained from A− by adding at most ∆ rows. Therefore, E2 and Corollary 3.2 imply that E3

is satisfied w.h.p., once again providing that ∆→∞ sufficiently slowly. �

The following two claims deliver (3.1).

Claim 3.5. Assume that E occurs and let a ∈ ∂A+ v . If there exists b ∈ ∂A+ v \ {a} such that mb→v (A+) = f, then

mv→a(A+) = f. Moreover, if mv (A+) 6= u, then v ∈F (A+).

Proof. Let b ∈ ∂A+ v \ {a} be such that mb→v (A+) = f. Then E3 guarantees that y ∈ F (A−) for all y ∈ ∂A+b \ {v }.

Therefore, for all σ ∈ ker(A+ \ {a}) ⊆ ker(A− \ {a}) and all y ∈ ∂A+b \ {v} we have σy = 0, and consequently σv =

0. Hence, v ∈ F (A+ \ {a}), and thus mv→a(A+) = m̂v→a(A+) = f by (2.1). A similar argument yields the second

assertion. �

Claim 3.6. Assume that E occurs and let a ∈ ∂A+ v . If mb→v (A+) = u for all b ∈ ∂A+ v \ {a}, then mv→a(A+) = u.

Moreover, if mv (A+) = u, then v 6∈F (A+).

Proof. With Π,Π′ suitable permutation matrices (to reshuffle the rows and columns appropriately), B a matrix of

size |∂A+ v \ {a}|× (n−1) and C a matrix of size |∂A+ v \ {a}|×1, we can write

A+ \ {a} =Π ·

(

A− \ {v} 0

B C

)

·Π
′. (3.2)

Here the submatrix (B C ) corresponds to the checks b ∈ ∂A+ v \{a}, and the last column
(0

C

)

represents v . Obtain B0

from B by replacing the columns corresponding to variable nodes vi 6= v with i ∈F (A−) by all-zero columns.

Now assume that E occurs and that for every b ∈ ∂A+ v \{a} there exists u ∈ ∂A+b \{v } such that mu→b(A+) = u. In

fact, let U = {u ∈ ∂2
A+ v : mu→b(A+) = u}. Then U ∩F (A−) =;, because F (A−) ⊆F (A+ \{b}) for every b ∈ ∂A+ v . Due

to E1 for every column representing a variable u ∈ U the u-column of B0 contains precisely one non-zero entry.

Therefore, rk(B0 C ) = |∂A∗ v \{a}|, i.e., the matrix (B0 C ) has full row rank. Since E2 ensures that ∂2
A+ v is not a proper

relation of A−, Fact 2.9 shows that

nul

(

A− \ {v } 0

B C

)

= nul(A+ \ {a, v })−|∂A∗ v \ {a}|−1. (3.3)

Similarly, we can compute the rank of the matrix obtained by adding one more row with a single 1-entry in the last

column, thereby expressly pinning v :

nul





A− \ {v} 0

B C

0 1



= nul(A+ \ {a, v })−|∂A∗ v \ {a}|−2 < nul

(

A− \ {v } 0

B C

)

. (3.4)

Combining (3.3)–(3.4), we conclude that the last coordinate n that represents v is unfrozen in

(

A− \ {v} 0

B C

)

; for

otherwise the nullities on the left and right of (3.4) would have been equal. Hence, (3.2) shows that v is unfrozen

in A+ \ {a}. Thus, mv→a(A+) = u by (2.1). A similar argument yields the second assertion. �

We proceed to investigate the check-to-variable messages.

Claim 3.7. Assume that E occurs and let a ∈ ∂A+ v . If mw→a(A+) = f for all w ∈ ∂A+ v \ {a}, then ma→v (A+) = f.
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Proof. If mw→a(A+) = f, then w ∈F (A+ \ {a}) by the definition (2.1) of the standard messages. Hence, E3 guaran-

tees that w ∈ F (A−) for all w ∈ ∂A+ v \ {a}. Further, since F (A−) ⊆ F (A− \ (∂A+ v \ {a})) we obtain from (2.1) that

ma→v (A+) = f. �

Claim 3.8. Assume that E occurs and let a ∈ ∂A+ v . If there exists w ∈ ∂A+ a \ {v} such that mw→a(A+) = u, then

ma→v (A+) = u.

Proof. Let w ∈ ∂A+a \ {v} be such that mw→a(A+) = u. Then the definition (2.1) of mw→a(A+) ensures that w ∉

F (A+ \ {a}). Since F (A−) ⊆ F (A+ \ {a}), we conclude that w ∉F (A−). Further, for suitable permutation matrices

Π,Π′ we obtain D ∈ F
n−1
q and χ ∈ Fq \ {0} such that

A+ \ (∂A+ v \ {a}) =Π ·

(

A− 0

D χ

)

·Π
′; (3.5)

thus, the permutation matrices Π,Π′ are chosen such that they swap the v -column to the last column and the

a-row to the last row. Hence, the last row (D,χ) represents a. Now obtain D0 from D by replacing all entries

corresponding to variable nodes from F (A+) \ {v } by 0. Then due to E2, Fact 2.9 shows that

nul

(

A− 0

D χ

)

= nul(A−) and nul





A− 0

D χ

0 1



= nul

(

A− 0

D χ

)

−1.

Hence, as in the proof of Claim 3.6 we obtain v ∉F (A+ \ (∂A+ v \ {a})). Thus, ma→v (A+) = u by (2.1). �

Proof of Proposition 2.3. Claims 3.4–3.8 directly imply that

m
∑

i=1

n
∑

j=1

1

{

mv j →ai
(A†) 6= m̂v j→ai

(A†)
}

= o(n) and
m
∑

i=1

n
∑

j=1

1

{

mai→v j
(A†) 6= m̂ai→v j

(A†)
}

= o(n),

whence we obtain (2.6). Similarly, (2.7) follows from Claims 3.4–3.6.

Finally, in light of (2.7), to prove (2.8) it suffices to consider variables v j with j 6∈ F (A†). Hence, let j , j ′ ∈

[n] \ F (A†) be two distinct indices such that {i , j } is not a proper relation of A†; Corollary 2.2 shows that this last

property is violated for at most o(n2) pairs j , j ′. Then the projection σ ∈ ker A† 7→ (σ j ,σ j ′ ) ∈ F
2
q is an epimorphism.

Therefore, for any s, t ∈ F
2
q we have

∣

∣{σ ∈ ker A† : σi = s, σ j = t }
∣

∣= q−2|ker A†|. Consequently, if σ† ∈ ker A† is drawn

randomly, then for (1−α+o(1))2n2 pairs j , j ′ 6∈F (A†) the random variablesσ†
j
,σ†

j ′
are independent and uniformly

distributed. Thus, Chebyshev’s inequality shows that given E for all s ∈ Fq we have

|{ j ∈ [n] \F (A†) :σ†
j
= s}| = (1−α+o(1))|)n/q w.h.p.,

whence we obtain (2.8). �

3.3. Proof of Proposition 2.4. The proof employs arguments broadly similar to those from the proof of Proposi-

tion 2.3. The main difference is that we are going to consider a uniformly random pair (v , v ′) of variable nodes,

rather than a single variable node. We begin by estimating the sizes |∆z,ℓ(m ·→· (A†))×∆z′,ℓ′ (m ·→· (A†))| for z, z ′ ∈

{u,s,f}, ℓ ∈D(z) and ℓ′ ∈D(z ′). Similarly as in Section 3.2 obtain A− from A† by deleting all checks a ∈ ∂A† v∪∂A† v ′.

Fact 3.9. Let A+ be the matrix obtained from A† via the following operation.

Independently for all a ∈ ∂A† v ∪ ∂A† v ′ resample the neighbours of a other than v , v ′ uniformly

without replacement from {v1, . . . , vn} \ {v }.

Then A† and A+ have total variation distance o(1).

Proof. Given that v , v ′ have distance at least four in both G(A†) and G(A+), the Tanner graphs of A†, A+ are iden-

tically distributed. Moreover, the probability that v , v ′ have distance less than four is bounded by n−1+o(1). �

The plan is to derive the following joint probability formula, and then follow up with Chebyshev’s inequality.

Lemma 3.10. W.h.p. we have P
[

v ∈∆z,ℓ(m ·→· (A+)), v ′ ∈∆z′ ,ℓ′ (m ·→· (A+)) | A†
]

= ∆̄z,ℓ(α)∆̄z′,ℓ′ (α)+o(1).

Towards the proof of Lemma 3.10 let E
′ be the event that the following statements hold; let ∆ ≫ 1 diverge

sufficiently slowly.

E0′: we have |∂A+ v | = ℓuu+ℓfu+ℓuf+ℓff and |∂A+ v ′| = ℓ′
uu

+ℓ′
fu

+ℓ′
uf

+ℓ′
ff

.
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E1′: the second neighbourhoods ∂2
A+ v ,∂2

A+ v ′ satisfy

v , v ′
6∈ ∂2

A+ v ∪∂2
A+ v ′, |∂2

A+ v | = (k −1)|∂A+ v | ≤∆, |∂2
A+ v ′

| = (k −1)|∂A+ v ′
| ≤∆.

E2′: we have |F (A†) \F (A−)| = o(n) and |F (A+) \F (A−)| = o(n).

E3′: for all a ∈ ∂A+ v ∪∂A+ v ′ we have F (A+ \ {a})∩∂A+a \ {v , v ′} =F (A−)∩∂A+ a \ {v , v ′}.

E4′: for all v ∈ {v , v ′} and a ∈ ∂A+v we have mv→a (A+) = m̂v→a (A+), ma→v (A+) = m̂a→v (A+).

Thus, E0′ provides that the degrees of v , v ′ match the sum of the entries of ℓ,ℓ′. Moreover, E1′ ensures that v , v ′

have distance at least four and that their second neighbourhoods are acyclic. Further, E2′ provides that A−, A†, A+

have about the same number of frozen variables. In particular, E3′ demands that the frozen variables in the second

neighbourhood of v , v ′ coincide in A+ and A−. Finally, E4 posits that the messages that touch v , v ′ are invariant

under the WP update (2.2).

Claim 3.11. We have P
[

E
′ | E0′

]

= 1−o(1) and

P
[

E0′
]

=P [Po(d) = ℓuu+ℓfu+ℓuf+ℓff]P
[

Po(d) = ℓ′
uu

+ℓ′
fu

+ℓ′
uf

+ℓ′
ff

]

+o(1). (3.6)

Proof. The estimate (3.6) is an immediate consequence of Fact 2.10. Regarding the probability of E
′ given E0′,

the same arguments as in the proof of Claim 3.4 show that E1′–E3′ follow from Fact 2.10, Corollary 2.2 and Corol-

lary 3.2. Furthermore, E4′ follows from Eq. (2.7) from Proposition 2.3 and Fact 3.9. �

Proof of Lemma 3.10. Let X = |∂A+ v |, X ′ = |∂A+ v ′| be the degrees of v , v ′. Moreover, let

X f =
∑

a∈∂A+ v

1{∂A+a \ {v} ⊆F (A−)}, X u = X −X f, X ′
f
=

∑

a∈∂A+ v ′

1{∂A+a \ {v ′} ⊆F (A−)}, X ′
u = X ′

−X ′
f

.

Additionally, let X = {X f = ℓff+ℓfu, X u = ℓuf+ℓuu} and X
′ = {X ′

f
= ℓ′

ff
+ℓ′

fu
, X ′

u
= ℓ′

uf
+ℓ′

uu
}. We are going to

argue that Proposition 2.3 and Claim 3.11 imply

P
[

v ∈∆z,ℓ(m ·→· (A+)), v ′
∈∆z′,ℓ′ (m ·→· (A+)) | E ′

]

=P
[

X ∩X
′
| E

′
]

+o(1). (3.7)

Indeed, the WP fixed point property E4′ ensures that the WP messages that v , v ′ send out to their neighbouring

check nodes are determined by the incoming messages. Furthermore, E3′ provides that for every a ∈ ∂A+ v we

have ma→v (A+) = f iff ∂A+ a \ {v} ⊆ F (A−), and similarly for v ′. Consequently, (2.2), (2.3) and (2.4) show that

on E
′ the random variables X f, X u, X ′

f
, X ′

u
capture the salient information supplied by the incoming messages

m ·→v (A+),m ·→v ′ (A+), whence we obtain (3.7).

Further, we claim that if A† satisfies E0′, then

P

[

X ∩X
′
| A†

]

=α(k−1)(ℓfu+ℓff+ℓ
′
fu
+ℓ′

ff
)(1−αk−1)ℓuu+ℓuf+ℓ

′
uu
+ℓ′

uf +o(1); (3.8)

for by construction the new second neighbours of v , v ′ are chosen uniformly. Hence, due to E2′ the probability that

any specific second neighbour belongs to F (A−) equals α+o(1), and due to E1′ these events are asymptotically

independent. Finally, we combine (3.6), (3.7) and (3.8) to complete the proof. �

In order to estimate the sizes of the sets Γz,ℓ(m ·→· (A†)), we let a, a ′ be a random pair of distinct check nodes.

Let A# be the matrix obtained from A† by resampling the neighbours of a, a ′ independently. Then A# and A† are

identically distributed. In analogy to Lemma 3.10, we prove the following.

Lemma 3.12. Let z, z ′ ∈ {u,f,s} and let ℓ ∈G (z),ℓ′ ∈G (z ′). W.h.p. we have

P

[

a ∈Γz,ℓ(m ·→· (A#)), a′
∈ Γz′,ℓ′ (m ·→· (A#)) | A†

]

= Γ̄z,ℓ(α)Γ̄z′,ℓ′ (α)+o(1).

Proof. Consider the following event A :

A1: the neighbourhoods ∂A# a,∂A# a′ are disjoint.

A2: we have |F (A#) \F (A† \ {a, a ′})| = o(n) and |F (A†) \F (A† \ {a, a ′})| = o(n).

A3: we have F (A# \ {a})∩∂A# a =F (A† \ {a, a ′})∩∂A# a and F (A# \ {a ′})∩∂A# a ′ =F (A† \ {a, a ′})∩∂A# a ′.

A4: for all v ∈ ∂A# a we have ma→v (A#) = m̂a→v (A#) and for all v ∈ ∂A# a ′ we have ma′→v (A#) = m̂a ′→v (A#).

Then Corollary 2.2, Proposition 2.3 and Corollary 3.2 show that

P [A ]= 1−o(1). (3.9)

12



Further, let

Y f = |∂A# a ∩F (A† \ {a, a′})|, Y u = k −Y f, Y ′
f
= |∂A# a ′

∩F (A† \ {a, a ′})|, Y ′
u = k −Y ′

f
.

Also let Y = {Y f = ℓff+ℓfu} and Y
′ = {Y ′

f
= ℓ′

ff
+ℓ′

fu
}. We claim that

P
[

a ∈Γz,ℓ(m ·→· (A#)), v ′
∈Γz′,ℓ′ (m ·→· (A#)) |A

]

=P
[

Y ∩Y
′
|A

]

+o(1); (3.10)

for A4 provides that the messages that a, a ′ send out to their neighbours are determined by the incoming messages

via (2.2). Moreover, A3 ensures that for v ∈ ∂A# a we have mv→a (A#) = f iff v ∈ F (A† \ {a, a′), and similarly for

v ′ ∈ ∂A# a ′.

Finally, since A# is obtained by resampling the neighbourhoods of a, a ′, A1–A2 show that

P

[

Y ∩Y
′
| A†

]

=αℓfu+ℓff+ℓ
′
fu
+ℓ′

ff (1−α)ℓuu+ℓuf+ℓ
′
uu
+ℓ′

uf +o(1). (3.11)

Thus, the assertion follows from (3.9)–(3.11). �

Proof of Proposition 2.4. The proposition follows from Fact 2.10, Lemmas 3.10 and 3.12 and Chebyshev. �

4. MOMENT COMPUTATIONS

In this section we prove Proposition 2.5 and Corollary 2.6 and complete the proof of Theorem 1.2. Our principal

tool will be moment computations. In particular, we will compute the mean of the number X α of α-extensions

for α∈ [0,1]. Crucially, because the definitions (2.22)–(2.23) prescribe the correct ‘quenched’ statistics provided by

(2.16)–(2.21) as well as an approximate version of the WP fixed point property (2.5), the ensuing calculations turn

out to be tight as well as relatively elegant. This manifests itself in the fact that we ultimately recover the function

Φd ,k from (1.1).

4.1. Counting WP fixed points. We begin by calculating the expected number of α-WP fixed points, for which we

resort to the pairing model of the random bipartite Tanner graph. To this end we condition on the σ-algebra D

generated by the degrees dA† (v j ) of the variable nodes and by t . Given D let

V=

n
⋃

j=1

{v j }× [dA† (v j )] and F= {b1 ∪·· ·∪bt }∪
m
⋃

i=1

{ai }× [k]

be sets of variable and check clones; here b1, . . . ,bt represent the checks that the pinning operation from Section 2.1

induces. A pairing is a bijection π : V→ F. Let P be the set of all pairings. As usual, we construct a Tanner graph

G(π) by drawing a π ∈ P uniformly at random and contracting the clones into single vertices. This graph may

possess multi-edges, in contrast to the random graph G(A†). However, it is well known that once we condition on

the event S that G(π) is simple, the distribution of G(π) coincides with that of G(A†). Moreover, routine arguments

along the lines of [19, Chapter 9] show the following.

Fact 4.1. For any d > 0,k ≥ 3 w.h.p. we have P [S |D] =Ω(1).

In order to calculate the expected number ofα-WP fixed points of G(π) we compute the total number of pairings

π ∈P together with appropriate {u,f}-valued annotations of the clones. To be precise, an α-cover (π,p) consists of

a pairing π and a map p : V∪F→ {u,f}2, (x,h) 7→ p(x,h) = (p1(x,h),p2(x,h)) that satisfy the following conditions.

COV1: For all (x,h) ∈V∪F we have (m1(π(x,h)),m2(π(x,h))) = (m2(x,h),m1(x,h)).

COV2: For all but o(n) pairs (v j , l) with j ∈ [n] and l ∈ [dA† (vi )] we have

p2(v j , l) =

{

f if p1(v j ,h) = f for some h ∈ [dA† (v j )] \ {l},

u otherwise.

COV3: For all but o(n) pairs (ai , l) with i ∈ [m] and l ∈ [dA† (ai )] we have

p2 (ai , l ) =

{

f if p1 (ai ,h) = f for all h ∈ [k] \ {l},

u otherwise.
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COV4: For any z ∈ {f,s,u}, ℓ= (ℓuu,ℓuf,ℓfu,ℓff) ∈L , i ∈ [m] and j ∈ [n] let

p(v j ) =











f if p1(v j , l) = f for at least two l ∈ [dA† (v j )],

s if p1(v j , l) = f for precisely one l ∈ [dA† (v j )],

u otherwise,

(4.1)

p(ai ) =











f if p1(ai , l) = f for all l ∈ [dA† (ai )],

s if p1(ai , l) = f for all but precisely one l ∈ [dA† (ai )],

u otherwise,

(4.2)

∆(z,ℓ) =
n
∑

i=1

1
{

p
(

v j

)

= z
}

∏

x,y∈{u,f}

1
{∣

∣

{

l ∈ [dA† (v j )] : p1(v j , l) = x, p2(v j , l) = y
}∣

∣= ℓx y

}

, (4.3)

Γ(z,ℓ) =
m
∑

i=1

1
{

p(ai ) = z
}

∏

x,y∈{u,f}

1
{∣

∣

{

l ∈ [dA† (ai )] : p1(ai , l) = x, p2(ai , l) = y
}∣

∣= ℓx y

}

. (4.4)

Then

∆(z,ℓ) = n∆̄z,ℓ(α)+o(n), Γ(z,ℓ) = mΓ̄z,ℓ(α)+o(n). (4.5)

Condition COV1 provides consistency of the labels associated with the paired clones. Moreover, COV2–COV3 im-

pose the fixed point condition (2.5) on (π,p). Similarly, the labels (4.1)–(4.2) mimic the definitions (2.3)–(2.4).

Finally, (4.3)–(4.5) ensure that the statistics of the labels/messages are in line with the correct ‘quenched’ val-

ues (2.16)–(2.21) (see Proposition 2.4). The following lemma determines the size of the set C(α) of all α-covers.

Lemma 4.2. W.h.p. we have C(α) = exp(o(n))(km)!k!m
∏n

i=1 dA† (vi )! .

To prove Lemma 4.2 we begin with the following straightforward counting formula.

Claim 4.3. With y, y ′ ranging over {u,f}, z ranging over {u,s,f} and ℓ ranging over L we have w.h.p.

|C(α)|

(km)!
= exp(−nH(Po(d))+o(n))

(

n

n(∆̄z,ℓ(α))z,ℓ

)(

m

m(Γ̄z,ℓ(α))z,ℓ

)

·

(

km
(

n
∑

z,ℓℓy y ′∆̄z,ℓ(α)
)

y,y ′

)−1
∏

z,ℓ

(

ℓuu+ℓuf+ℓfu+ℓff

ℓuu,ℓuf,ℓfu,ℓff

)n∆̄z,ℓ(α)+mΓ̄z,ℓ(α)

. (4.6)

Proof. The first two multinomial coefficients account for the number of ways of assigning labels with the frequen-

cies prescribed by (4.5) to the variables/checks. However, the first multinomial coefficient implicitly counts the

assignment of the variable node degrees, on which we condition; this is because ℓuu+ℓfu+ℓuf+ℓff equals the

degree of the corresponding variable. To correct for this overcounting, we divide by the multinomial coefficient
(

n

(|{i ∈ [n] : dA† (vi ) = h}|)h≥0

)

. (4.7)

But since the variable node degrees are asymptotically Poisson by Fact 2.10, (4.7) equals exp(nH(Po(d))+ o(n))

w.h.p. The first multinomial coefficient on the second line of (4.6) counts the number of possible matchings of the

clones that respect COV1. The last factor accounts for the number of ways of assigning labels to the clones of the

individual variable/check nodes. Finally, the exp(o(n)) error term swallows the approximations in (4.3)–(4.4). �

Claim 4.4. Letting

l1 = E[log(Po(d)!)], l2 =−
∑

z,ℓ

∆̄z,ℓ(α) log(ℓuu!ℓuf !ℓfu!ℓff!), l3 =−
d

k

∑

z,ℓ

Γ̄z,ℓ(α) log(ℓuu!ℓuf!ℓfu!ℓff !),

h1 = H(δ̄(α, z))z +H(Po(d(1−αk−1)))+ δ̄(α, f )H(Po≥2(dαk−1)),

h2 =
d

k

[

H(γ̄(α, z))z + γ̄(α,u)H(Bin≥2(k,1−α))
]

, h3 = d
[

H(Be(αk−1))−H(Be(α))
]

, h4 =−H(Po(d))

w.h.p. we have
1

n
log

|C(α)|

(k!)m (km)!
∏n

i=1
dA† (vi )!

= l1 + l2 + l3 +h1 +h2 +h3 +h4 +o(1).
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Proof. In combination with (2.14)–(2.21), Stirling’s formula shows that

1

n
log

(

n

n(∆̄z,ℓ(α))z,ℓ

)

= H(δ̄(α, z))z +H(Po(d(1−αk−1)))+ δ̄(α, f )H(Po≥2(dαk−1))+o(1), (4.8)

1

n
log

(

m

m(Γ̄z,ℓ(α))z,ℓ

)

=
d

k

(

H(γ̄(α, z))z + γ̄(α,u)H(Bin≥2(k,1−α))
)

+o(1). (4.9)

Similarly,

1

n
log

[

1

(km)!

∏

y,y ′

(

n
∑

z,ℓ

ℓy,y ′∆̄z,ℓ(α)

)

!

]

=−d
[

H(Be(α))−H(Be(αk−1))
]

+o(1). (4.10)

Further,

∑

z,ℓ

∆̄z,ℓ(α) log
(ℓuu+ℓuf+ℓfu+ℓff)!

ℓuu!ℓuf!ℓfu!ℓff!
= l1 + l2 +o(1). (4.11)

Finally, since ℓuu+ℓuf+ℓfu+ℓff = k for all ℓ such that Γ̄z,ℓ(α) > 0, we have

−
1

n
log((k!)m )+

m

n

∑

z,ℓ

Γ̄z,ℓ(α) log
(ℓuu+ℓuf+ℓfu+ℓff)!

ℓuu!ℓuf !ℓfu!ℓff!
= l3 +o(1). (4.12)

Combining (4.8)–(4.12) with Claim 4.3 completes the proof. �

Proof of Lemma 4.2. Let λ = αk−1d and µ = d −λ. Since by Fact 2.10 the empirical distribution of the degrees

(dA† (vi ))i∈[n] is approximately Po(d) and in light of (2.14)–(2.21), w.h.p. we have

l1 =
1

n

n
∑

i=1

log(dA† (vi )!)+o(1), l2 =−E
[

log
(

Po(µ)!
)]

− δ̄(α,f)E
[

log(Po≥2(λ)!)
]

+o(1), (4.13)

l3 =
d

k
γ̄(α,s) log(k)+

d

k
γ̄(α,u)E

[

log

(

k

Bin≥2(k,1−α)

)]

+o(1). (4.14)

Furthermore, trite rearrangements reveal that

h1 = d(1−H(Be(αk−1))− logd)+E
[

log(Po(µ)!)
]

+ δ̄(α,f)E
[

log(Po≥2(λ)!)
]

, (4.15)

h2 = d H(Be(α))−
d

k
γ̄(α,s) log(k)−

d

k
γ̄(α,u)E

[

log

(

k

Bin≥2(k,1−α)

)]

, (4.16)

h4 =−d(1− log d)−E
[

log(Po(d)!)
]

. (4.17)

The assertion follows from (4.13)–(4.17) and Claim 4.4. �

4.2. Proof of Proposition 2.5. Lemma 4.2 estimates of the number of α-WP fixed points. In order to prove Propo-

sition 2.5 we now need to count the number of ‘balanced’ assignments of values to the unfrozen variables of a WP

fixed point such that all checks are satisfied. Thus, let (π,p) be an α-cover. Call σ ∈ F
n
q compatible with (π,p) if

σ j = 0 for all j ∈ [n] with p(v j ) 6= u, and (4.18)

∑

ℓ≥0

∑

s∈Fq \{0}

(ℓ+1)

∣

∣

∣

∣

∣

n
∑

j=1

1{dA† (v j ) = ℓ, p(v j ) = u}
(

1{σ j = s}−q−1
)

∣

∣

∣

∣

∣

= o(n). (4.19)

Thus, we ask that the values of the variables v j with p(v j ) = u be about uniformly distributed on Fq , even when

broken down to individual variable degrees. Further, a pairing π ∈P induces a matrix A(π) by letting

Ai j (π)=Ai j ·1{∃l ∈ [dA† (v j ), h ∈ [k] : π(v j , l) = (ai ,h)} (i ∈ [m], j ∈ [n]).

Finally, we say that σ ∈ F
n
q essentially satisfies (π,p) if ‖A(π)σ‖0 = o(n). Recall that π ∈P denotes a random pairing.

Lemma 4.5. Let p : V∪F→ {u,f} and let σ ∈ F
n
q . Let C be the event that (π,p) is an α-cover that σ is compatible

with, and let E be the event that σ is essentially satisfying. Then P [E |C,D] ≤ q−mγ̄(α,u)+o(n) w.h.p.
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Proof. Given C,D let I be the set of all pairs (i ,h) ∈ [m]× [k] such that π(i ,h) ∈ {v j }×N for some variable v j with

p(v j ) = u. Thus, I contains the check clones ‘hit’ by an unfrozen variable. Further, let I contain all i ∈ [m] such

that {i }× [k]∩I 6= ;. What remains random given C,D,I is which unfrozen variable clones are matched to I. Our

goal is to estimate the probability that all checks ai , i ∈ I , end up satisfied under this random matching. Let

ξ= (ξih )(i ,h)∈I be the vector that comprises the values under σ of the variables that the clones in I get matched to.

In symbols, ξih =
∑

j∈[n]σ j 1{π(ai ,h) ∈ {v j }×N}.

To investigate ξ we introduce an auxiliary random vector χ = (χih )(i ,h)∈I with independent uniformly dis-

tributed entries χih ∈ Fq . Consider the events

R=

{

∀s ∈ Fq \ {0} :
∑

(i ,h)∈I

1{χih = s} =
n
∑

j=1

1{σ j = s}dA† (v j )

}

, X=

{

∑

i∈I

1

{

∑

h:(i ,h)∈I

χih 6= 0

}

= o(n)

}

.

Given the event R the vectors ξ and χ are identically distributed. Hence,

P [E |C,D]=P [X |C,D,I,R] . (4.20)

The unconditional probabilities P [X |C,D,I] and P [R |C,D,I] are computed easily. Indeed, because the χih

are uniform and independent, for any i ∈I the event
∑

h:(i ,h)∈I χih = 0 occurs with probability 1/q . Hence,

P [S |C,D,I] = q−|I |+o(n). (4.21)

Furthermore, conditions COV1–COV4 and the definitions (2.19)–(2.21) of the coefficients Γz,ℓ(α) ensure that w.h.p.

given C,D we have |I| = m(γ̄(α,u)+o(1)). Thus, (4.21) becomes

P [S |C,D,I]= q−mγ̄(α,u)+o(n). (4.22)

Moreover, (4.19) ensures that P [R |C,D,I]= exp(o(n)). Combining (4.20) and (4.22) with Bayes’ rule, we obtain

P [E |C,D]= E [P [S |C,D,I,R] |C,D]≤ E

[

P [S |C,D,I]

P [R |C,D,I]
|C,D

]

≤ q−mγ̄(α,u)+o(n),

as desired. �

Proof of Proposition 2.5. As a first step we relate the number of α-WP fixed points of A† to the number of α-covers.

Given D,S the random matrix A(π) has the same distribution as A†. Hence, suppose that m is an α-WP fixed

point of A(π). Then m induces a map pπ : V∪F→ {f,u}2 by letting pπ(ai ,h) = (mv j→ai
,mai→v j

), where j ∈ [n] is

the unique index such that π(ai ,h) ∈ {v j }×N. Similarly, pπ(v j ,h) = (mai→v j
,mv j →ai

) if π(v j ,h) ∈ {ai }× [k]. The

definitions (2.9)–(2.10) and (2.22)–(2.23) ensure that (π,pπ) satisfies COV1–COV4. Thus, (π,pπ) is an α-cover.

Before we proceed we need to deal with an overcounting issue. Specifically, given D for any matrix A† there are

Ξ = (k!)m ∏n
j=1

dA† (v j )! pairings π that render A†, i.e., that satisfy A(π) = A†. At the same time, there are a total of

(km)! pairings π, and A† and A(π) are identically distributed given S. In effect, Lemma 4.2, which counts the total

number of α-covers, implies that the number Wα of α-WP fixed points of A† satisfies

E[Wα |D]= exp(o(n)) w.h.p. (4.23)

Now consider an extension σ of m. Then σ is nearly compatible with (π,pπ), except that (4.18) may be violated

for o(n) indices j ∈ [n]. To remedy this set τ j = 1{p(v j ) = u}σ j . Then τ is compatible with (π,p) and (2.24) implies

n
∑

j=1

1{σ j 6= τ j } = o(n). (4.24)

Further, because σ ∈ ker A†, Fact 2.10 and (4.24) yield ‖A(π)τ‖0 = o(n). Hence, τ essentially satisfies (π,pπ).

Since (4.24) shows that the number of inverse images (m,σ) that can give rise to a specific pair (pπ,τ) is bounded

by exp(o(n)), in order to bound X α it suffices to bound the expected number of pairs (pπ,τ) given D. The estimate

(4.23) shows that the expected number of α-covers pπ induced by α-WP fixed points is bounded by exp(o(n)).

Furthermore, given pπ the number of assignments τ that satisfy the condition (4.19) is bounded by q δ̄(α,u)n+o(n).

Moreover, Lemma 4.5 shows that such a τ is essentially satisfying with probability q γ̄(α,u)m+o(n). Combining these

estimates and recalling the definitions (1.1), (2.14) and (2.15) of Φ, δ̄(α,u) and γ̄(α,u), we obtain

E [X α |D]≤ q δ̄(α,u)n+γ̄(α,u)m+o(n)
= qΦd ,k (α)n+o(n) w.h.p.,

thereby completing the proof. �
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4.3. Proof of Corollary 2.6. Fact 2.8 shows that for d < dk the function Φd ,k (α) attains its unique global maximum

at α = 0. Moreover, a glimpse at (1.1) reveals that Φd ,k (0) = 1−d/k. Hence, for any d < dk there exists ζ > 0 such

that for any fixed ξ> 0 we have n maxα∈[ξ,1] Φ(α) < n−m−3ζn. Hence, Propositions 2.3 and 2.5 show together with

Markov’s inequality that

P

[

nul A†
≥ n−m −2ζn |α ∈ [ξ,1]

]

=P

[

max
α∈[ξ,1]

X α ≥ qn−m−ζn

]

+o(1) = o(1). (4.25)

But since A† has m +o(n) rows, we have nul A† ≥ n −m +o(n). Therefore, (4.25) shows that α < ξ w.h.p. Letting

ξ → 0 sufficiently slowly as n → ∞, we thus conclude that α = o(1) w.h.p. Therefore, the assertion follows from

Proposition 2.3.

4.4. Proof of Lemma 2.7. Recall that for σ ∈ F
n
q we let ρ(σ) = (ρs (σ))s∈Fq with ρs (σ) = 1

n

∑n
j=1

1{σ j = s}. Let R =

{ρ(σ) : σ ∈ F
n
q } be the set of all conceivable ρ(σ)-vectors. Further, for χ = (χ1, . . . ,χn ) ∈ F

n
q let χ⊥ = {σ ∈ F

n
q :

∑n
j=1

σ jχ j = 0}. The following claim yields the approximate probability that a random vector whose entries are

drawn independently from a distribution r ∈R close to the uniform distribution q−1
1 belongs to χ⊥.

Claim 4.6. Let χ ∈ F
n
q be a vector with |suppχ| = k ≥ 3. Then uniformly for r ∈R with ‖r −q−1

1‖ < ε we have

ϕχ(r )=
∑

σ∈χ⊥

∏

s∈Fq

r
nρs (σ)
s =

1

q
+O(ε3) as ε→ 0.

Proof. Let X (χ) = {σ ∈ F
suppχ
q :

∑

j∈suppχσ jχ j = 0} and for σ ∈ X (χ) and s ∈ Fq let Rs (σ) = |{ j ∈ suppχ : σ j = s}|.

Then ϕχ(r )= fχ(r ), where

fχ(r ) =
∑

σ∈X (χ)

∏

s∈Fq

r
Rs (σ)
s .

We are going to expand fχ(r ) to the second order. Clearly, fχ(q−1
1) = q−1, because X (χ) ⊆ F

suppχ
q is a linear sub-

space of codimension one and thus |X (χ)| = F
k−1
q . Further, the partial derivatives of fχ(r ) come out as

∂ fχ

∂rt
=

∑

σ∈X (χ)

Rt (σ)r
Rt (σ)−1
t

∏

s∈Fq \{t }

r
Rs (σ)
s (t ∈ Fq ), (4.26)

∂2 fχ

∂rt∂ru
=

∑

σ∈X (χ)

Rt (σ)Ru(σ)r
Rt (σ)−1
t r

Ru(σ)−1
u

∏

s∈Fq \{t ,u}

r
Rs (σ)
s (t ,u ∈ Fq , t 6= u), (4.27)

∂2 fχ

∂r 2
t

=
∑

σ∈X (χ)

Rt (σ)(Rt (σ)−1)r
Rt (σ)−2
t

∏

s∈Fq \{t }

r
Rs (σ)
s (t ∈ Fq ). (4.28)

To evaluate (4.26) at r = q−1
1, we observe that the affine subspace {σ ∈X (χ) :σ j = t } has dimension k −2 for every

t ∈ Fq and j ∈ suppχ, because k = |suppχ| ≥ 3. Hence,

∂ fχ

∂rt

∣

∣

∣

r=q−11

= q1−k
∑

j∈suppχ

∑

σ∈X (χ)

1{σ j = t } =
k

q
. (4.29)

Similarly, since the affine subspaces {σ ∈ X (χ) : σ j = t ,σ j ′ = u} for t ,u ∈ Fq and j , j ′ ∈ suppχ, j 6= j ′, have dimen-

sion k −3, (4.27)–(4.28) evaluated at r = q−1
1 boil down to

∂2 fχ

∂rt∂ru

∣

∣

∣

r=q−11

=
∂2 fχ

∂2rt

∣

∣

∣

r=q−11

=
k(k −1)

q
. (4.30)

Further, all third partial derivatives remain bounded, i.e.,

∂3 fχ

∂rs∂rt∂ru
=O(1) for all s, t ,u ∈ Fq . (4.31)

Finally, since for every r ∈ R we have
∑

s∈Fq
rs = 1 and the only eigenspaces with non-zero eigenvalues of the

Jacobi matrix D fχ(q−1
1) and of the Hessian D2

χ(q−1
1) are spanned by 1, the assertion follows from (4.29)–(4.31)

and Taylor’s formula. �
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Proof of Lemma 2.7. Given the value of t the random matrix A† consists of m rows of support size k and t unary

rows. These rows are stochastically independent. Therefore, Claim 4.6 shows that for any r ∈ R and any σ ∈ F
n
q

with ρ(σ) = r we have

P

[

σ ∈ ker A†
| t

]

= q−m−t exp(O(n‖r −q−1
1‖

3
1)). (4.32)

Further, we recall that the entropy function H(r ) has the expansion

H(r ) = log q −
q

2

∑

s∈Fq

(rs −q−1)2
+O(‖r −q−1

1‖
3
1). (4.33)

Combining (4.32)–(4.33) and applying the Laplace method, we thus obtain for small enough ε> 0,

E

∣

∣

∣ker A†
∩ {σ ∈ F

n
q : ‖ρ(σ)−q−1

1‖1 < ε} | t
∣

∣

∣

= (1+o(1))qn−m−t
∑

r∈R:‖r−q−1 1‖1<ε

exp(−q‖r −q−1
1‖2

2/2+O(‖r −q−1
1‖3

1))
√

(2πn)q−1
∏

s∈Fq
rs

∼ qn−m−t ,

as claimed. �

5. PROOF OF THEOREM 1.2 (II)

The proof of the second part of Theorem 1.2 is based on the interpolation method from mathematical physics [25].

The interpolation method has been applied previously in order to estimate the rank of random matrices from a

more general model [7], and in fact the upper bound on the rank obtained in [7] implies Theorem 1.2 (ii). Nonethe-

less, for the sake of completeness here we present a simplified version of the interpolation argument tailored to

the specific random matrix model A†.

The basic idea is to construct a family A†(θ) of matrices parametrised by θ ∈ [0,1]. The first matrix A†(0) (es-

sentially) coincides with the random matrix A†, while at the other end A†(1) we have a matrix whose nullity is easy

to compute explicitly. We will then differentiate E[nul A†(θ)] to compare E[nul A†(0)] and E[nul A†(1)]. Thus, we

obtain a lower bound on the nullity of A†(0), and hence of A†. Since nul(A†)+ rk(A†) = n, this lower bound on the

nullity translates into the desired upper bound on the rank of A†.

The interpolating family A†(θ) is constructed as follows. Let mθ ,m′
θ

be two independent Poisson variables with

means (1− θ)dn/k and dθαk−1
f

n, respectively; here αf = αf(d ,k) > 0 is the maximum fixed point of φd ,k (see

Fact 2.8). Both mθ,m ′
θ

are also independent of the uniform random variable t ∈ [T ]. The random matrix A†(θ) has

size (mθ +m′
θ
+ t )×n. As in the definition (1.2) of A, the first mθ rows of A†(θ) have entries

A†
i j

(θ) =Ai j 1{ j ∈ e i } (i ∈ [mθ], j ∈ [n]),

where (e i )i≥1 is a family of uniformly random subsets of [n] of size k; these sets are mutually independent as well as

independent of mt ,m ′
t and t . Further, for m t < i ≤ 1+m ′

t +t the i -th row of A† contains a single one in a uniformly

random column j ∈ [n], while all other entries are zero. The positions of these 1-entries are drawn independently

of each other and of everything else.

Lemma 5.1. We have E[nul A†(0)] = E[nul A]+o(n) and E[nul A†(1)]= n exp(−dαk−1
f

)+o(n).

Proof. By construction the first m0 ∧m rows of A†(0) and A are identically distributed. Moreover, w.h.p. we have

m0 = m+o(n). Since adding or removing a single row can alter the nullity by at most one, the first assertion follows.

Regarding the second assertion, observe that the rows of A†(1) are all-zero, except for a single one entry that

sits in an independent and uniformly random position. Hence, the nullity of A†(1) is simply the number of all-zero

columns. Further, since E[m ′
1] = dαk−1

f
n, the expected number of non-zero entries per column equals dαk−1

f
+o(1).

Since the m′
θ

is a Poisson variable, we expect n exp(−dαk−1
f

+o(1)) all-zero columns. �

The main step of the interpolation method is to compute the derivative ∂
∂θE[nul A(θ)].

Lemma 5.2. We have 1
n

∂
∂θE[nul A(θ)] ≤−dαk−1

f
+ d

k
(k −1)αk

f
+ d

k
+o(1).
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Proof. Since mθ,m ′
θ

are Poisson variables, we calculate

1

n

∂

∂θ
P [mθ = m] =

d

k
[P [mθ = m]−P [mθ = m −1]] ,

1

n

∂

∂θ
P

[

m′
θ = m

]

= dαk−1
f

[

P
[

m′
θ = m −1

]

−P
[

m′
θ = m

]]

.

Therefore,

1

n

∂

∂θ
E[nul A(θ)] =

1

n

∑

m,m′≥0

E

[

nul A†(θ) | mθ = m,m′

θ = m′
] ∂

∂θ
P [mθ = m]P

[

m′

θ = m′
]

= dαk−1
f

∑

m′≥0

[

E

[

nul A†(θ) | m′
θ = m′

+1
]

−E

[

nul A†(θ) | m′
θ = m′

]]

P
[

m ′
θ = m′

]

−
d

k

∑

m≥0

[

E

[

nul A†(θ) | mθ = m +1
]

−E

[

nul A†(θ) | mθ = m
]]

P [mθ = m] . (5.1)

Hence, obtain A†
+(θ) from A†(θ) by adding one more row with precisely one non-zero entry in a uniformly random

position, chosen independently of everything else. Let a+ signify this new row. Similarly, obtain A†
−(θ) from A†(θ)

by adding the row a− with entries

a−
j =Amθ+1 j 1{ j ∈ emθ+1}.

Then (5.1) shows that

1

dkn

∂

∂θ
E[nul A(θ)] = kαk−1

f
E

[

nul(A†
+(θ))−nul(A†(θ))

]

−E

[

nul(A†
−(θ))−nul(A†(θ))

]

. (5.2)

Let αθ = |F (A†(θ))|/n. We claim that

E

[

nul(A†
+(θ))−nul(A†(θ))

]

=−E [1−αθ] . (5.3)

Indeed, let j+ ∈ [n] be the position of the non-zero entry of a+. Then adding a+ to A†(θ) decreases the nullity iff

j+ 6∈F (A†(θ)). Since j+ is uniformly random and independent of A†(θ), we obtain (5.3).

Further, we claim

E

[

nul(A†
−(θ))−nul(A†(θ))

]

=−E

[

1−αk
θ

]

+o(1). (5.4)

To see this, let Eθ be the event that A†(θ) is (o(1),k)-free. Since the construction of A†(θ) incorporates t random

unary equations as in the pinning lemma (Lemma 2.1), we have P [Eθ] = 1−o(1). Furthermore, since a− is indepen-

dent of A†(θ), the probability that the positions 1 ≤ j−1 < ·· · < j−
k
≤ n of the non-zero entries of a− form a proper

relation of A†(θ) is o(1) on the event Eθ. Hence, assume that j −1 , . . . , j −
k

do not form a proper relation. Then the nul-

lity drops upon addition of row a− unless j−1 , . . . , j −
k
∈F (A†(θ)). Since P

[

j−1 , . . . , j−
k
∈F (A†(θ)) | A†(θ)

]

=αk
θ
+o(1),

we obtain (5.4).

Combining (5.2)–(5.4), we find

1

dkn

∂

∂θ
E[nul A(θ)] = E

[

1−αk
θ −kαk−1

f
(1−αθ)

]

+o(1). (5.5)

To complete the proof, we notice that

1−αk
θ −kαk−1

f
(1−αθ)+

(

kαk−1
f

− (k −1)αk
f
−1

)

=−αk
θ +kαθα

k−1
f

− (k −1)αk
f
≤ 0, (5.6)

because X k −kX Y k−1+(k−1)Y k ≥ 0 for all X ,Y ∈ [0,1] and all k ≥ 2. The assertion follows from (5.5) and (5.6). �

Proof of Theorem 1.2 (ii). Suppose that d > dk . Integrating on θ ∈ [0,1], we learn from Fact 2.8 and Lemma 5.1 that

1

n
E[nul A†]≥Φd ,k (αf)+o(1) > 1−d/k. (5.7)

Furthermore, Azuma–Hoeffding shows that nul A† is tightly concentrated, because adding or removing a single

row alters the nullity by at most one. Thus, since A† is obtained from A via the addition of o(n) rows, we conclude

that n−1 nul A ≥Φd ,k (αf)+o(1) w.h.p. Therefore, (5.7) shows that rk A < m −Ω(n) w.h.p. �
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