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Abstract

We propose a method for dense three-dimensional sur-
face reconstruction that leverages the strengths of shape-
based approaches, by imposing regularization that respects
the geometry of the surface, and the strength of depth-
map-based stereo, by avoiding costly computation of sur-
face topology. The result is a near real-time variational re-
construction algorithm free of the staircasing artifacts that
affect depth-map and plane-sweeping approaches. This is
made possible by exploiting the gauge ambiguity to design
a novel representation of the regularizer that is linear in the
parameters and hence amenable to be optimized with state-
of-the-art primal-dual numerical schemes.

1. Introduction

Reconstructing three-dimensional (3-d) scenes from
multiple images, including stereo or video, is intrinsically
ill-posed as there are infinitely many surfaces that are com-
patible with the images. The problem is usually cast as
an optimization problem within the calculus of variation,
whereby the choice of which solution to pick among the in-
finitely many possible is determined by a regularizer. This
is a functional that penalizes solutions that do not respect
prior assumptions, and plays a key role both in the qual-
ity of the reconstruction, as well as in the efficiency of the
numerical optimization scheme.

The most principled approaches to 3-d reconstruction
aim to infer a collection of (multiply-connected, piecewise
smooth) surfaces directly, represented intrinsically without
regards to the images [2, 10, 18, 28, 38, 21, 42], as evident
by the large body of literature on shape space and shape
optimization. In these methods, both the geometry and the
topology is then inferred to fit the available images. This
is desirable as one can enforce priors on the surfaces based
on physically meaningful regularizers. The disadvantage is
that inferring topology is difficult and requires computation
of visibility at each iteration of the algorithm, with obvious

(a) Ground truth (b) TV regularization (c) Our method

Figure 1. TV regularization tends to favor piecewise-constant
functions, which is detrimental in the case of depth maps that rep-
resent a 3-d surface. Our regularizer, while being defined on the
image, just as TV, respects the inner geometry of the 3-d surface.

repercussions on computational efficiency.
On the other hand, one could use the image plane to

parametrize charts on the scene, corresponding to depth
maps that associate a positive number (distance) to each
pixel [7, 11, 13, 14, 19, 32, 36, 37]. Such depth maps will
have to be combined in an additional fusion step to yield the
global surface. The advantage of using depth maps is that
they conveniently confine the data (images), the optimiza-
tion variable (surfaces) and hence the objective function to
the same domain, the image plane of a reference view. This
makes computation efficient, and the method of choice for
real-time applications. Unfortunately, the image plane is not
the natural place to enforce regularization of the surface. In
the vicinity of depth discontinuities, caused by occlusions,
neighboring pixels do not necessarily correspond to points
which are close in 3-d space. Thus typical image-based
regularizers, such as total variation (TV), favor piecewise
fronto-parallel depth maps, resulting in staircasing artifacts
(Fig. 1(b)).

In this paper, we seek to combine the advantages of
shape space methods with those of range maps. The ad-
vantage of the former is the availability of surface-based,
physically plausible regularizers; the use of range maps al-
lows us to avoid the inference of scene topology. To the
best of our knowledge, this has not been done in the litera-
ture on variational stereo and is made possible by a number
of technical contributions summarized in Sect. 1.1.

In addition to variational reconstruction algorithms de-
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scribed thus far, the research on 3-d reconstruction spawned
a variety of methods that seek to bypass the complexities
of computing topology or visibility by localizing the sur-
face representation to subsets of the image plane. These
image patches are small enough that correspondence with a
topologically-connected surface patch can be maintained [1,
3, 5, 4, 6, 12, 22, 31, 39]. Often, the optimization is re-
stricted to a collection of small planar facets rotating and
moving along the viewing rays of the reference camera,
a process referred to as plane sweeping. In the varia-
tional setting that we adopt here, the object of inference,
including the depth map, is a function. This distinguishes
our approach from patch-based methods which we will –
except for a brief review in Sect. 1.2 – consider no fur-
ther. The majority of variational methods resort to im-
plicit handling of depth discontinuities by TV regulariza-
tion [15, 26, 25, 34, 40].

1.1. Contribution and overview

While TV effectively handles depth discontinuities in
images, it does not impose geometrically meaningful con-
straints on the depth map: In Sect. 2.2, we show that
TV is a proxy of the minimal-area functional provided the
depth map is orthographic, a rather unrealistic assump-
tion. Straightforward coupling of TV with a perspective
re-projection error ceases to be physically plausible and
yields undesirable staircasing artifacts (Fig. 1). Therefore,
designing image-based regularizers that impose a geomet-
rically meaningful prior on the surface is the first goal of
this paper. In Sect. 2.3, we derive the correct area form for
the perspective case and embed it in a novel regularization
term for variational stereo. While this makes the regularizer
plausible, it makes the resulting optimization challenging.
Thus, our second goal is to devise an efficient optimization
method tailored to this regularizer. On this topic, our core
contribution is to leverage on feedback linearization [20],
a technique from differential geometric control theory, to
re-parametrize the regularizer into a form that is linear in
the optimization variable and thus amenable to highly ef-
ficient primal-dual solvers. This is made possible by the
gauge freedom in the parametrization: we exploit the fact
that there are infinitely many equivalent parameterizations
to our advantage. The implementation details of our method
are provided in Sects. 3.2 and 3.3. In order to facilitate re-
producible research, we will make our source code publicly
available at www.gpu4vision.org. A series of exper-
iments on synthetic and real data confirm our theoretical
findings and demonstrate a gain in reconstruction quality
(Sect. 4).

1.2. Other related work

In two companion papers [23, 24], Li and Zucker recog-
nize the need for richer geometric representations in stereo

vision. Their work has initiated a series of enhancements of
patch-based methods [3, 4, 35, 41, 43] that all include some
crude approximation of surface curvature in the proposed
energy functional. Recently, Heise et al. [17] proposed to
augment the PatchMatch algorithm with a term reminis-
cent of a Huber norm applied to normal changes across dif-
ferent patches. All of the aforementioned approaches de-
part from a discrete, label-based formulation of the prob-
lem, whose solution is accomplished by combinatorial op-
timization. Combinatorial optimization is however contrary
to the calculus of variations, which we have chosen as our
paragon here. Weighing the advantages and disadvantages
of both paradigms against each other is beyond the scope
of this paper, but we believe that the latter offers more flex-
ibility in accurately modelling the inner geometry of reg-
ular surfaces. In the variational setting, generalized total
variation (TGV) has helped to diminish staircasing by en-
riching the piecewise constant basis that spans the space
of functions of minimal TV with polynomials of higher or-
der [16, 30]. Still, TGV is a generic regularizer not specifi-
cally designed for surface parametrization, unlike the regu-
larizer introduced here. Re-parametrizations of range maps
to the benefit of optimization have appeared previously, e.g.,
in the realm of shape from shading [29] or self-localization
and mapping [9].

2. Variational model
2.1. Data term

The following derivations consider the binocular stereo
problem. An extension to more than two views is concep-
tually straightforward. We model the relative position and
orientation of the sensors by an element g ∈ SE(3) in the
special Euclidean group. By π : R3 → R2, we denote the
canonical pinhole projection with parameters f1, f2 ∈ R,
the focal lengths, and c1, c2 ∈ R, the location of the prin-
cipal point. Two radiance images Ir, I : Ω → R+, the
former being the reference image and Ω ⊂ R2 denoting the
image domain, give rise to the re-projection error

r = I ◦ w(x, z(x))− Ir(x). (1)

The domain warping w = π ◦ g ◦ π−1 is obtained by pro-
jecting pixels x ∈ Ω back onto the surface S ⊂ R3 and
then into the projection center of the camera displaced by
g. Finally, the data term accumulates some robust Huber
function | · |ε of the re-projection error over S:

E(S) =

∫
Ω

|r|ε dx. (2)

Note that this integral is computed over Ω which rules out
trivial solutions such as S = ∅ that may occur in shape-
space-based methods discussed in Sect. 1.2. Also note that
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the back-projection π−1 needed to compute the warping w
depends on the – initially unknown – surface S, and thus
also on its parameterization which we will turn to now.

2.2. Orthographic minimal-area regularizer

In the simplest case where π is orthographic, we can
model S by the graph of a scalar function z ∈ C2(Ω). Each
point X ∈ S can then be written as

X = p(x) =

 x
y

z(x, y)

 . (3)

Note that conceptionally, except for the degree of smooth-
ness, the surface has not much in common with the depth
map, yet z appears in the parametrization and thus will in-
fluence the inner geometry of S. For example, the metric
tensor at a point X = p(x) reads

Ip =

(
〈Xx,Xx〉 〈Xx,Xy〉
〈Xx,Xy〉 〈Xy,Xy〉

)
, (4)

where the tangent vectors Xx = px(x)|x and Xy =
py(x)|x are obtained by partial differentiation w.r.t. x and
y. Typically, Ip is used to measure infinitesimal lengths and
angles on the surface. In particular,

√
det Ip determines the

distortion of the two infinitesimal area elements dx and dS.
A scalar function f : S → R defined on the surface can be
pulled back by p to the parametric domain Ω. The pullback
also relates the domains of integration S and Ω with each
other: ∫

S

f(X)dS =

∫
Ω

f ◦ p(x)
√

det Ip dx. (5)

Setting f = 1 and substituting (3) into (4) and then (5)
yields the total area

A(z) =

∫
Ω

√
det Ip dx =

∫
Ω

√
z2
x + z2

y + 1 dx (6)

of the graph of z.
Eq. (6) looks much like the TV of z if it were not for

the additional value 1 under the square root. As can be seen
in Fig. 2(a), it is this difference that allows measuring the
area of a surface element. Still, both the area form (6) and
TV(z) admit precisely the same set of global minimizers,
namely the set of piecewise fronto-parallel surfaces. This
underlines the well-known fact that the TV-regularizer fa-
vors piece-wise constant functions.

This property may be desirable in image processing ap-
plications, where z corresponds to some image intensity
distribution over Ω, but certainly not when z is a depth map
that parameterizes a geometric surface. Meanwhile, the as-
sumption of an orthographic camera model in reconstruc-
tion is quite unrealistic for practical purposes, and so is the

TV(z)
dS

dx

z

(a) Orthographic

dS

dx

z

TV(z)

X̂

(b) Perspective

Figure 2. TV and surface area under orthographic projection (a)
differ in that the TV measures only the jumps along z, whereas a
surface element dS also takes into account the component of dx
parallel to the image plane. To reduce the area of a non-minimal
surface element, the only option in both cases is to rotate until
fronto-parallelity is achieved, i.e. TV(z) = 0. The area form
induced by perspective projection (b) on the other hand has an
additional degree of freedom: the area of a non-minimal surface
element can either be decreased by rotating it until perpendicular
to the pixel viewing ray, or by moving it closer to the center of
projection.

use of TV(z) as a regularizer, although that appears to be
common practice in previous works [15, 26, 25, 34, 40]. So
in the following section, let us clarify how the area form
of a perspective depth map parametrization looks like, and
highlight its interplay with the TV.

2.3. Perspective minimal-area regularizer

In the perspective parameterization, for which – to re-
duce the notational burden – we maintain the symbol p, the
depth z influences all three spatial coordinates of a surface
point. More precisely, we have X = p(x) = zX̂ where

X̂ =

(
x̂
1

)
=

 x̂
ŷ
1

 =

 x−c1
f1
y−c2
f2

1


is the direction of the viewing ray associated with a pixel.
It is obtained by multiplying x with the inverse intrinsic
parameter matrix. From the tangent vectors

Xx =

 x̂zx + z
f1

ŷzx
zx

 , Xy =

 x̂zy
ŷzy + z

f2

zy

 , (7)

both, the fundamental form and the square root of its deter-
minant, immediately follow:√

det Ip =
z

f1f2

√
‖∇fz‖2 + (〈∇fz, x̂〉+ z)2. (8)

Here, we have introduced an abbreviation ∇f for the
nabla operator whose components are weighted by the focal
lengths f = (f1, f2), i.e., ∇fz = (f1zx, f2zy)>.
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Eq. (8) presents the central ingredient in our regulariza-
tion term, so a few remarks are in order: First of all, the fac-
tor z in front of the square root makes the surface area form√

det IpdS distance-dependent. Consequently, a mean cur-
vature flow is furnished with an additional degree of free-
dom. As shown in Fig. 2(b), one can reduce surface area
(locally) by moving points towards the center of projec-
tion. Vice-versa, minimal surfaces, unless they constitute
the global optimum z = 1 at which dS = dx, are not nec-
essarily piecewise constant in depth. As we will later verify
empirically, this helps reduce staircasing artifacts generated
by methods with “naive” TV regularization. On the down-
side, Eq. (8) is neither equal to the TV nor to the norm of
some linear operator applied to z. Hence, combining (2)
and (6) with (8) as area form does not yield a functional of
ROF-type, for which a plethora of solvers is available. We
will address this issue in the next section by transforming
our variational problem such that (8) becomes tractable for
a powerful off-the-shelf primal-dual algorithm.

3. Optimization

3.1. Algorithm

Let us first summarize the continuous variational prob-
lem we wish to solve:

min
z

∫
Ω

z

f1f2

√
|∇fz|2 + (〈∇fz, x̂〉+ z)2 dx

+ λ

∫
Ω

|I ◦ w(x, z(x))− Ir(x)|ε dx. (9)

As customary, λ ∈ R+ is a scalar parameter controlling
the trade-off between data fidelity and smoothness. We call
the model (9) flow-based stereo for its connection to op-
tical flow methods. In the latter, the data term is usually
some form of photoconsistency measure between the refer-
ence image and the warped second image, where the warp is
parameterized by a flow vector field. In our model, the warp
is parameterized by the depths of pixels. A similar approach
was used recently by the authors of [34] to compute dense
depthmaps in real-time, albeit employing the raw TV for
regularization. Flow-based stereo carries out a continuous
search for correspondences along the epipolar lines. It can
thus be seen as the variational counterpart of the planesweep
algorithm, however, with the advantages that it requires no
resource-hungry spatial data structure. Also, the extension
to multiple views is easy to achieve by summing up the re-
projection error over a number of image pairs.

Looking at the first term of (9), we see that in general it is
non-convex because of the bilinear form involving z and its
derivative. If we use the fact that

√
det Ip equals the length

of the surface normal ‖n‖ = ‖Xx × Xy‖, the situation

improves slightly. From (7), it becomes clear, though, that

n =

 − zzxf2
− zzyf1

1
f1f2

(z2 + x̂f1zzx + ŷf2zzy)

 (10)

in general is still non-convex in z. Remarkably, this can be
fixed by re-parametrizing S as stated in the central

Proposition 3.1. Substituting z in the perspective depth
map parametrization by z = φ(ζ) with φ(ζ) =

√
2ζ, the

Gauss map becomes a linear function of ζ. In particular, it
holds

n(ζ) =

 − ζxf2
− ζyf1

x̂ζx
f2

+
ŷζy
f1

+ 2ζ
f1f2

 . (11)

Proof. We start by applying the chain rule to the non-
convex term zzx (similarly to zzy), which yields for a re-
parameterization z = φ(ζ)

zzx = φ
dφ

dζ

∂ζ

∂x
. (12)

If we now require that

φ
dφ

dζ
= 1, (13)

we are left with the (linear, thus convex) term ∂ζ
∂x .

Eq. (13) constitutes a first-order ordinary differential equa-
tion, which can be solved for φ by separation of the vari-
ables:

φdφ = dζ,∫
φdφ =

∫
dζ, (14)

φ2

2
= ζ.

From (14), we get φ =
√

2ζ. Inserting this into (10) and
using dφ

dζ = 1
φ , it follows immediately that

zzx = φ
dφ

dζ

∂dζ

∂x
=
√

2ζ
d
√

2ζ

dζ
ζx = ζx,

zzy = φ
dφ

dζ

∂ζ

∂y
= ζy, (15)

z2 = φ2 = 2ζ,

and hence the claim.

Let us remark that the transformation φ is bijective and
differentiable over (0,∞), which is sufficient since we may
assume all surface points to be located in front of the cam-
era.
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We are now left with the non-convexity of the data term.
Since the optimization variable z appears as an argument to
the warping w in (9), it is clear the only way to get around
the non-convexity is to linearize the data term. This calls
for an iterative optimization strategy, in which at each step,
say k ∈ N, a local convex approximation of the data term
is minimized. The convergence rate will be highly influ-
enced by how faithful the approximation is to the original
functional. If the approximation is linear, the resulting it-
eration will correspond to a gradient descent. Higher rates
can be achieved by leveraging on the special structure of the
problem, where the energy consists of a (Huber) norm |r|ε
applied to some residual function r, here the re-projection
error (1). The idea is to first compute a Taylor expansion of
the residual

r(z) ≈ r(zk) +
dr

dz

∣∣∣
zk

(z − zk) (16)

around the current iterate zk, and only then apply the norm
to it, yielding a local approximation of (2):

Ê(z) :=

∫
Ω

∣∣∣∣r(zk) +
dr

dz

∣∣∣
zk

(z − zk)

∣∣∣∣
ε

dx. (17)

The overall strategy is reminiscent of the classical Gauss-
Newton method for nonlinear least-squares problems [2].
The last piece we need in order to finalize treatment of the
data term is the derivative of the residual w.r.t. the function
z, which is given by

dr

dz
= ∇I|π◦g(zX̂)Dπ|g(zX̂)DgX̂. (18)

To conclude this section, let us state the full variational
problem in the variable ζ following re-parametrization:

min
ζ

∫
Ω

|n(ζ)|dx

+ λ

∫
Ω

|I ◦ w(x, ζ(x))− Ir(x)|ε dx. (19)

Note that since the original warp w depends on z, it also has
to be reformulated in terms of ζ.

3.2. Discretization

We discretize the image domain Ω on the regular Carte-
sian grid of size M ×N with indices (i, j). An approxima-
tion of (19) is then given by

min
ζ
‖Lζ‖2,1 + λẼ(ζ), (20)

where Ẽ(ζ) := ‖Iw − Ir‖ε is the discrete data term and
Iw denotes the warped image. We apply the 2, 1-matrix
norm to the result of the multiplication Lζ (a vector of

dimension 3MN ), which, by slight abuse of notation, is
implicitly rearranged to a MN × 3 matrix. Given a ma-
trix A ∈ RM×N , the 2, 1-norm takes the `2-norm across
rows and the `1-norm across columns and is defined as fol-

lows: ‖A‖2,1 =
∑M
m=1

∣∣∣∣√∑N
n=1A

2
m,n

∣∣∣∣. The operator

L ∈ R3MN×MN is linear and for every element of ζ, it
computes its normal vector according to Eq. (11):

L =

 − 1
f2
Dx

− 1
f1
Dy

x̂
f2
Dx + ŷ

f1
Dy + 2

f1f2

 . (21)

It contains first-order finite-difference approximations
Dx, Dy ∈ RMN×MN of the partial derivatives of a func-
tion which are defined as follows:

Dxζ
i,j =

{
ζi,j+1 − ζi,j if j < N,

0 else,
(22)

Dyζ
i,j =

{
ζi+1,j − ζi,j if i < M,

0 else.
(23)

3.3. Implementation

Recalling that our strategy to solve the originally non-
convex problem (9) is to linearize the data term around
some estimate ζk and subsequently solve a series of locally-
convex approximations, each of the sub-problems looks like

min
ζ
‖Lζ‖2,1 + λ‖r + a(ζ − ζk)‖ε, (24)

where r is the residual at ζk and a := dr
dζ

∣∣
ζk

is the derivative
of r w.r.t. ζ. We point out that while (24) and (9) are equiv-
alent, they differ in the important aspect that the regularizer
in (9) is non-convex in the optimization variable, whereas
the regularizer of (24) is linear. For this reason, we can ap-
ply the highly efficient first order primal-dual algorithm due
to Chambolle and Pock [8] to solve (24). Dualizing the first
term, the primal-dual formulation reads

min
ζ

max
‖q‖∞≤1

〈Lζ, q〉+ λ‖r + a(ζ − ζk)‖ε, (25)

where q ∈ R3MN is the dual variable. The inner iteration
– denoted by l to distinguish it from the outer iterations k –
delivers a minimizer of (25) with superlinear rate of conver-
gence:

ql+1 = proj‖q‖∞≤1(ql + ΣLζ̄l),

ζl+1 = prox(ζl − TL∗ql+1), (26)
ζ̄l+1 = 2ζl+1 − ζl.

Here, T = diag(τn), n = 1, . . . ,MN and Σ =
diag(σm), m = 1, . . . , 3MN are diagonal precondition-
ing matrices which, according to [27], account for the bad
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(a) Input image pair

200 201 202 203 204

y

-1.0e-02

-9.0e-03

-8.0e-03

-7.0e-03

-6.0e-03

y
z

TV
Ours

(b) Derivative of contour along y-axis

(c) 3-d surface (TV) (d) 3-d surface (ours)

Figure 3. Results for the synthetic experiment consisting of a tilted
plane to show the behavior of the regularizer in case of a slanted
surface. The TV regularizer (c) produces the well-known staircais-
ing artifacts while the surface area regularizer (d) shows no bias
towards fronto-parallelity. (b) The zig-zagging of TV is clearly
visible in the derivative of a cut through the depth map along the
y-axis.

scaling of the operator L, and proj‖q‖∞≤1(·) is a simple
pointwise projection onto the unit ball. The proximal op-
erator prox(·) is defined as the solution of the following
minimization problem:

prox(ζ̃) = min
ζ

‖ζ − ζ̃‖2

2τ
+ λ‖r + a(ζ − ζk)‖ε. (27)

Defining b := r − aζk, a solution can be obtained by the
following explicit formula applied to each of the elements
of ζ separately:

ζ =


ζ̃ − τλa if aζ̃ + b > τλa2 + ε

ζ̃ + τλa if aζ̃ + b < −τλa2 − ε
ζ̃−τλab/ε
1+τλa2/ε else

(28)

As it is common in many optical flow algorithms, we embed
the whole procedure into a coarse-to-fine warping frame-
work to account for large discontinuities in depth. We
created a highly parallel implementation using the CUDA
toolkit, which makes the method attractive for (near) real-
time applications.

4. Experimental studies
All results were computed on a desktop PC equipped

with a 3.2GHz i7 QuadCore CPU and a Geforce 780Ti
GPU. We used a pyramid scale factor of 0.75 throughout,

(a) 3-d surface (TV), λ = 0.15

0.39

0.00

(b) 3-d surface (ours), λ = 3 ·104

(c) Depth map TV (d) Depth map Ours

Figure 4. Results for a synthetic curved surface. Whereas the depth
maps (c)-(d) of the sphere surface look similar, a 3-d visualiza-
tion (a)-(d) allows a more thorough examination of reconstruction
quality: the plateau structure is visible in case of TV regulariza-
tion (especially at the top), area regularization on the other hand is
more faithful to the true curved surface.

and computed 30 warps per pyramid level and 60 iterations
per warp.

For a real-world configuration with a scale factor of 0.5,
20 warps and 30 iterations (note that this is rarely needed
for convergence and can be trimmed further), the runtime is
0.14 s for a resolution of 640×480 and 1.9 s for 3072×2048
respectively.

4.1. Synthetic data

To empirically verify the theoretical properties of our
regularizer (see Sec. 2.3), we conducted a number of exper-
iments with synthetic (i.e., perfect) input data and known
ground truth. Despite the fact that our model is conceptu-
ally capable of using multiple views, we restricted ourselves
to classical binocular stereo for all experiments.

The first example consists of a plane rotated 30◦ around
the x-axis. As depicted in Fig. 3, TV regularization clearly
shows staircaising artifacts, whereas our surface area regu-
larizer produces a smooth slanted plane. We emphasize the
fact that the regularization strength for TV has been hand-
tuned to be as smooth as possible before breaking down
(e.g., approximating the slanted surface by a series of very
large fronto-parallel steps).

The next experiment (Fig. 4) involves a hemisphere set
against a fronto-parallel background. We use the hemi-
sphere to assess the ability of the regularizer to reconstruct
curved surfaces. Figs. 4(a) and (b) show a 3-d visualization
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(a) Reconstruction vs. groundtruth
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(b) TV at different levels of regularization

100 200 300 400 500

x

7

8

9

10

z

λ=0.00005

λ=0.0001

λ=0.0003

λ=0.0007

λ=0.001

(c) Ours at different levels of regularization

Figure 5. (a) Horizontal cross-section through the depth maps for the sphere experiment. Note that the depth discontinuity at the left side is
occluded in the input images; the right side is co-visible. We find that in occluded regions, where the task of the regularizer is hallucination,
TV produces the familiar steps. Area regularization on the other hand smoothly bridges the occluded area.

(a) TV (b) TV (closeup) (c) Input image 1

(d) Ours (e) Ours (closeup) (f) Input image 2

Figure 6. Results for the Fountain-P11 scene using the views 6 and 7, with 6 as reference view.

of the result for TV and surface area regularization respec-
tively, where color encodes error relative to ground truth.
Despite of the depth maps 4(c) and (d) of the sphere looking
similarly smooth, one can see qualitative differences in the
3-d surface: Where TV tends to approximate the half-sphere
by fronto-parallel plateaus, area regularization produces a
more pleasing result. This underlines the importance of us-
ing 3-d visualizations when assessing the quality of stereo
algorithms. Fig. 5 illustrates the behaviour of the regular-
izer under varying values of the regularization parameter λ.
TV (Fig. 5(b)) suffers from sudden breakdown whereas area
regularization (Fig. 5(c)) remains stable over orders of mag-
nitude. Stable parameters are of great interest to the practi-

tioner because most of these are still hand-tuned. Note that
for the visualizations of the sphere (Figs. 4(a) and (b)) we
again chose favorable regularization strength for TV (i.e.,
close to breakdown) and medium regularization for surface
area.

4.2. Real data

We tested our regularizer on real-world examples taken
from the Strecha dataset [33]. It consists of a number of
high-resolution (3072 × 2048) images for dense multiview
stereo algorithms. All results were obtained using only
two images. Fig. 6 depicts 3-d renderings of results from
the Fountain-P11 scene, renderings for Herz-Jesu-P25 are

7



(a) TV (b) Ours (c) Input image 1

(d) TV closeup (e) Ours closeup (f) Input image 2

Figure 7. Results for the Herz-Jesu-P25 scene using views 5 and 6, with 5 as reference view.

RMS error Reduction
TV Ours TV−Ours

TV

TiltedPlane10 5.5527e-4 1.0819e-4 80.5%

TiltedSine10 0.0167188 0.0114407 31.6%

Fountain-P11 0.05342 0.02644 50.5%

Herz-Jesu-P25 0.264935 0.222491 16.0%

Table 1. RMS error against ground-truth depth-maps for different
datasets. The last column is the error reduction, i.e., the percent-
aged gain in reconstruction quality achieved by our method over
TV regularization.

found in Fig. 7. We also provide the input images for ref-
erence. Despite our best efforts and a very strong data term
(as can be seen in Fig. 7(a) by the artifacts at the bottom and
the top), we did not succeed in getting a smooth reconstruc-
tion of the church facade by means of TV regularization.
The reason for this is that the facade is slightly slanted w.r.t.
the reference camera image plane. The gaps between the
individual weakly-textured bricks provide a gradient for the
TV regularizer to hold on to. It therefore tends to approxi-
mate every individual brick by its own fronto-parallel facet,
as can be seen in the closeup Fig. 7(d). The surface area
regularizer 7(e) is able to recover small depth discontinu-
ities (see for instance the little arches above the front door),
while maintaining a smooth facade.

Tab. 1 shows a quantitative comparison of the root mean

square (RMS) error against ground-truth depth-maps over
different datasets.

5. Conclusion

We have introduced a new regularizer for variational
stereo, which is defined on the image but regularizes a geo-
metrically meaningful quantity on the surface. Exploiting
gauge freedom, a re-parameterization makes the regular-
izer compatible with highly efficient primal-dual solvers for
large scale problems. We evaluated important properties of
the regularizer such as the ability to reconstruct smooth sur-
faces using both synthetic and real world data. In particu-
lar, a comparison to the widely used TV regularizer showed
that the minimal surface regularizer does not suffer from the
staircaising effect. Because the computational cost remains
basically the same when going from TV to surface area reg-
ularization, our method is suited for real-time applications.
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