

ompumag 2023

Determination of Local Magnetic Material Properties using an Inverse Scheme

Andreas Gschwentner, Klaus Roppert, Manfred Kaltenbacher Institute of Fundamentals and Theory in Electrical Engineering

Introduction

In this work, the local magnetic material parameters of electrical steel sheets considering the influence of cutting processes [1] are determined. The methodology includes a sensor-actuator system, capable to locally excite and measure the magnetic flux density, numerical simulations and inverse schemes. In a first step, the measured data is artificially generated by solving the magneto-static problem with the finite element (FE) method using a 3D sensor-actuator system model. Furthermore, the samples under test (SUT) are divided into M subdomains, each assigned a searched-for linear isotropic magnetic permeability.

3D Sensor-Actuator System

Inverse Scheme I/II

The parameter vector \boldsymbol{p} consists of M linear relative permeabilities $(\mu_{r,1}, \mu_{r,2}, ..., \hat{\mu_{r,M}})^T$ and we solve the nonlinear least squares problem

$$\operatorname*{arg\,min}_{\boldsymbol{p} \in \mathbb{R}^n} \sum_{i=1}^{N_{\mathrm{p}}} \sum_{j=1}^{N_{\mathrm{s}}} \left\{ \frac{1}{2} \|\boldsymbol{F}_i(\boldsymbol{x}_j, \boldsymbol{p})\|_2^2 + \frac{1}{2} \alpha^2 \|\boldsymbol{p} - \boldsymbol{p}^{\mathrm{ref}}\|_2^2 \right\}$$

s.t.
$$\nabla \times \frac{1}{\mu} \nabla \times \boldsymbol{A} - \boldsymbol{J} = \boldsymbol{0}$$
,

with $F_i(x_j, p) = B_i^{\text{sim}}(x_j, p) - B_i^{\text{meas}}(x_j)$, N_p the number of sensor-actuator positions, N_s the number of sensors, $\boldsymbol{B}_{i}^{\mathrm{sim}}(\boldsymbol{x}_{i},\boldsymbol{p})$ the simulated magnetic flux density, $\boldsymbol{B}_{i}^{\mathrm{meas}}(\boldsymbol{x}_{i})$ the measured magnetic flux density, α the regularization parameter (computed by Morozov's discrepancy principle), A the magnetic vector potential and J the electric current density.

Inverse Scheme II/II

The minimizer of the functional is computed via the quasi Newton scheme

$$egin{aligned} \left(\mathcal{B}^T\mathcal{B} + lpha_k^2 oldsymbol{I}
ight)oldsymbol{q} &= -\mathcal{B}^Toldsymbol{F} - lpha_k^2 \left(oldsymbol{p}_k - oldsymbol{p}^{ ext{ref}}
ight) \ oldsymbol{p}_{k+1} &= oldsymbol{p}_k + \lambda oldsymbol{q} \ , \end{aligned}$$

with I the identity matrix, q the search direction, p^{ref} a priori information, λ the line search parameter (determined by Armijo rule) and \mathcal{B} the approximated Jacobian using Broyden's update formula

$$\mathcal{B}_k = \mathcal{B}_{k-1} + rac{1}{oldsymbol{s}_k^T oldsymbol{s}_k} \Big(oldsymbol{F}\left(oldsymbol{p}_k
ight) - oldsymbol{F}\left(oldsymbol{p}_{k-1}
ight) - \mathcal{B}_{k-1}oldsymbol{s}_k\Big) oldsymbol{s}_k^T$$

$$\boldsymbol{s}_k = \boldsymbol{p}_k - \boldsymbol{p}_{k-1}$$

Results

The artificially generated measurements are overlaid by a Gaussian white noise with 10% standard deviation and the following initial $\mu_{r,\text{init}}$, reference $\mu_{r,\text{ref}}$ and correct $\mu_{r,\text{sol}}$ [2] relative permeabilities are assumed

Domain	Color Code	$\mu_{ m r,init}$	$\mu_{ m r,ref}$	$\mu_{ m r,sol}$
1		499	1566	1225
2		1776	3085	2635
3		3345	4300	3948
4		4391	4829	4862
5		5000	5000	5000

Convergency Behaviour

- M. Hofmann, H. Naumoski, U. Herr, and H.-G. Herzog, "Magnetic properties of electrical steel sheets in respect of cutting: Micromagnetic analysis and macromagnetic modeling," vol. 52, no. 2, pp. 1-14, Feb. 2016
- M. Bali, H. D. Gersem, and A. Muetze. "Finite-Element Modeling of Magnetic Material Degradation Due to Punching". In: IEEE Transactions on Magnetics 50.2 (Feb. 2014), pp. 745-748. doi: 10.1109/tmag.2013.2283967.

