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Abstract. Following their practical needs and legal constraints, recent
application of the cloud paradigm among public administrations has
been focused on the deployment of private clouds. Due to the increas-
ing amount of data and processing requirements, many organizations are
considering possibilities to additionally optimize their infrastructures and
collaborative processes by employing private cloud federations.

In this work, we present our contribution based on three real-world use
cases implemented in the course of the SUNFISH project. We consider
intra- and inter-organizational processes which demand secure and trans-
parent infrastructure and data sharing. Based on derived requirements
for data security and privacy in cloud federations, we propose a secu-
rity governance architecture which enables a multi-layered, context and
process-aware policy enforcement in heterogeneous environments. The
proposed architecture relies on the micro-services paradigm to support
scalability and provides additional security by integrating reactive and
transformative security controls. To prove the feasibility of this work we
provide performance evaluation of our implementation.
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1 Introduction

The adoption of the cloud paradigm enabled public administrations to realize
some of the benefits which come with it, including optimizations of investments
as well as increased degrees of integration, scalability and flexibility [10,8]. How-
ever, due to the legal limitations [11] and concerns related to security, availability
and reliability [22], many entities focused on the deployment of private clouds.
Two integration trends can be observed: firstly, the variable utilization of
cloud infrastructures based on peaks often results in under-utilization on aver-
age, which leads to inefficiency of investments [5]. Secondly, there is an increasing
need across public administrations to collaborate by exchanging data or taking



part in joint process workflows. This exchange is, however, constrained by data
security and privacy concerns. Due to the lack of open infrastructures to ensure
conformance to legislation and security requirements, public entities are hin-
dered from sharing data and infrastructure with each other. Instead, alternative
and suboptimal mechanisms have to be employed, increasing overall costs and
overheads and negatively impacting the proliferation of innovative eGovernment
services.

In this work, we present our contribution realized in the SUNFISH project, an
initiative to enable secure federation of private clouds based on the requirements
of the public sector. By addressing the needs of three use scenarios, this project
aims to provide a framework for secure and efficient cloud federations which
allow transparent data and service integrations in heterogeneous environments.

Realised under the broader project scope, the contribution of this work fo-
cuses on the security enforcement architecture of the SUNFISH framework. Our
proposal provides an extension to the XACML approach [18] by introducing con-
textual and process awareness in collaborative policy management for federated
environments. The proposed architecture relies on the micro-services paradigm
to support scalability and provides additional security by integrating proactive
and transformation-based security controls. To prove the feasibility of this work
we evaluate performances and scalability of our implementation.

1.1 Paper Organization

This work is structured as follows. In Section 2 we describe the motivation and
challenges for this work, introduce the use case scenario and provide a high-
level project overview. In Section 3 we apply an intra-organizational perspective
on agent-based transactions and establish building blocks for the framework’s
security architecture. In Section 4 we integrate these blocks and introduce the
architecture for security governance. Section 5 provides the evaluation of the
proposed architecture in the terms of imposed overhead. In Section 6 we describe
related work and conclude this paper in the subsequent section.

2 Background

Various public administrations across Europe already utilize a variety of cloud
computing concepts. However, due to regulatory limitations, most public enti-
ties only make use of private cloud setups. Typically, these private clouds are
dimensioned to handle the public administration’s peak loads within a reason-
able time frame. The rest of the time such setups remain idle. Peak times often
occur in a predictable manner, once per month or every few months, depending
on the application. This leads to a situation where many clusters with massive
computational power are available across Europe but partitioned and practically
unusable for other public administrations.

Due to the growing demand on disposable computing resources, organiza-
tions across Europe recognized the advantages of extending the reach of private



clouds beyond their own boundaries. By taking part in technical and organiza-
tional processes related to the establishment of private cloud federations, these
organizations can reap additional benefits resulting from synergistic effects. In-
stead of relying on proprietary solutions and complex processes to establish
cross-organizational data sharing, public entities can employ existing federated
infrastructure with its technical and governance controls to structure transpar-
ent, scalable and secure collaborative workflows. Moreover, as a result of the
integration of accountable processes and reusable components provided by the
framework, public entities may realize additional gains by decreasing overall
overheads and barriers related to legal and security requirements.

2.1 Challenges

The overall challenge of the SUNFISH project is to allow for a secure federation
of private clouds of public administrations, supporting a more efficient utilization
of the available resources. SUNFISH does not aspire to provide a single cloud
across Europe, but aims at providing a lightweight wrapper to be installed on top
of any cloud infrastructure in order to become part of a federation. To achieve
this goal, various obstacles need to be overcome:

— Adherence to different data security and protection rules of the federation
participants in cross-border and intra-country transactions,

— Controlled data exchange, by revealing sensitive data up to a level as required
by the processes,

— Integration of heterogeneous infrastructures of participating private clouds,

— Enabling the process integration based on different technological bases.

The aim of this solution is to enable a federation based on different scenarios.
First, organizations may operate multiple data centers at various geographic
locations, subjected to various legislations. Regulations may apply to prohibit
the transfer of sensitive data out of a certain geographic region, making this
scenario infeasible in particular cases. Another scenario is the exchange of data
or sharing of infrastructure with other entities. This is a highly dynamic task in
terms of characterizing transmitted data and deciding which parts are allowed to
be transmitted in plain text. These constraints require a flexible framework for
specifying policies on data and associated mandatory actions to be performed
in terms of transparent data transformation.

2.2 Use Case Scenario

The SUNFISH framework evolved based on three use case scenarios that in-
volve public administrations from three European countries. A detailed overview
of these scenarios has been provided in [24]. Figure 1 shows a generalized use
case which assumes that multiple organizations may join the federation for the
purpose of sharing their resources or exchanging data. Participants may dedi-
cate all or part of their resources, in terms of virtual machines, to the federa-
tion. More details on establishing a SUNFISH federation and related technical



building blocks are provided by Bottoni et al. [7]. Their architecture includes
microservice-based management layer that enables automated horizontal scaling
and dynamic workflow management of federation services based on variable load.

The federation manages available virtual machines and bootstraps by build-
ing a so-called infrastructure tenant responsible for management of common ser-
vices, including the data security policy store, policy evaluation services, work-
load management or common monitoring infrastructure. Participants of the fed-
eration may deploy applications and services in the federation. Using a common
administrative console, participants can define security policies that apply to
resource management and data flows on different levels of abstraction. For a
distinction between different types of entities, we refer to Section 3.

A typical scenario assumes an application deployed in Tenant A to use a
service deployed in Tenant B to perform arbitrary data processing. Virtual ma-
chines in Tenant B might not be permitted to access sensitive data in plain.
Therefore, the federation needs to assure that data transferred from Tenant A
to Tenant B do not contain sensitive information by encrypting or masking rel-
evant parts. Once transformed and transferred back from Tenant B to Tenant
A, data may need to be decrypted or unmasked to continue the processing [25].

Applications can employ services deployed at fully trusted tenants or at spe-
cial segregated tenants to perform calculations on sensitive data. Segregated
tenants need to fulfil high standards in terms of data security and protection
of their assets. The concrete implementation and security measures need to be
agreed on between the participants of the federation.
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Fig. 1. Overview of our general use case of the SUNFISH federation

2.3 Contribution

This paper builds on and extends our previous work in the scope of SUNFISH
project. In our initial contribution [25], we analyzed access control models, policy
approaches and cryptographic building blocks applicable to federated environ-
ments. Our second contribution [23] discusses the emerging model of cloud-based
integration platforms, where workflows dominantly get executed in the cloud.
We proposed service and policy decision models for API-based interactions, sup-
porting existing OAuth 2.0 scenarios. In the third relevant contribution, we
introduced the overall concept of SUNFISH [24]. We provided a state-of-the-art



assessment and gap analysis in terms of data security, identifying gaps and pro-
viding a roadmap for further research. We furthermore established cross-tenant
communication models, defined the framework for dynamic data transformation
and introduced decentralized policy decision models. These contributions serve
as a basis for the current work.

Our contribution in this paper includes an enhanced security policy model
and the associated architectural framework for security governance in multi-
organizational integrations. We particularly consider inter-cloud environments
based on heterogeneous actors and service-oriented architectures. Based on that,
we establish an interaction model that introduces additional granularity level, en-
abling enhanced context and process sensitivity in definition and enforcement of
security policies. We apply this model to serve in a context of cross-entity trans-
actions between (semi)autonomous agents in different roles. The architecture
and proof-of-concept implementation presented in this work target a federated
management and enforcement of policies on different federation layers. Finally,
we evaluate the overhead and scalability of our implementation.

3 Modelling Inter-Cloud Interactions

In this section, we establish an abstract entity, interaction, authorization and
administration models for security enforcement in collaborative private cloud
federations. The graphical summary of our models is shown on Figure 3.

3.1 Entity Model

Based on the needs derived from the use cases, we identified two subjects in
inter-cloud transactions. An application is a system or a component which stores
and processes data by taking part in inter-organizational or intra-organizational
processes. In a typical scenario, an application connects to a service hosted at
an adjacent tenant, issuing a request to manage data or perform a process.

In our distinction between services and applications we follow the concepts
established by Keen et al., referring to services as entities which expose function-
alities and resources using explicit, implementation-independent interfaces, with
the goal to be reused based on business needs of several entities [14]. As they
support loose coupling and integration using separate communication protocols,
services facilitate location transparency and interoperability [14,21].

Our distinction also considers that services may expose resources on a granu-
lar level, providing parts of application systems which relate to particular prob-
lems or domains [15]. While services are meant to run continuously, interacting
with applications or other agents, applications may be controlled by the user,
with the purpose of accomplishing a particular process which may span across
different domains and execute for a limited period of time.

3.2 Interaction Model

The transactions occurring between applications and services at different tenants
can be described using various levels of abstraction. Due to the relevance for data



protection and overall security, we establish a transactional model which enables
granular and contextual referencing of interactions in their various cycles.

In our model, we consider an interaction as a transactional unit which con-
sists of request and response cycles. Furthermore, we consider a transaction as
a set of entity interactions related to a context. Based on that, we identify three
common types of transactions which occur during service-based, cross-tenant in-
teraction flows. These types include synchronous, synchronous with polling and
asynchronous transactions, as depicted in Fig. 2. Notations using 6 and ¢ in the
figure refer to request and response cycles, with numbers specifying the interac-
tion sequence, and full and part describing the extent of the provided data.

In the first case (a) shown in Figure 2, the overall flow consists of one request-
response interaction cycle, where the application provides the full data set to the
service, which responds with the corresponding data set after processing. This
workflow is referred to as synchronous interaction.

The second case (b) shows a transaction consisting of two flows. First, the
application provides the request with the data to be processed, receiving a confir-
mation from the service with a reference to and the status of the request. Later,
during the n-th interaction, the application contacts the service, checking the re-
quest status or trying to retrieve the processing result. We refer to this approach
as synchronous with polling. The subsequent requests contain the reference to
the original request, while the service responds either with the status description
(part) or a full data set. In the latter case, the transaction can be considered as
completed, after the processed data has been sent back to the requester.

The third case (c¢) illustrates an asynchronous interaction which includes
similar checks as (b), but using callbacks. Instead of polling the status of a
request and eventually retrieving the result, the requester relies on a callback, a
response which is initiated by the service in the second flow.

Based on these descriptions we distinguish between synchronous and asyn-
chronous flows. Synchronous transactions do not require a significant amount of
processing time and may be completed in a relatively short period of time. On
the other hand, transactions which require additional time to complete or in-
clude huge batches of data to be processed may be organized in an asynchronous
manner, consisting of several interactions (request-response cycles).
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Fig. 2. Interaction model and flows for resource-aware integrations

The characterization of these transactions is relevant for the definition of se-
curity policies and processing requirements, as it enables evaluating the interac-
tions occurring in different contexts and for different purposes. This furthermore
allows grouping several interactions which are a part of one process, assigning
them to a particular security context. Security enforcement components in the
SUNFISH framework rely on underlying processes and flows, aiming at achieving



optimal security without imposing additional overhead on the application layer
or altering the underlying interactions and process flows. Hence, by applying
this model we establish security components as process-aware and are able to
maintain a holistic view of communication flows.

3.3 Policy Specification

To establish an access control framework in the federation, we apply our refined
attribute-based model for federated collaborative environments. While other
models, such as ABAC for web services by Yuan and Tong [26], or the pro-
posals by Jin et al. [13] and Ardagna et al. [4] employ entities such as subjects,
resources, environments or objects, we apply a more general approach which
considers agent-based interactions.

In our refinement we observe an access as a sequence of lower-level activities
which may produce different data security effects at each step. For this reason
we model any involved entites, processes and data to describe a particular event
or authorization in a granular and context-sensitive manner. We furthermore
integrate the concept of obligations, which represents a process which has to be
satisfied during the interaction flow. In contrast to ABC Core by Park et al. [19],
obligations in our model employ other functional components of the framework,
being executed and verified by a trusted architecture.

Based on the identified entities and interactions, we model authorization
using the following concepts, as illustrated in Figure 3:

— Service describes the target service, its data and behavioral characteristics.

— Application models the origin application and its environment.

— Request relates to the first interaction step, modeling provided data, access
semantics, expected constraints and enforced transformations.

— Response is analogous to the request category, characterizing the second
interaction step related to the response of a target service.

— Obligation models necessary processes which have to be executed prior to
completing interaction at each level of granularity.

Although not relevant to reach an authorization decision, we consider obli-
gations as a part of the whole interaction process and a necessary step which
has to be enforced by the trusted infrastructure.

3.4 Policy Management

The subject in the proposed framework refers to one of the following entities:

— Organization: a basic organizational unit and federation member, typically
a legal entity which takes part in the federation processes.

— Federation: entities governing the federation in a global administrative role.

— Tenant: a logical unit which comprises resources provided to the federation.



From a functional point of view, a tenant relates to a security compartment,
[20,2] serving as a basic unit subject to security management in the framework
[6]. Organizationally, tenants encompass resources provided by the originating
organization, representing its logical unit, distinctive according to its functional,
organizational or geographical characteristics. Tenants which include resources
from multiple federation members are considered logical constituents of the fed-
eration, dedicated to providing common federation resources and operations.
These include administrative facilities, security governance infrastructure, mon-
itoring infrastructure, identity management or workload scheduling components.

Following that, we establish policy management in three vertical planes:

— Inter-cloud policy management enables federation members in the adminis-
trative role to manage the security on the federation level, using high-level
constructs to describe policies and processes.

— Organizational policy management enables the administrators of organiza-
tional members to specify security policies which address their resources and
security needs.

— Tenant-level policy management enables administrators on the level of or-
ganizational sub-units to manage policies which relate to resources and pro-
cesses from their domain.
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Fig. 3. Overview of authorization and management models for private cloud federations

4 Architecture

The eXtensible Access Control Markup Language (XACML) [18] is a de-facto
standard in the field of data security policy languages. Traditionally, enterprises
are managing their policies at the enforcement points directly. With the in-
troduction of XACML a decoupled model was introduced, comprising different
entities with well-defined responsibilities.

The core components of the enforcement model as defined by XACML in-
clude the Policy Enforcement Point (PEP), the Policy Decision Point (PDP),
the Policy Administration Point (PAP) and the Policy Information Point (PIP).
The responsibilities of these components are clearly assigned. The PEP, as a con-
tact point for applications, issues requests to the PDP and enforces the received
decisions. The PDP may contact various PIPs to gather additional attributes,
and contacts the PAP (also referred to as Policy Retrieval Point (PRP)) to col-
lect relevant policies. The policies are then evaluated by the PDP and a decision
is returned to the PEP.
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Fig. 4. Overview of the proposed architecture

Our proposed architecture provides a concrete implementation of the XA CML-
approach for federated cloud environments, and specifies the missing interac-
tions, interfaces, and workflows.

The proposed enforcement architecture is illustrated in Figure 4. It is based
on the structure and data-flow requirements identified in the general use case
from Section 2.2. Tenants represent security compartments as a logical construct
to group workflows and data-flows with the same requirements on data security.
The special infrastructure tenant is used to deploy common services or man-
agement facilities like policy decision services and policy stores. All compart-
ments operate with SUNFISH dedicated computational resources (e.g. virtual
machines), which might be used by application or services.

The PDP adheres to the OASIS XACML specification as close as possible. We
define that the policy decision process fails if attributes referenced in policy are
missing in the decision request and cannot be retrieved using one of the available
PIPs. Moreover, we introduce a clear distinction between PRP and PAP. The
PAP is an administration tool to manage policies in the policy store. The policy
store can be accessed through the PRP to retrieve corresponding policies or add,
remove or modify policies (depending on the granted user rights).

The core component of the enforcement infrastructure is the Policy Enforce-
ment Gateway (PEG). It governs and safeguards all outgoing and incoming data
flows of one particular security compartment. The component is not included in
the XACML specification but has a close relationship to the PEP. In fact the
PEG instantiates the PEP and adds gateway functionality.

To adhere to data security and data protection requirements, sensitive data
might be cryptographically protected before leaving a security compartment.
Cryptographic operations are in control of the Data Transformation Service
(DTS), which may offer operations like (order-preserving, format-preserving) en-
cryption, data masking or anonymization [25]. The execution of these operations
is defined in the scope of security policies and managed by the compartmental
PEG in the form of obligations, as described in Section 3.4.

The remainder of this section describes our enhancements to the existing
components and the novel PEG in detail.



4.1 Policy Retrieval and Administration Point

Policy retrieval is a critical workflow in policy-based systems, inherently impact-
ing the performance of the whole system. In an optimal scenario, the PRP only
returns relevant policies to the PDP, in the worst case the PRP is just a basic
policy repository returning all available policies.

XACML defines so-called targets which indicate whether a policy applies
to a request or not. These targets represent matching conditions as the dis-
junctive normal form (DNF) of an arbitrary set of matching functions defined
in XACML. In essence, functions evaluate to ternary literals (MATCH, NOMATCH,
INDETERMINATE based on the input request) as part of the conjunctions of the
DNF-representation of the target. A target evaluation result of INDETERMINATE
at the PRP means that not all required attributes are available and the policy
is included in the policy result-set.

Further improvements were made in terms of policy storage. XACML enables
a modular definition of policies in a re-usable manner. We introduce the concept
of root policies and re-usable policies. In the process of determining matching
policies, only root policies are considered in the first place. Root policies then
may reference re-usable policies. This keeps root policies clearly arranged and
improves the performance of determining relevant policies. Administrators are
still able to structure and re-use their policies.

The responsibilities of the PAP, in contrast to the XACML specification,
were streamlined to act as a point of structured management for policies. Ad-
ministrators require adequate permissions to access the PAP and might only be
allowed to add policies for specific areas.

4.2 Policy Enforcement Gateway

According to the XACML specification the PEP’s responsibilities are to contact
the PDP to acquire and enforce a policy decision. Following this approach ap-
plications actively need to communicate with or integrate the PEP. This way
many responsibilities are shifted to the application. We extend this model by
introducing the Policy Enforcement Gateway (PEG). It is deployed on the edge
of each security compartment and governs the whole communication passing the
compartment borders. No communication bypassing the PEG is possible.

Conceptually, the PEG is a PEP extended with gateway functionality. The
incoming requests are converted to XACML decision requests with predefined
attributes as described in Section 4.3. The PEG then enforces the decision (a)
by forwarding the request to the respective service or (b) by denying access to
the service. Furthermore, obligations are automatically fulfilled in the process
of enforcing a decision. At the receiving end the target-zone PEG is invoked to
check if policies allow access to the service. Finally the PEG of the target zone
invokes the service and returns the result to the origin PEG, which passes the
result back to the initiating application.

Using this approach we devised two ways to develop applications for this in-
frastructure: SUNFISH-aware applications are actively aware of the enforcement



infrastructure and directly contact the PEG to initiate a service call. These appli-
cations are comparable to applications written for unmodified XACML stacks,
but using the advanced SUNFISH interface. Transparent applications are not
aware of the enforcement infrastructure, accessing the services in a standard
manner. In fact, their calls are intercepted by the PEG and are routed through
the enforcement infrastructure.

For transparent applications to work, the PEGs need to be aware of the used
protocol and they need to provide a converter from the application protocol to
the inter-PEG protocol and vice-versa. Another burden to overcome regarding
transparent applications is the usage of SSL/TLS. Technically, the PEG is a
man-in-the-middle and one goal of SSL/TLS is to prohibit men-in-the-middle.
Solutions like mitmprozy! exist for HTTPS, but require access to an application’s
trust store.

The PEG offers two REST endpoints for the application and for other PEGs
following a similar schema. Requests to these endpoints encapsulate the original
service request or response and add additional data:

— Original header data, used method and path are consolidated in a custom
RequestData header.

— The service is identified by an id encapsulated in a custom Service header;
no host or path to the service is transmitted. An enhanced version of the PIP
acts as a registry to retrieve host, path and protocol of registered services.

Using this data, the PEG generates an XACML decision request, which is issued
to the PDP with attributes as discussed in Section 4.3.

4.3 Attribute Groups

XACML is an open and extensible system where attributes can be defined with-
out limitations. This makes it impossible to design efficient systems, and it may
be one reason why the XACML specification does not tackle performance issues
like fast and efficient retrieval of policies or policy indexing. We restrict valid
attributes to a specific set to optimally meet the use case of federated cloud
computing. We introduce four categories to be used in our use case:

— Service-related attributes contain information about the target service like:
id, host, port, and zone. Services need to be registered in the federation and
can be referenced by id.

— Application-related attributes contain information about the origin applica-
tion similar to the service-related attributes.

— Request-related attributes contain information regarding the current request
like: protocol, content-type, header parameters, url parameters, or body
data. In this case header, url and body data are not referring to the real
data, but to a characterization of this data. In the simplest case this could
just be the content type. In a more complex scenario the operators may reg-
ister an XSD at the PIP, and the PEG could then check if the body data

! https://mitmproxy.org/



adheres to the specified XSD. Using this approach, policies can be defined
based on the type of transferred data.

— Response-related attributes are defined analogues to request-related attributes,
but characterize the response of a target service.

5 Deployment and Evaluation

In order to evaluate the performance overhead of the enforcement infrastructure,
a basic scenario is being evaluated. The turnaround time of a request submit-
ted to a service guarded by an enforcement infrastructure is compared to the
turnaround time of a request directly issued to the same service. This service
does not perform any computationally intensive tasks in order to process the
request. Instead, predefined responses are being served. By trying to keep the
impact of the service on the overall turnaround time to a minimum, the overhead
caused by the enforcement infrastructure is highlighted.

5.1 Benchmarking Setup

All benchmarks are executed on an Amazon EC2 m4.zlarge? [1] instance running
the 64 bit version of Ubuntu 14.04 LTS. The use of an EC2 instance makes it
possible to directly translate the time overhead to additional costs introduced by
the enforcement infrastructure. The setup consists of the following components:

— The service which delivers structured data

— A single policy enforcement gateway, which controls information flow

— One PIP used by the PEG to enquire information about the requested service
— A PDP, which evaluates authorization requests

— One PRP providing the PDP with policies matching the incoming request
— Another PIP providing the PDP with missing attributes

All components of this test setup are deployed on the same host to eliminate
network latency from the measurements. As can be seen in Figure 5, the en-
forcement infrastructure requires nine additional remote calls in order to serve
a request. We provide a description of these workflow steps in Listing 1.

The application issuing the requests directly conducts the measurements. This
way any potential overhead resulting from, for example, OS-level management
is eliminated. Each request is issued 100 times, the median turnaround time and
the interquartile range (IQR) are evaluated. The bootstrap time for the setup
and loading of policies is neglected by omitting the first request-response cycle
from the measurements.

The dynamic nature of the approach may cause greatly varying turnaround
times, depending on factors such as the complexity of a request or the number of
policies managed by the PRP. Therefore, different configurations are evaluated
to test and cover a range of representative variations of the same setup.

2 The EC2 mj.zlarge features 4 vCPUs, 13 EC2 Compute Units and 16 GiB of RAM
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Fig. 5. Workflow of the setup used for benchmarking

The original request is submitted to the PEG.

The PEG processes the request headers and queries its PIP for the service location.

The PIP returns the location of the service associated with the provided identifier.

The PEG generates and provides the authorization request to the PDP.

The PDP queries the PRP for matching policies.

The PRP matches, retrieves and returns the set of matching policies to the PDP.

The PDP forwards the request to PIP to get additional attributes for a decision.

The PIP enhances the received request with the required attributes and returns it.

Given a sufficiently populated request, the PDP reaches a decision, which is for-

warded to the PEG.

10. The PEG enforces obligations imposed by the decision and issues the (transformed)
request to the service.

11. Depending on the obligations, additional entities (such as a masking service) may

be involved (not part of the evaluated scenarios).
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Listing 1. Evaluating requests in the security governance architecture

Each of two following subsections is dedicated to one setup configuration.
These configurations are benchmarked starting with a PRP containing only a
single matching policy, with subsequent instances featuring an increasing num-
ber of root policies, topping out at 1000. The nature of the policies (and their
targets in particular) are described for each configuration individually. In gen-
eral, however, the PRP and the PDP are stressed the most as these components
provide the most computationally intensive services. Finally, the results obtained
from each configuration are compared to each other in order to deduce a corre-
lation between the number of policies, the number of applicable policies, their
complexity and the overall turnaround time of the enforcement infrastructure.

5.2 Configuration 1: All Policies Match Any Request

The initial configuration features a PRP with a set of root policies matching
any request using an empty-clause target. This setup equally stresses the PDP
and the PRP, since the whole repository of policies is delivered to the PDP for
evaluation, regardless of a request. The PDP then has to re-evaluate the whole
policy set to reach an authorization decision. The reason for a full re-evaluation



is the possibility of indeterminate matching outcomes. In such cases the PDP has
to contact its PIP(s) to enhance the request with additional attributes, in order
to determine the actual set of matching policies. While this process may seem
gravely inefficient, the current configuration represents the absolute worst-case
scenario regarding the number of matching policies. Realistically, the PRP will
only deliver a fraction of all the policies in its repository for each request.
Table 1 summarizes the turnaround times for a request issued to a service
guarded by the enforcement infrastructure. As can be seen, the introduced over-
head is significant and substantially increases with the number of policies.

Direct 1 10 100 1000
3rd quartile 2 111 139.5 402.5 19275
Median 2 104 131.0 355.0  1909.0
1st quartile 2 98 118.0 331.5  1885.5

Table 1. Turnaround time (in ms) of Configuration 1 based on the number of policies

Figure 6 illustrates the characteristics of the overhead shown in Table 1. The
turnaround time for the unguarded service (labeled as Direct) is included for
comparison. Obviously, deploying the enforcement infrastructure causes a con-
siderable time overhead. When only considering root policies featuring empty
targets, however, the presented figures lead to a wrong conclusion.
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Fig. 6. Plot showing the impact of Configuration 1

5.3 Configuration 2: Complex Targets, 50% Matching

The second configuration introduces a set of root policies featuring complex
targets. This results in roughly 50% of all policies matching a request. As can be
seen in Table 2 and Fig. 7, the turnaround times are significantly lower compared
to Conf. 1. Matching and the evaluation performed at the PDP, however, are a
few orders of magnitude more complex compared to the first configuration.

Direct 1 10 100 1000
3rd quartile 2 100.5 102.5 147.5 462.5
Median 2 95.0 96.0 121.0 433.0
1st quartile 2 88.5 90.0 100.0 418.0

Table 2. Turnaround time (in ms) of Configuration 2 based on the number of policies
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Fig. 7. Plot showing the impact of Configuration 2

5.4 Discussion

The reason for the decreased turnaround times in Conf. 2 is the lower amount of
data transmitted between the PRP and the PDP. In the current proof-of-concept
implementation of the enforcement infrastructure, the (de-)serialization process
is to blame for this delay, as it is not optimized for speed, but for simplicity and
debuggability. Benchmarks conducted by Maeda [16] suggest that it is possible to
streamline this process by carefully choosing a serialization library suited to the
use case at hand. Considering these results, it is expected that an optimization
in this area will lead to the matching and decision processes being the dominant
factor of the introduced overhead. Consequently, the actual business logic scales
exceptionally well with the number of root policies.

Conf. 2 is, in fact, one of the worst possible cases concerning the matching
targets defined in policies. Applying simple arithmetic further points to the con-
clusion that the overall impact of an increasing number of policies is negligible.
When considering a real-world service which performs computationally intensive
tasks on large amounts of data, the service and partially the network latency
are expected to become the dominant factor of the total turnaround time. The
overhead introduced by the enforcement infrastructure as a whole is therefore
considered negligible compared to network latency and other sources of jitter.

The above statements also hold true even for a considerably larger amount
of overall policies, since the matching speed is only affected by the number and
complexity of root policies. Typically, such complex setups will rely on reusable
policies referenced within root policies and root policy sets. No matching has
to be performed for re-usable policies, which makes these ideal candidates for
caching, completely eliminating any overhead introduced by (de-)serialization.
The outcome of matching processes themselves can also be cached, however, the
impact of such an extended caching strategy requires further investigation.

In conclusion, the introduced overhead of a few hundred milliseconds must
not be considered a slowdown by two orders of magnitude, but rather a constant
overhead. Considering the use case of agent-based interactions in federated cloud



environment, even an enforcement infrastructure introducing a delay of few sec-
onds is acceptable.

6 Related Work

Policy languages enable data owners to specify access controls and usage controls
for their resources. Specifying and enforcing policies is still subject to research.
Multiple other proposals are available, using approaches similar and different
to XACML: The Formal Access Control Policy Language (FACPL)? features a
more lightweight syntax to express access control policies. Damianou et al. [9]
introduce the Ponder policy language, providing a more fine-grained approach
through a categorization of access-control policies into: authorization policies,
information filtering policies, delegation policies, and refrain policies. Hilty et
al. [12] also focus on the data usage aspect: who may access data, what actions are
allowed to be performed on the data. All these approaches are either theoretical
concepts or barely used in practice. The only de-facto standard being broadly
employed in the industry, is (XACML) [18].

Multi-tenant access control for intercloud proposed in recent work of Ngo
et al. [17] relies on infrastructure description models to generate policies for dy-
namic objects from predefined policy templates. Their model deals with the poli-
cies on infrastructural level and does not assume collaborative and distributed
policy management.

On an European level, multiple projects have been performed to reach similar
goals but using other approaches or providing building blocks which can be used
in our solution: PRISMACIoud” is in the process of developing next generation
cryptographically secured services in the cloud, which might be used by our
solution. In the PrimeLife® project, extensions to the XACML policy language
were developed to better enable the data controller to specify access restrictions
on certain resources [3]. The TClouds® project focuses on delivering computing
and storage resources with a new level of security, privacy, and resilience. This
goal is achieved by establishing trust to remote cloud computing resources by
utilizing certain building blocks like: access-control-as-a-service, cryptography-
as-a-service, secure-logging.

7 Conclusions and Future Work

Although the cloudification enabled public entities to consolidate and optimize
their infrastructures, in the current setup the effects of this process are limited
due to peak-driven usage patterns. The next evolutionary step would be the hor-
izontal integration of public entities by federating their private clouds. However,

3 http://rap.dsi.unifi.it/facpl/guide/ FACPL-guide.pdf
4 https://prismacloud.eu/

® http://primelife.ercim.eu/

5 http://www.tclouds-project.eu



due to lack of supporting frameworks, the legal constraints and security con-
cerns are prevailing. Many entities hence restrain from sharing their resources,
resulting in a suboptimal utilization of existing setups in overall.

The SUNFISH project aims to address these issues by enabling secure fed-
eration of private clouds of public administrations. The goal of the project is to
advance current state-of-the-art by providing an open framework that conforms
to high security and privacy requirements of public administrations and supports
a diverse range of systems.

Building on our previous work, in this paper we presented an enhanced se-
curity policy model and associated architectural framework that enable security
governance in multi-organizational service integrations. In our approach, we con-
sidered use case of interactions between (semi)autonomous agents, situated in
different domains. We introduced a perspective that enables granular modeling
of their interactions, enabling context and process awareness in definition and
enforcement of security policies. Based on a proof-of-concept implementation,
we demonstrated scalability and feasibility of our proposal.

In the next phase of our work we intend to integrate existing, proactive
security enforcement with reactive security controls based on monitoring and
continuous anomaly detection. With this setup we aim to provide a holistic so-
lution for security enforcement in a multiorganizational environment, providing
public entities with additional accountability-supporting mechanisms.
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