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ABSTRACT: Building nanostructures one-by-one requires precise control of single molecules
over many manipulation steps. The ideal scenario for machine learning algorithms is complex,
repetitive, and time-consuming. Here, we show a reinforcement learning algorithm that learns
how to control a single dipolar molecule in the electric field of a scanning tunneling
microscope. Using about 2250 iterations to train, the algorithm learned to manipulate the
molecule toward specific positions on the surface. Simultaneously, it generates physical insights
into the movement as well as orientation of the molecule, based on the position where the
electric field is applied relative to the molecule. This reveals that molecular movement is
strongly inhibited in some directions, and the torque is not symmetric around the dipole
moment.

■ INTRODUCTION
Atomically precise control of the position and orientation of
single molecules is key to improving the understanding of
crystal growth and assembly processes, as well as the operation
of molecular machines. From a more technological point of
view, it also unlocks the possibility for nanofabrication of novel
materials with enhanced properties that are inaccessible by
means of conventional fabrication techniques. Presently,
scanning probe methods (SPMs) are the preferred techniques
capable of single atom or molecule manipulation, and many
details about physical and chemical processes can be obtained
only in this way at the single-molecule level.1−6

An established method to form nanostructures on surfaces is
self-assembly due to lateral intermolecular interactions
between molecules.7,8 Although those structures can be
tailored by carefully selecting the functional groups of the
molecular building blocks, arbitrary arrangements are not
possible.9,10 Using the STM tip, custom-built atomically
precise nanostructures on metal interfaces can be achieved
by assembling individual atoms or molecules to create artificial
structures,11−13 such as quantum corrals14−16 or 2D-materi-
als.17,18 Even nanoelectronic computational devices, like logic
gates,19−21 can be constructed from molecules by controlling
their position and orientation. However, building even
relatively small nanostructures requires hundreds or even
thousands of manipulation steps. Performing all these manually
is challenging on a routine basis.
Ideally, such jobs should be automized, and the easy

interfacing of modern machines with programming languages
allows algorithms to perform complex tasks. However,

algorithms that are deterministic or based on fixed decision
processes require a priori knowledge about the outcome in
order to perform a meaningful action. Such information is
typically unavailable when dealing with individual molecules
on surfaces but can be obtained with a dynamic machine
learning algorithm capable of learning from each performed
manipulation. A pre-requisite to allow learning of these
interactions, however, is that the interaction remains unaltered
during the manipulation processes. For SPM techniques, this is
not always true. At close tip-surface distances, molecules can be
pushed over the surface but this can lead to strong interactions
and subsequent tip changes.4,8,22 Note that machine learning
approaches exist for in situ tip conditioning23−25 and tip apex
classification using convolutional neural networks.26 However,
these are not required for our approach, because the long-
range interaction of the STM-tip-induced electric field and the
dipole moment of the molecule hardly ever change the shape
of the tip. This enhances the ability to acquire knowledge and
allows to autonomously learn the individual manipulation
parameters by systematically exploring the possible actions, for
example, by exploring how much and in which direction a
molecule would move if an electric field is applied at specific
positions with respect to the molecule. Alongside the large
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number of possibilities to place the tip, the situation is
complicated by the fact that interactions in the quantum world
are often stochastic, that is, the same action may not always
lead to the same outcome. In other words, obtaining this
information and building an algorithm that allows the assembly
of building blocks on the surface into arbitrary structures
require a lot of repetitive and time-consuming tasks, which
must be performed anew for every new type of building block
(and for every surface on which the molecule should be
manipulated).
Machine learning algorithms provide a promising solution to

this kind of problem, and they have already demonstrated their
capabilities for a variety of tasks: they can solve highly complex
computer games at super-human performance,27−30 even when
the rules of the game are a priori unknown. In more science-
related context, machine learning has been integrated to
simulate environments,31−33 autonomous data acquisition in
SPM experiments,34,35 and the detection and movement of
nanowires using an atomic force microscope.36 The notable
capabilities of STMs to autonomously assemble atoms into
atomically perfect nanostructures have been demonstrated.11

In their work, single Co adatoms are manipulated by creating a
temporary bond between the adatom and the tip and then
moving the adatom along a predetermined trajectory
determined by a path planning algorithm. In addition to
these experiments, reinforcement learning approaches were
realized in scanning tunneling microscopy that are comple-
mentary to our manipulation approach, for example, to
disassemble layers of organic molecules by bringing the STM
tip in the vicinity of the molecule and extract it37 or
manipulating single silver atoms precisely toward specific
positions on a Ag(111) surface.38

In this work, we demonstrate a reinforcement learning
approach that learns to maneuver individual molecules to a
certain position on the surface utilizing a tip-induced electric
field. After about half a day of training, the algorithm can
manipulate molecules efficiently toward arbitrary positions on
the surface. Additionally, it provides insight into the behavior
of the molecule based on the relative position of the STM tip.

■ METHODS
The mo l e cu l e s [2 , 5 -d i ( e thyny l adaman t any l ) - 4 -
(dimethylamino)nitrobenzene (DDNB)] were deposited
from a Knudsen cell at a temperature of 389 K onto a clean
Ag(111) surface for 7 min under UHV conditions (1 × 10−10

mbar). Our experiments were performed using a low-
temperature STM (CreaTec) operated at 5 K, and the STM
tip is an electrochemically etched tungsten wire, likely covered
with silver atoms after many tip indentations for routine
cleaning. Once cooled, a molecule is extracted from an island
by STM manipulation and moved to an area that is relatively
clear of other molecules, adsorbates (like CO), or surface
defects like step edges (see Supporting Information Figure S1).
The STM is controlled via the component object model
interface to communicate between the machine learning
algorithm (i.e., our machine learning algorithm written in
Python) and the key, value-based interface command structure
of the STM. A more detailed description of the interfacing is
given in the Supporting Information. During the STM
manipulation, the bias voltage and tunneling current were
fixed to 1.7 V and 11 pA, respectively, and the height of the tip
1.0 Å above the surface, while the lateral tip position was
changed.

■ RESULTS AND DISCUSSION
In this work, we exemplarily use the manipulation of single
DDNB (see Figure 1a) on Ag(111) to demonstrate an

approach that can reliably control molecular movement using a
tip-induced electric field. We emphasize, however, that our
algorithm could be applied to any polar molecule, without
prior knowledge of the atomistic structure of the molecule.
The only input we provide is the “shape” of the molecule, that
is, how it appears in an STM image, to facilitate its recognition
by the algorithm. The choice of the molecule is motivated by
earlier experiments, which also used this molecule for the same
purpose.
These earlier studies showed that DNBB bears an intrinsic

dipole moment arising from the electron-accepting nitro- and
electron-donating dimethylamine group attached to the central
phenyl ring, while being slightly elevated (and, thus, electroni-
cally decoupled) from the surface through the adamantyl side
groups. Its dipole allows for molecular manipulations via the
electric field localized around the STM tip and has been
studied before.39,40 However, in principle, other effects such as
inelastic excitation may also contribute to the movement of the
molecule. This is of no further consequence to the algorithm,
which makes no a priori assumption on the interaction or its
mechanism. The forces at work can only be determined in

Figure 1. Sequential autonomous learning procedure is done by
analyzing the STM image and extracting the molecule’s position and
orientation, which, after a discretization step, represents the state of
the system given to the reinforcement learning algorithm. (a) 3D
structure of the molecule adsorbed on the Ag(111) surface: the
colored NO2 group (pivot point) and the N(CH3)2 group on the
para-position of the phenyl ring form the dipole of the molecule. This
phenyl ring is connected to two adamantane wheels that lift the
chassis off the surface. (b) STM image of the molecule is shown
(tunneling parameters: 1 V, 11 pA). (c) Complete state-space as
characterized via the discretization into 15 distances d and 360 angles
φ (for visualization purposes, only 36 discrete angles are shown per
distance ds). A single goal (white circle) is given by the distance ds and
angle φs from the molecule’s pivot point (indicated as “*”) to the goal
position. The green square visualizes the size of the action space. (d)
Action space is formed by a grid of 15 × 15 tip positions around the
center of the molecule (indicated as “x”) such that the x-axis is aligned
with the axis of the molecule (white line). The basic principle of
reinforcement learning is given by combining (c,d).
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hindsight after analysis of the data, as we show in the final
section of this contribution.
The target of our approach is to autonomously move the

molecule to a pre-determined position on the surface
(hereafter called “goal”) by controlling the STM via a so-
called intelligent agent,41 that is, something that perceives its
environment (real world) and autonomously acts on it
(through the STM) to achieve its goal. Earlier experiments
in combinations with DFT calculations also showed that the
NO2 group is in direct contact with the surface and acts as
pivot point, that is the molecule rotates around this point at
low voltages (1.3 V).39 At higher voltages (here, we use 1.7 V),
also translation of the molecule, in addition to rotation,
occurs�both strongly depending on the precise experimental
settings, in particular the position of the STM tip during
manipulation.39

For each pulse, the tip moves laterally to the desired location
using the feedback set-point parameters U = 1 V, I = 11 pA.
Subsequently, the feedback is deactivated, the tip is moved 1 Å
closer to the surface, and the bias voltage is set at 1.7 V. After
some time, a current exceeding 1 nA is observed and indicates
that the molecule has moved which leads to automatic
deactivation of the voltage pulse. The parameters are chosen
because previous experiments show that these pulses
frequently (though not always) induce a translation in the
molecule, without destroying it.39,40

We note in passing that it would be interesting (and
possible) to also let the algorithm autonomously determine the
pulse settings. However, this would significantly increase the
number of possible actions and requires a robust routine to
determine whether the molecule is still intact or even present
on the surface, which is beyond the scope of the present work.
Before each manipulation, the molecule is imaged (using the

parameters described in Figure 1b) to analyze its topography
and determine the position and orientation of the molecule
(see Supporting Information: Figure S2). In order to
manipulate the molecule, the agent varies the position of the
tip relative to the molecule before the pulse is applied.
In reinforcement learning, the set of all possible distances

and orientations where the goal can be located are known as
the “state space” (black dots in Figure 1c). In our case, a single
“state” is determined by the distance dS between the goal and
the pivot point of the molecule (indicated as pink “*” in Figure
1b), as well as the angle φS between the dipole moment and
the vector from the pivot point to the goal (white dot in Figure
1c). To move the molecule across the surface, we use “actions”.
Actions are manipulations of the molecule via voltage pulses at
specific tip positions. The set of all possible actions (referred to
as “action space”) is defined as tip positions arranged on a
regular grid (Figure 1d) around the center of the molecule
(black x), such that the x-axis is aligned with the connecting
line between the two adamantane wheels (mass axis) of the
molecule (white line). The combination of (c,d) in Figure 1
shows the basic principle of reinforcement learning.
To find the best action (i.e., the action that moves the

molecule closest to the goal) for a given position and
orientation of the molecule relative to the goal, it is necessary
to communicate the quality of each action (determined by a
reward function) to the agent. In general, we want to reward
the agent for movements toward the goal that are larger than a
minimum distance and explicitly penalize it for movements
which are small or lead away from the goal. For this, we define
the reward as a piecewise linear function (eq 1) such that the

reward depends on the distance the molecule moves toward
the goal, Δd = dt+1 − dt. For technical reasons, it is useful to
restrict the reward to values between −1 and +1. Thus, we
normalize the distance by dividing it by a constant number
amax. Empirically, we find amax = 2.1 nm to be a good value
here, motivated by the maximum distance the STM tip can be
placed away from the molecule and still being able to induce
molecular motion. Larger travel distances than amax hardly ever
occur, and if they do, the associated reward is capped at a value
of 1. Conversely, a reward of −1 (i.e., a penalty) is assigned not
only if the molecule ends up further away from the goal than it
started but also if the molecule does not move at all (both
cases represent an unsuccessful action). The reward is, apart
from the state, the only information the agent receives.
Therefore, both the behavior of the agent and the objective we
want to achieve are encoded in this reward function.
Mathematically, the function is given as
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These are the necessary ingredients to formulate a
reinforcement learning algorithm as a set of finite Markov
Decision Processes (MDPs).42 A finite MDP is defined as a 4-
tuple (S, A, Pa, and Ra), with S and A being the state space and
action space, respectively, and the reward for a corresponding
action a is given by Ra. At any iteration, t, the system is in a
state, st. The agent performing an action, at, brings the system
with a probability, Pa = p(st+1|st, at), to the next state, st+1. After
action at is performed, it is attributed a reward signal rt+1 (see
eq 1) to determine the quality of the performed action. As a
result, the agent learns a mapping between states and actions,
which are formally described as state−action pairs. These
state−action pairs are updated after every performed action,
formally known as temporal difference learning TD(0), where
the number describes how many actions, after the initial action,
have to be performed until the reward is applied. The values of
this map are stored in a lookup table.
Because the entries (i.e., the Q-values) of this Q-table are

initially unknown, we train the agent using a strategy known as
Q-learning.43 We note that RL methods are often realized as a
neural network when the system requires continuous state−
action space, which also makes them too large to be handled
via table-based methods. Since this is not the case for our
system, we found the Q-learning approach to be an ideal
solution. Here, the Q-value for a state−action pair is
determined by the Bellman optimality equation
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This equation contains two free hyperparameters: the
learning rate α and the discount factor γ. The learning rate
determines the weight between newly acquired information
and already learned Q-values and essentially determines how
important the present knowledge is relative to the newly
obtained reward. Smaller values of α therefore enhance
convergence but lead to a smaller step size toward a steady
Q-value, while larger values allow for larger steps but may lead
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to increased instability.44 The discount factor γ determines
how impactful already established Q-values are compared to
newly obtained ones, which may be obtained coincidentally in
stochastic experiments.41 During the training of the algorithm,
we choose a learning rate of α = 0.3 and a discount factor of γ
= 0.5. The choice of these hyperparameters is given by the
assumption about the environment (i.e., how the molecule is
interacting with the electric field). The small γ value leads to a
very short-sighted agent because we thought the high voltage
to induce molecular motion would inevitably cause uncontrol-
lable rotations. In hindsight, this turned out not to be correct
(see below), which means that better hyperparameters could
be chosen in future experiments. The high learning rate,
however, can lead to overfitting but is most likely suppressed
by the high exploration rate of 70%.
A major challenge of our approach is the size of the Q-table.

We allow for a total of 5400 possible states, given by 360
possible orientations toward the goal (i.e., 360 possible angles
in 1° increments, see Figure 1c) and 15 possible distances (i.e.,
pivot-point to goals). Furthermore, we consider 225 possible
actions, that is, tip positions relative to the molecule, on a
regular grid of 4.2 nm by 4.2 nm, with a lattice spacing of 0.3
nm (see Figure 1d). Clearly, it is impractical to visit all possible
state−action pairs, since this would require more than 1.2
million actions (position the tip, apply the voltage pulse, and
image the position of the molecule) to visit every Q-table entry
at least once.
Instead, we implement “virtual” states to speed up learning.

In the experiment, before every action, the system is in one
particular state that is defined by the distance and the
orientation of the goal relative to the molecule. Based on this
state, a certain action is taken, during which the molecule
moves (or not), and after which the molecule is in a new state.
To speed up learning, we employ a trick: we can treat the
analysis as if the goal was in a different position (i.e., initially
the system was in a different virtual state). Then, the action
was taken (this is fixed because this is the experiment that was
performed). Afterward, we can again determine the virtual
state the system is in if the goal was at that position and thus
evaluate the outcome (reward) of this action. Thus, instead of
only having one goal (i.e., the real goal), we can define virtual
goals such that all possible states (i.e., the whole state space)
are presented to the agent simultaneously. Subsequently, we
calculate the reward for all the different, virtual states which
allows us to update 5400 entries of the Q-table accordingly.
For the actual training, we maneuver the molecule along a

square-shaped trajectory (shown in Figure 2), where the
surface area is perfectly flat and without defects. The trajectory
is defined by four goal regions on the surface (orange circles in
Figure 2), which the molecule should reach sequentially. The
points are shaped in a square, such that the molecule traverses
different crystallographic directions of the hexagonal Ag(111)
surface. We emphasize that apart from setting up four goal
positions, the whole experiment (i.e., the training as well as
validation runs) occurs in a fully automated manner. The
software automatically analyzes the topography (see Figure S2
in the Supporting Information) to determine the state of the
molecule on the surface (i.e., its distance and orientation
relative to the goal), and also the action, that is, the placement
of the tip for the voltage pulse, is done without human
interference.
To train our algorithm efficiently and prevent the molecule

from moving too far away from the square trajectory, it is

necessary to find a trade-off between efficiently moving toward
the goal and exploring actions that have not been tested yet.
To do so, we defined the rate at which the agent explores new
actions, that is, the exploration rate ε. At each step, our
algorithm chooses with a 30% probability the action which is
presently known to move the molecule most efficiently to the
target, that is, the largest entry of Q for the present state. With
ε = 70% chance, it explores the action space by using an action
that gives the most information about the action space.
The action which yields the most information is determined

via modeling the action space with Gaussian process regression
(GPR) and selecting the action of highest GPR uncertainty
(see Supporting Information). Note that even when the
optimal action for the present state is chosen, at the same time
sub-optimal actions for other (hypothetical) states are
consistently explored because we analyze the data after each
action with all possible “hypothetical” goal positions. This
allows us to get a comprehensive and statistically well-sampled
overview over the possible actions.
After a certain number of iterations, we interrupt the training

of the algorithm to record its present performance with a set of
validation runs. During these validation runs, we visit the same
four goals multiple times but set the learning rate α to zero and
only use the optimal Q-values for the present (real) state.
Figure 3 shows the results of these validation runs. In Figure
3a, the number of actions required to finish a full square is
given as a function of the training time, while the color of the
data points indicates the number of times a validation run is
performed at a given learning progression. We see that training
varies between different runs of the same set, attesting to the
stochastic nature of the procedure and the fact that the
molecule cannot be moved equally successful in all directions.
This is clearly shown in the first two validation runs, which are
done only after 140 training iterations, which require 150 and
350 actions, respectively, to complete a full square. Already at
the second validation set (after 280 learned iterations), the
algorithm consistently completes a square in less than 125
actions (indicated by also taking the error bars into account).
This stochastic nature of the interactions is shown in Figure

3b, where the average distance the molecule moves toward the
goal exhibits a large spread within each validation run. This
spread is shown via box plots for 60, 70, and 80% of the
successful actions. The purple line represents the average
movement distance toward the goal. We note in passing that

Figure 2. Learning and validation trajectory consisting of a square
with 10 nm side length superimposed on an STM image (1.00 V, 0.11
pA) of a single molecule on Ag(111). The goal areas are circles with a
radius of 1.5 nm at the corners of the square. The agent must reach
the goal areas sequentially as indicated by the goal numbering. The
STM image shows the molecule (at goal 1) for size comparison.
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part of this spread also comes from the fact that translation and
rotation around the pivot point are superimposed, as discussed
in more detail in Figure S3 of the Supporting Information.
Nonetheless, naively, one would expect that the average
movement distance consistently increases as the learning
progresses. Interestingly, this is the case between the first and
the second validation set, but after that, the average movement
distance is roughly alternating until the agent learned for about
2000 iterations. We find that the success rate, that is, the
percentage of pulses that lead to a movement of the molecule
toward the goal (shown as green line in Figure 3b) shows a
similar trend to the movement distance, but in an anti-
correlated manner.
This is owed to the way our algorithm is set up. In its

entirety, the agent learns actions that complete the overall
trajectory in less iterations while also being more reliable. The
interesting behavior is revealed by taking a closer look at the
individual learning progressions. After 280 learned iterations
are completed, it starts to trade between actions that are fast

(i.e., move the molecule over large distances) yet unreliable
versus actions that move the molecule by a smaller distance,
but do so more consistently. In the second training cycle, it
trades off large movements that are less likely to be successful
against smaller movements that are more reliable. This
anticorrelation between distance and reliability continues
until the second last training cycle. In the last training cycle,
it finds actions that move the molecule reliably over large
distances. This is a direct consequence of the designed reward
function. Moderate movements toward the goal generate only
relatively small rewards (r ≪ 1), while not moving at all is
harshly penalized (r = −1). The agent heavily penalizes actions
for not moving the molecule toward the goal, consequently
decreasing its corresponding Q-value entry such that it is not
the highest Q-value (i.e., best action in this state) anymore.
This disincentivizes the algorithm to rely on actions whose
outcome is strongly stochastic and pushes it toward well-
defined, reproducible actions. Although this is hard to

Figure 3. Learning progression. (a) Average number of manipulations necessary to complete the square trajectory used while training. The number
of times n a validation run is performed at a given learning progression is indicated by the point coloring. The dotted line represents how fast the
track could be completed if every manipulation induces a 1.4 nm movement. (b) As learning progresses, the mean distance (purple) the molecule
moves toward the goal and the success rate (green) that the individual manipulations bring the molecule closer to the goal are shown. The box
plots show the spread of the distance the molecule moves toward the goal for 60, 70, and 80% of the successful actions color coded from dark to
light blue, respectively.

Figure 4. (a) Trajectory is defined by six goal positions (circles) forming a fish-shaped trajectory. (b) Final performance of the agent along a fish-
shaped trajectory. The molecule is maneuvered sequentially through the goal regions (1, 2, 3, ...) indicated by gray circles. The distance traveled
within each manipulation is indicated via its color. The average distance the molecule moves per manipulation is about 0.77 nm, but many
successful movements are much larger (purple lines). The agent moves the molecule with an average success rate of 82% across the trajectory. (c)
Rotation of the molecule for each manipulation is indicated via its color, whereas positive and negative angles correspond to counterclockwise and
counterclockwise rotation, respectively. STM image: (1.00 V, 11 pA).
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converge, in the end, it leads to faster and more reliable
movements compared to all previous validation runs.
To judge the quality of the training, it is important to

consider how fast the track could be completed under ideal
circumstances, which is only possible in hindsight by analyzing
the data. The circumference of the square amounts to 40 nm.
As Figure 3b shows, the largest movement of the molecule that
can be induced with our settings amounts to approximately 1.4
nm, that is, at least 29 manipulations would be required for the
whole track. However, as shown below, this requires an
optimal orientation of the molecule toward the goal, which we
presently do not control. More importantly, as also shown in
Figure 3b, even in the best circumstances, only about 80% of
the pulses induce translation at all, due to the stochastic
(quantum-mechanical) nature of the interaction. Thus, taken
the best possible circumstance into consideration, a full square
can realistically be completed with about 36 attempted
manipulations (see dashed line in Figure 3a). Our fully trained
algorithm approaches about 63 manipulations (i.e., 1.75× the
optimum value) reasonably fast. This shows that our chosen
approach (Q-learning) is, in the present case, sufficiently good
to deal with this system, even if more sophisticated approaches,
such as policy gradient methods, could improve the learning
behavior even more.
With the algorithm successfully trained on a square

arrangement of points, the question arises whether it is now
limited to specific kinds of translations on the surface. To show
that we can efficiently manipulate the molecules to arbitrary
points on the surface, we trained the algorithm for another 200
iterations (along the squared training trajectory) and then
designed a track that roughly resembles the shape of a fish (see
Figure 4a). This shape was chosen because the shortest path
between some of the points (2−3 and 4−5) is along different
crystallographic directions than the paths used in the training
of the algorithm. Figure 4b shows how the algorithm moves
the molecule across the surface, color-coding the distance it
traveled with each manipulation. Encouragingly, we find that
almost all manipulations are successfully steered toward the
goal, and the agent was able to manipulate the molecule with
an average success rate of 82% toward the goal which was even
higher than that in all the previous validation runs reaching an
average movement toward the goal of 0.77 nm per
manipulation. The rotational behavior of the molecule after
each manipulation is color-coded (see Figure 4c) and shows
contrary to our expectation (that the molecule rotates

randomly on top of the translation) that in 50% of the
performed manipulations, no rotation is induced. We note that
the target accuracy we defined, which is a 1.5 nm radius around
the goal, was chosen very pragmatic to half the molecule’s
width. In hindsight, we find that because we can systematically
induce small or large translations, a smaller target radius could
easily be chosen in future experiments.
The number of training iterations (2256), which by itself can

be easily obtained within a short amount of time (about half a
day), are sufficient to allow the code to move the molecule
reproducibly to arbitrary points on the surface.
In addition to the single-molecule manipulation, which

requires us to keep track of the molecule with sub-nanometer
precision at every manipulation step, our approach also allows
us to autonomously generate data leading to physical insight
and an understanding of the interaction between the molecule
and the electric field induced by the STM tip. The molecule’s
position and orientation are tracked and allow us to reveal the
molecular behavior. For easy explanation of the molecule’s
behavior, the movement directions of the molecule are named
by starting at the 12 o’clock position and continue in clockwise
direction leading us to the 3, 6, and 9 o’clock position. As
summarized in Figure 5, the rotational and translational
behavior of the molecule is dependent on the position of the
dipole axis. Figure 5a shows the likelihood of inducing a
translation, and we find that proximity of the tip to NO2 and
N(CH3)2 (approximately 6 and 12 o’clock) has a high chance
of success, in agreement with what was observed previously.39

Note that this differs from the definition of a successful
movement used in Figure 3, where the requirement was that
the molecule moves toward the goal (the action incurred a
positive reward). We additionally note a high chance of
inducing translation further away from the contour of the
molecule at 7−8 o’clock positions (Figure 5b)�positions
which were not sampled previously. The physical insight
provided by Figure 5b,c is that the direction of motion of the
molecule is dictated entirely by the position of the tip with
respect to the dipole axis, correspondingly implying that the
main mechanism is electrostatic in nature and not due to other
processes such as inelastic tunneling. A discussion of the
dynamics of each induced motion has been given previously
where data were acquired manually.45

Throughout this study, the agent performed a total of 12,379
actions, providing us with rather accurate statistics. We note in
passing that, due to the way we set up the algorithm, not each

Figure 5. Translational and rotational behavior of the molecule in the presence of an E-field by positioning the STM-tip on the grid. (a) Success
rate for inducing a movement of the molecules pivot point (*). (b) Average distance and direction the pivot point of the molecule (*) moves are
given by the arrows. Both the color of the arrow and their length represent the average movement distance. (c) Average rotation in clockwise (blue)
and counterclockwise (red) direction. All averages were taken over all actions, including unsuccessful attempts.
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point of the action space was sampled equally often. Points
that are likely to induce a positive reward are visited more
frequently (as the agent chooses the actions that presently
seem to be the best during the validation runs), while points
that induce negative rewards are only sampled during training
when exploring the action space with a probability of 70%.
Still, every point is visited at least 13 times during the
experiment. More details on how often which point was visited
are given in Figure S4 of the Supporting Information.
Moreover, we find that near the nitro-group, the region

where successful movements can be triggered is more
extended, whereas near the dimethylamino group, it is
relatively narrow. We speculate that this is a physical effect
that is directly related to the geometry of the molecule on the
surface. Because the nitro group is closer to the surface than
the N(CH3)2 group,

39 the nitro group experiences a larger field
gradient from the tip even when the tip is at a larger horizontal
distance.
Another interesting behavior is revealed by analyzing the

directionality of the movement. Figure 5b shows in which
direction, and how far, the molecule moves when the tip is
located at a certain position. Generally, we find that locations
that are likely to induce a successful movement are also likely
to move the molecule over a large distance. Some actions are
intuitive: for instance, when one wants the molecule to move
toward the 6 or 7 o’clock position, efficient actions exist by
placing the STM tip at these 6 or 7 o’clock positions of the
molecule, respectively. Conversely, other directions of move-
ment are highly unintuitive: for instance, moving the molecule
toward the 1 or 2 o’clock position can only be achieved by
applying a voltage pulse at the 5 or 6 o’clock position of the
molecule. Even then, the action is highly inefficient and only
induces small movements.
In principle, it seems possible that a different tip shape

influences the interaction. Since in this work, all manipulations
were done with the same tip, we cannot rule out this
possibility. However, from the analysis of the molecular
behavior (Figure 5) where 12,379 manipulations are
performed, it can be seen that there is no discernible difference
moving the molecule clockwise or counterclockwise along the
squared-training trajectory (i.e., the molecule inevitably
positioned anywhere around the tip), and we can conclude
that the molecular interactions we encountered are independ-
ent of the tip asymmetry.
These results are in agreement with those some of us

obtained in previous experiments, where the translation and
rotation of the molecule are measured at 8 points around the
perimeter of the molecule.39,40,45 In the present work, the
observation space is more extended and higher resolved as the
whole action space (i.e., 225 positions) is measured larger and
better resolved. Another major advantage is that we could
obtain these results automatedly within a couple of days
building upon very little prior information (we took the bias
voltage and the tip height optimized in previous experiments,
and we restricted ourselves to defect-free, flat surfaces). In
comparison, a similar study purely reliant on human operators
often requires months of laboratory work.
In contrast to the induced translations, the rotations that the

actions incur are nicely symmetric around the dipole, as shown
in Figure 5c. As could be expected from a dipole interacting
with a point charge (representing the STM tip), the rotation
occurs clockwise when the tip is located to the right of the
dipole and counterclockwise when it is located to the left.45

When the average rotation is larger, the closer the tip is to the
negative side of the dipole.
There is a statistical chance that during a run, the molecule

rotates into an unfavorable orientation where the goal is in a
direction for which the molecule is hard to move toward.
When, during a validation run, the molecule coincidentally
encounters such a situation, no good actions exist at all and it
may take a while to get out of this unfavorable rotation. This
explains the large differences in required manipulations
observed during different runs in the same validation set. In
hindsight, it becomes clear that the reason for this (unwanted)
behavior intrinsically lies in the way we designed our reward
function, which is unaware of the rotation. Obvious solutions
to this would be to either directly encode the rotation in the
reward function, or to use bootstrapping (which is a technique
where instead of giving the reward immediately for the current
action, rewards are summed over subsequent actions, thus
favoring an initial action that end with favorable rotation but
without translation), or alternatingly perform a rotation of the
molecule (with a voltage of 1.3 V) and a translation (with a
voltage of 1.7 V, see ref 34) afterward. In general, with the
learnings from the previous experiments, it would be possible
to design an improved reward function, for example, by
lowering the penalty for small movements and increasing the
reward for larger movements, possibly in addition to using two
separate reward functions for rotations and translations. A
systematic approach would be to use inverse reinforcement
learning to determine the reward function automatically.46

However, the design of an ideal reward function to optimize
the performance of the agent would be a separate study in itself
and is beyond the scope of this work.

■ CONCLUSIONS
In this work, we have set up an autonomous reinforcement
learning algorithm to efficiently control a molecule across
Ag(111) utilizing a tip-induced electric field. The manipulation
occurs by placing the tip in an automatically selected position
relative to the molecule and applying a voltage pulse at a fixed
tip height above the surface. The training progresses extremely
fast; at 700 training iterations, the manipulations become
efficient, which move the molecule with a probability of 72%
for an average distance of 0.58 nm toward the goal. In the final
validation run (after 2250 training iterations), our agent
manipulates the molecule with 82% probability toward the
individual goals and reaches an average translation distance of
0.77 nm per manipulation. Our tests show that the learned
behavior is not restricted to the training trajectory (i.e., four
goal positions forming a square), but that arbitrary trajectories
on the surface can be traversed.
We expect that this opens up the possibility to assemble

molecules in multiple constructs, when combining our
algorithm with pathfinding algorithms and image recognition
software that finds the optimal pathway while avoiding surface
defects, or adsorbates, as well as other possible obstacles on
which the molecule would get stuck.36,47,48

The most critical part of the algorithm is the design of the
reward function. Due to the way we designed the function in
this work, it penalizes unsuccessful actions more heavily than
rewarding successful actions; the agent initially trades off
actions that are reliable for actions of smaller moving distance
and vice versa. However, after about 2000 learned iterations,
the agent learns actions that are more reliable while also
moving the molecule across a larger distance. A remaining
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challenge is that in some situations, no single action exists that
performs well. With the data at hand, the clear solution to this
is to implement bootstrapping, which allows to evaluate the
outcome of several combined actions. Although bootstrapping
increases the learning effort, it enables the agent to learn more
complex manipulations. Another possible solution would offer
an action space expansion to negative bias voltages but
increases the learning effort, as every voltage parameter added
to the repertoire of the agent increases the action space by 225
entries.
A significant advantage of our approach is that this allows a

post-hoc analysis of the decision process of the algorithm.
Furthermore, it yields physical insight into what molecular
behavior is induced when applying an electric field at points in
its close vicinity. This leads to a deeper understanding of how
polar molecules move through the potential energy landscape
at interfaces. This study can build the foundation in adopting
artificial intelligence to learn complex molecular behaviors. The
augmentation of single-molecular manipulations with path
planning47,48 and image recognition algorithms will generate an
algorithm capable of autonomous molecular assembly,49−51

building the basis for future, bottom-up constructions of
artificial and functional structures relevant for nanotechnology
applications.
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