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a b s t r a c t

If a graph G can be represented by means of paths on a grid, such that each vertex
of G corresponds to one path on the grid and two vertices of G are adjacent if and
only if the corresponding paths share a grid edge, then this graph is called EPG and
the representation is called EPG representation. A k-bend EPG representation is an EPG
representation in which each path has at most k bends. The class of all graphs that have
a k-bend EPG representation is denoted by Bk. Bm

ℓ is the class of all graphs that have
a monotonic ℓ-bend EPG representation, i.e. an ℓ-bend EPG representation, where each
path is ascending in both columns and rows.

It is trivial that Bm
k ⊆ Bk for all k. Moreover, it is known that Bm

k ⫋ Bk, for k = 1. By
investigating the Bk-membership and the Bm

k -membership of complete bipartite graphs
we prove that the inclusion is also proper for k ∈ {2, 3, 5} and for k ⩾ 7. In particular,
we derive necessary conditions for this membership that have to be fulfilled by m, n
and k, where m and n are the number of vertices on the two partition classes of the
bipartite graph. We conjecture that Bm

k ⫋ Bk holds also for k ∈ {4, 6}.
Furthermore, we show that Bk ̸⊆ Bm

2k−9 holds for all k ⩾ 5. This implies that restricting
the shape of the paths can lead to a significant increase of the number of bends needed
in an EPG representation. So far no bounds on the amount of that increase were known.
We prove that B1 ⊆ Bm

3 holds, providing the first result of this kind.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction and definitions

In 2009 Golumbic, Lipshteyn and Stern [16] introduced edge intersection graphs of paths on a grid. If a graph G can be
represented by means of paths on a grid, such that each vertex of G corresponds to one path on the grid and two vertices
of G are adjacent if and only if the corresponding paths share a grid edge, then this graph is called edge intersection graph
of paths on a grid (EPG) and the representation is called EPG representation. Here the term edge intersection of paths refers
o the fact that the paths share a grid edge.

A k-bend EPG representation or Bk-EPG representation is an EPG representation in which each path has at most k bends.
graph that has a Bk-EPG representation is called Bk-EPG and the class of all Bk-EPG graphs is denoted by Bk. We consider

he following natural ordering of grid lines: the columns increase from the left to the right and the rows increase from
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he bottom to the top. A path on a grid is called monotonic, if it is ascending in both columns and rows, i.e. it has the
hape of a staircase that is going upwards from the left to the right. The graphs that have a Bℓ-EPG representation in
hich each path is monotonic are called Bm

ℓ -EPG and the class of all these graphs is denoted by Bm
ℓ . The bend number

(G) of a graph G is the minimum k such that G is Bk-EPG. The monotonic bend number bm(G) of graph G is defined as
he minimum ℓ such that G is Bm

ℓ -EPG. Note that already Golumbic, Lipshteyn and Stern [16] showed that each graph is
k-EPG and Bm

ℓ -EPG for some k and ℓ.
As described in [16] the motivation for investigating EPG graphs was initially related to applications from circuit layout

etting and chip manufacturing. In the knock-knee circuit layout model the wires can be seen as paths on a grid which can
ross and bend at a grid point but are not allowed to share a grid edge, see [8,19]. The wires can be put in multiple layers
ach of them being a grid and such that the wires of each layer do not share a grid edge. In this setting the minimum
umber of layers needed to accommodate all wires would be equal to the chromatic number of the corresponding graph.
onsider now that a so-called transition hole is needed, whenever a wire bends. If a large number of transition holes is
ncluded, the layout area and consequently, the cost of the chip, may increase. Therefore, it might be desirable to find a
ircuit layout setting which minimizes the largest number of bends used in each wire. In our notation this corresponds
o finding the minimum k such that the corresponding graph is in Bk.

Similar graph classes known in the literature include edge intersection graphs of paths on a tree (EPT) (see [15]), vertex
ntersection graph of paths on a tree (VPT) (see [14]) and vertex intersection graphs of paths on a grid (VPG) (see [1]). In this
aper we will only deal with EPG graphs.
There has been a lot of research on EPG graphs since their introduction. One of the topics of interest is the recognition

roblem of Bk-EPG graphs, i.e. to determine for a given k and a given graph whether this graph is in Bk (Bm
k ). Currently it

s known that the recognition problem is NP-hard for B1 (Heldt, Knauer and Ueckerdt [18]), Bm
1 (Cameron, Chaplick and

oàng [10]), B2 and Bm
2 (Pergel and Rzążewski [20]).

Recently a number of results on combinatorial optimization problems on specific Bk-EPG graphs have been published.
ubject of investigation are certain NP-hard combinatorial optimization problems which turn out to be tractable, i.e.
olynomially solvable or approximable within a guaranteed approximation ratio, for Bk-EPG graphs, see [5–7,12]. Thus,
he computation of the bend number and the monotonic bend number of graphs or related upper bounds is a relevant
esearch question in this context. However, this appears to be a challenging task, considering that even the recognition
f Bk (Bm

k ) graphs is NP-hard for k = 1 and k = 2, as mentioned above.
A related and more viable line of research is the determination of (upper bounds on) the (monotonic) bend number

f special graph classes. Among the first graph class for which an upper bound on the bend number was given were
lanar graphs. The first upper bound was 5 and it was obtained in 2009 by Biedl and Stern [4]. In 2012 Heldt, Knauer and
eckerdt [17] improved the bound to 4 and also showed that 2 is an upper bound on the bend number of outerplanar
raphs. Çela and Gaar [9] showed recently that 2 is also an upper bound on the monotonic bend number of outerplanar
raphs. Moreover, they give a full characterization of any maximal outerplanar graph and any cactus2 with (monotonic)
end number equal to 0, 1 and 2 in terms of forbidden induced subgraphs.
Also other graph classes were considered. Recently Francis and Lahiri [13] proved that Halin graphs are in Bm

2 and Deniz,
ivelle, Ries and Schindl [11] provided a characterization of split graphs for which there exists a B1-EPG representation
hich uses only L-shaped paths on the grid, i.e. paths consisting of a vertical top-bottom segment followed by a horizontal

eft–right segment.
Another line of research on EPG graphs concerns the mutual relationship between the classes Bk and the classes Bm

ℓ .
ur paper is a contribution in this direction. The chains of inclusions B0 ⊆ B1 ⊆ B2 ⊆ . . . and Bm

0 ⊆ Bm
1 ⊆ Bm

2 ⊆ . . .
rivially hold. Furthermore, B0 = Bm

0 ⊆ Bm
1 and Bm

k ⊆ Bk, for every k, are obvious. In [18] Heldt, Knauer and Ueckerdt dealt
ith the question whether the complete bipartite graph Km,n on m and n vertices in the two partition classes is in Bk.
hey identified several sufficient conditions which have to be fulfilled by m, n and k to guarantee that Km,n is in Bk or Km,n
s not in Bk. They used this kind of results to prove that Bk ⫋ Bk+1 holds for every k ⩾ 0. In this paper, we will derive new
esults of this type, especially for the monotonic case. It is still not known whether Bm

k ⫋ Bm
k+1 also holds.

The relationship between Bk and Bm
k has already been considered in the literature. Golumbic, Lipshteyn and Stern [16]

onjectured that Bm
1 ⫋ B1, which was confirmed in [10]. In this paper, we show that Bm

k ⫋ Bk also holds for k ∈ {2, 3, 5}
nd k ⩾ 7, while the cases k = 4 and k = 6 remain open.
Furthermore, we are interested in the gap between the bend number b(G) and the monotonic bend number bm(G) of

graph. More precisely we pose the question whether there exists a function f :N → N such that bm(G) ⩽ f (b(G)) holds
or every graph G. As a first step towards answering this question we show that Bk ̸⊆ Bm

2k−9 holds for any k ∈ N, k ⩾ 5,
hich implies the existence of graphs for which bm(G) ⩾ 2k − 8 and b(G) ⩽ k, for any k ∈ N, k ⩾ 5. Moreover, we show
hat b(G) ⩽ 1 implies bm(G) ⩽ 3.

The rest of the paper is organized as follows. Section 2 deals with the (monotonic) bend number of Km,n. First we
eview some results from the literature on the bend number of Km,n, where m ⩽ n. In particular, we discuss a theorem
rom [18] and point out that the proof of the theorem does not work out for m = 4 and m = 5. Further, we show that the
tatement of the theorem holds for m = 4, while we do not know whether it holds for m = 5. However, we only exploit
he statement of the theorem for m ⩾ 7 in our later work. In Section 2.2, we derive two inequalities on m, n and k which

2 A connected graph is called a cactus iff any two simple cycles in it share at most one vertex.
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Fig. 1. (a) An alignment (S1, S2). (b) A crossing (S1, S2). (c)–(e) Different pseudocrossings (S1, S2). (f) Two paths P1 and P2 containing two alignments
and two pseudocrossings.

have to be fulfilled if Km,n is in Bm
k . In Section 2.3 we show that bm(Km,n) ⩽ 2m−2 for every m, n ∈ N, m ⩽ n, which implies

that bm(G) ⩽ 2m − 2 holds for every graph G that is an induced subgraph of Km,n. Moreover, we show that this upper
bound on bm(Km,n) is best possible, i.e. for each m ∈ N there exists an nm ∈ N, nm ⩾ m, such that bm(Km,nm ) = 2m− 2. An
analogous behavior of b(Km,n) has been already shown in literature (see [18]). However, we will see that this maximum
bend number is attained already for smaller values of nm in the monotonic case.

In Section 3.1, we present a graph which is in B2 and not in Bm
2 in order to prove Bm

k ⫋ Bk for k = 2. In Section 3.2, we
use the results of Section 2.2 to prove that Bm

k ⫋ Bk also for k ∈ {3, 5} and k ⩾ 7, thus answering an open question posed
in [16] for almost all values of k.

Finally, in Section 4 we investigate the relationship between Bk and Bm
ℓ for ℓ > k. In Section 4.1 we show that for odd

k ⩾ 5 there is a graph in Bk which is not in Bm
2k−8 and for even k ⩾ 5 there is a graph in Bk which is not in Bm

2k−9. Then in
Section 4.2 we prove that B1 ⊆ Bm

3 , giving the first result of this kind. We summarize our results and discuss some open
questions in Section 5.

Terminology and notation. Finally, we settle the terminology and the notations used throughout the paper. The
crossings of two grid lines are called grid points. The part of a grid line between two consecutive grid points is called
a grid edge. A grid edge can be horizontal or vertical.

A path on a grid consists of two grid points, called the end points of the path, and a number of consecutive grid edges
connecting the end points. If the two end-points lay on different vertical grid lines, we call the left-most point the start
point and the other one the terminal point. Otherwise, we call the lower point the start point and the other one the terminal
point. A turn of a path on the grid is called bend and a grid point, at which the path turns, is called a bend point.

The part of a path between two consecutive bend points is called a segment. Also the part of the path from the start
point to the first bend point is called a segment. This is called the first segment of the path. Analogously, the part of the
path from the last bend point to the terminal point is also called a segment. This is the last segment of the path. We
consider the intermediate segments in their natural order: the segment of the path following the first one is the second
segment, and so on.

The grid points contained in a segment of a path which are neither bend points nor end points of that path build the
interior of that segment. Clearly any segment consists either entirely of horizontal grid edges or entirely of vertical grid
edges. We call such segments horizontal and vertical segments, respectively. Paths without bends correspond to (horizontal
or vertical) segments.

We say that two paths on a grid intersect, if they have at least one common grid edge. If two segments S1, S2 lie on
the same grid line but do not intersect (if considered as paths), then we call them aligned; such a pair (S1, S2) is called an
alignment. Fig. 1(a) depicts two aligned segments S1 and S2.

A pair (S1, S2) of segments is called a crossing if one of the two segments lies on a horizontal grid line, the other
segment lies on a vertical grid line, and there is a grid point which belongs to the interior of both segments. Fig. 1(b)
depicts a crossing (S1, S2) with grid point x belonging to the interior of both segments.

A pair (S1, S2) of segments is called a pseudocrossing if one of the two segments lies on a horizontal grid line, the other
segment lies on a vertical grid line, and there is no grid point which belongs to the interior of each of the segments.
Fig. 1(c)–(e) depict different pseudocrossings.

Given a set P of pairwise non-intersecting paths on a grid we define the alignments (crossings, pseudocrossings) of P
as the set of all alignments (crossings, pseudocrossings) (S1, S2) for which there exist two distinct paths P1, P2 ∈ P such
that Si is a segment of Pi, for i ∈ {1, 2}. Fig. 1(f) depicts two paths P1 and P2 containing two alignments (a horizontal one
and a vertical one) and two pseudocrossings.

Finally, notice that in an EPG representation of a graph G with vertex set V we will denote by Pv the path on the grid
corresponding to the vertex v ∈ V .

2. Complete bipartite graphs

The aim of this section is to summarize existing results on the Bk-EPG representation of complete bipartite graphs and
derive new upper and lower bounds on their (monotonic) bend number. We start by investigating some results from the
literature in Section 2.1. Then we derive two Lower-Bound-Lemmas in Section 2.2. Eventually, in Section 2.3, we give an
90
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pper bound on the monotonic bend number of Km,n for every m, n ∈ N, m ⩽ n. The results obtained in this section will
be used in Section 3.2, where the relationship between Bm

k and Bk for k ⩾ 3 is investigated.
Throughout this section we consider the complete bipartite graph Km,n with m ⩽ n. We denote the two partition classes

f Km,n by A and B, where |A| = m and |B| = n. In an EPG representation we denote the set of all paths that correspond
o vertices of A and B by PA and PB, respectively; so PA = {Pv : v ∈ A} and PB = {Pw : w ∈ B}.

.1. Upper bounds on the bend number

First of all notice that the bend number of Km,n for m ∈ {0, 1, 2} is known. The trivial case m = 0 corresponds to a
raph without any edges and hence b(K0,n) = bm(K0,n) = 0, for all n ∈ N.
The other trivial case m = 1 corresponds to a star graph with n + 1 vertices. A B0-EPG representation of this graph

onsists of a horizontal path P with n grid edges to represent the central vertex, and the pairwise different grid edges of
represent the other vertices. Thus b(K1,n) = bm(K1,n) = 0, for all n ∈ N.
The bend number of K2,n has been determined by Asinowski and Suk [2] for all n ∈ N: b(K2,n) = 2 if and only if n ⩾ 5,

b(K2,n) = 1 if and only if 2 ⩽ n ⩽ 4, and b(K2,n) = 0 if and only if n ⩽ 1. The EPG representations for K2,n given in [2] are
monotonic, therefore bm(K2,n) = b(K2,n) holds for all n ∈ N.

The more general case m ⩾ 3 has been considered by Heldt, Knauer and Ueckerdt in [18]. We first discuss the following
result of these authors.

Theorem 2.1 (Heldt, Knauer, Ueckerdt [18]). If m ⩾ 4 is even and n =
1
4m

3
−

1
2m

2
− m + 4, then Km,n is in Bm−1 but not in

Bm−2. If m ⩾ 7 is odd and n =
1
4m

3
− m2

+
3
4m, then Km,n is in Bm−1 but not in Bm−2.

The above theorem makes no statement for the cases m = 3 and m = 5. However, in [18] the authors claim that the
statement for odd m holds also for m = 5 (see [18, Theorem 4.4.]). But the proof provided in [18] is not correct for m = 5
and we do not know whether the statement is true in this case. Also for the case m = 4 the proof provided in [18] is not
correct, however in this case the statement is true as argued below.

To be more precise, in [18] on the one hand the authors provide a Bm−1-EPG representation for Km,n for m ⩾ 3 and
n defined as in Theorem 2.1, i.e. a constructive proof for one part of [18, Theorem 4.4.]. On the other hand the Lower-
Bound-Lemma I [18, Lemma 4.1] is used in order to show that Km,n is not in Bm−2 for n defined as in Theorem 2.1. This
Lower-Bound-Lemma I states that

(k + 1)(m + n) ⩾ mn +

√
2k(m + n)

holds for every Bk-EPG representation of Km,n with n ⩾ m ⩾ 3. Further they observe that for n defined as in Theorem 2.1
he inequality n ⩾ (m − 1)2 holds, while the inequality of the Lower-Bound-Lemma I is not fulfilled for n ⩾ (m − 1)2 and
= m−2, thus negating the membership of the corresponding graphs in Bm−2. However, for n defined as in Theorem 2.1,
he inequality n ⩾ (m − 1)2 holds only if m ⩾ 6. Thus, the proof provided for [18, Theorem 4.4] only works for m ⩾ 6.

For m = 4 we have n = 8, and the construction in [18] proves that K4,8 is in B3. Furthermore, by applying the Lower-
ound-Lemma I for m = 4, n = 6 and k = 2 we get that K4,6 is not in B2. This implies that also K4,8 is not in B2. Therefore,
he statement of Theorem 2.1 is also true for m = 4.

If m = 5 the construction in [18] yields that K5,10 is in B4. If we use the Lower-Bound-Lemma I, then we get that K5,11
s not in B3 and that the bend number of K5,10 is at least 3. Therefore, the bend number of K5,10 could be either 3 or 4.

.2. Lower-Bound-Lemmas

In order to investigate the relationship between Bm
k and Bk for large values of k, we first derive a Lower-Bound-Lemma

or Bm
k -EPG representations similarly to the Lower-Bound-Lemma I for Bk-EPG representations from [18]. To this end, we

se an auxiliary result from [18, Lemma 4.6].

emma 2.2 (Heldt, Knauer, Ueckerdt [18]). Let 3 ⩽ m ⩽ n. Consider Km,n and denote by A the subset of vertices of cardinality
in the partition of the vertex set of Km,n. Consider further a Bk-EPG representation of Km,n and denote by PA be the set of the

paths on the grid corresponding to the vertices of A in this representation. Let c be the total number of crossings of PA. Then,
the following inequality holds:

n(2m − k − 2) ⩽ 2c + 2(k + 1)m.

In the following we derive inequalities on m, n and k which hold whenever a Km,n is in Bm
k . The following lemma is a

first step towards such a result. Note that ⌊x⌋ is the greatest integer less than or equal to x and ⌈x⌉ is the least integer
greater than or equal to x for any real number x.

Lemma 2.3. Let 3 ⩽ m ⩽ n. Consider Km,n and denote by A the subset of vertices of cardinality m in the partition of the vertex
set of K . Consider further a B -EPG representation of K and denote by P be the set of the paths on the grid corresponding
m,n k m,n A
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Fig. 2. The crossings (Sw
i , Sw

i+1) and (Sw′

j , Sw′

j+1) coincide.

to the vertices of A in this representation. Let a, c and p be the total number of alignments, crossing and pseudocrossings of PA,
respectively. Then, the following inequality holds:

n
(
m −

⌈
k + 1
2

⌉)
⩽ a + 2c + p.

roof. Let w be a vertex of B. For each vertex v ∈ A we denote by ew
v a fixed but arbitrarily chosen common grid edge of

v and Pw . Such an edge exists, because Pw intersects Pv since w is adjacent to all vertices of A. The grid edges ew
v for all

∈ A are pairwise disjoint, because the vertices of A are not adjacent to each other.
We order the vertices A = {v1, . . . , vm} in such a way that ew

vi
precedes ew

vi+1
in the path Pw , for all i ∈ {1, 2, . . . ,m−1}.

Let xw , yw and zw be the number of indices i ∈ {1, . . . ,m − 1} such that ew
vi

and ew
vi+1

lie on the same segment of Pw ,
n consecutive segments of Pw , and neither on the same nor on consecutive segments of Pw , respectively. Then, clearly
w + yw + zw = m − 1 holds.
If ew

vi
and ew

vi+1
lie neither on the same nor on consecutive segments of Pw , then the subpath of Pw between (and not

ncluding) the two segments of Pw containing ew
vi
and ew

vi+1
contains at least one segment and does not contain any ew

vi′
for

′
∈ {1, . . . ,m}. Let us call such a subpath a free subpath of Pw . Since Pw has at most k+1 segments and each free subpath

s preceded and also succeeded by a segment containing ew
vi′

for some i′ ∈ {1, . . . ,m}, the number of free subpaths is at
ost

⌊ k
2

⌋
and hence zw ⩽

⌊ k
2

⌋
holds. To summarize up to now we have shown that

m −

⌈
k + 1
2

⌉
= m − 1 −

⌊
k
2

⌋
⩽ m − 1 − zw = xw + yw (1)

olds.
It remains to determine an upper bound on xw + yw . Towards this end, let Sw

i be the segment of Pvi that contains ew
vi

or i ∈ {1, 2 . . . ,m}. Now we consider the pairs (Sw
i , Sw

i+1), i ∈ {1, 2, . . . ,m − 1}.
We denote by aw the number of indices i ∈ {1, . . . ,m−1} such that ew

vi
and ew

vi+1
lie on the same segment of Pw and the

air (Sw
i , Sw

i+1) is an alignment. It is easy to see that if ew
vi
and ew

vi+1
lie on the same segment of Pw , then the corresponding

egments Sw
i and Sw

i+1 of Pvi and Pvi+1 lie on the same grid line and therefore (Sw
i , Sw

i+1) is an alignment. Thus, aw = xw

olds.
Furthermore, let cw (pw) denote the number of i ∈ {1, . . . ,m − 1} such that ew

vi
and ew

vi+1
lie on consecutive segments

f Pw and the pair (Sw
i , Sw

i+1) is a crossing (pseudocrossing). If ew
vi
and ew

vi+1
lie on consecutive segments of Pw , then one of

he corresponding segments Sw
i and Sw

i+1 is horizontal and the other one is vertical. Hence (Sw
i , Sw

i+1) is either a crossing
r a pseudocrossing. Therefore, cw + pw = yw holds.
As a result, we can use (1) to deduce that

m −

⌈
k + 1
2

⌉
⩽ xw + yw = aw + cw + pw

holds. Summing this up over all vertices w ∈ B yields

n
(
m −

⌈
k + 1
2

⌉)
⩽

∑
w∈B

(aw + cw + pw).

It remains to determine an upper bound on
∑

w∈B(aw + cw + pw). Towards this end, let aB =
∑

w∈B aw , cB =
∑

w∈B cw
nd pB =

∑
w∈B pw . Clearly, an alignment (crossing, pseudocrossing) (Sw

i , Sw
i+1), for w ∈ B and for i ∈ {1, 2, . . . ,m − 1}, is

an alignment (crossing, pseudocrossing) of PA, since Sw
i is a segment of Pvi , for i ∈ {1, 2, . . . ,m}. This implies that aB ⩽ a

and pB ⩽ p because the alignments and pseudocrossings counted in aB and pB are pairwise distinct due to the fact that
the paths in PA are pairwise non-intersecting and also the paths in PB are pairwise non-intersecting.

The crossings counted in cB are not necessarily pairwise distinct because a crossing (Sw
i , Sw

i+1) can also appear as a
crossing (Sw′

j , Sw′

j+1), for some w, w′
∈ B, w ̸= w′ and some i, j ∈ {1, 2, . . . ,m − 1}, see Fig. 2. (Notice that in this case the

vertices vi and vj coincide.) However, the same crossing cannot be counted more than twice in cB because the paths in
P are pairwise non-intersecting, so c ⩽ 2c holds.
B B
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Finally, we can deduce

n
(
m −

⌈
k + 1
2

⌉)
⩽

∑
w∈B

(aw + cw + pw) = aB + cB + pB ⩽ a + 2c + p. □

The next lemma gives bounds on the number of alignments, crossings and pseudocrossings.

emma 2.4. Consider two paths P1, P2 in a Bk-EPG representation that do not intersect (i.e. have no grid edge in common). Let
, c and p be the number of alignments, crossings and pseudocrossings of {P1, P2}, respectively. If one path starts horizontally
nd the other one starts vertically, then

(a) c + p ⩽ 2
⌊ k+1

2

⌋ ⌈ k+1
2

⌉
+

⌈ k+1
2

⌉
−

⌊ k+1
2

⌋
and

(b) if the paths are monotonic a + c ⩽ k + 1 holds.

If both paths start horizontally or both paths start vertically, then

(c) c + p ⩽ 2
⌊ k+1

2

⌋ ⌈ k+1
2

⌉
and

(d) if the paths are monotonic a + c ⩽ k holds.

Proof. First we consider (a) and (c). In a crossing or a pseudocrossing (S1, S2) of {P1, P2} one of the segments is horizontal
nd the other one is vertical. Notice that a path that starts with a horizontal segment has at most

⌈ k+1
2

⌉
horizontal and

t most
⌊ k+1

2

⌋
vertical segments, whereas a path that starts with a vertical segment has at most

⌊ k+1
2

⌋
horizontal and at

most
⌈ k+1

2

⌉
vertical segments. If one of the paths starts horizontally and the other path starts vertically this implies that

c + p ⩽

⌊
k + 1
2

⌋2

+

⌈
k + 1
2

⌉2

= 2
⌊
k + 1
2

⌋⌈
k + 1
2

⌉
+

(⌈
k + 1
2

⌉
−

⌊
k + 1
2

⌋)2

= 2
⌊
k + 1
2

⌋⌈
k + 1
2

⌉
+

⌈
k + 1
2

⌉
−

⌊
k + 1
2

⌋
,

where we can omit the square because the squared value is either 0 or 1, and hence (a) holds. With the same arguments
we obtain

c + p ⩽ 2
⌊
k + 1
2

⌋⌈
k + 1
2

⌉
or paths that start in the same direction. Thus (c) is satisfied.

Next we consider (b), so assume the paths are monotonic. It is easy to see that each segment of P1 cannot cross two
r more segments of P2 and cannot be aligned with two or more segments of P2. Furthermore, whenever a segment of P1
rosses a segment of P2, it cannot be aligned with another segment of P2. Moreover, whenever a segment of P1 is aligned
ith a segment of P2, it cannot cross another segment of P2. Hence each segment of P1 can be part of at most one crossing
r alignment. This implies (b) as P1 has at most k + 1 segments.
In order to prove (d) assume without loss of generality that both paths start horizontally. The arguments of (b) imply

hat each segment of each of the paths can appear in at most one crossing or one alignment. We distinguish two cases.
f one of the paths starts in a lower grid line than the other, then the first segment of this path can neither be aligned
o nor cross the other path. Therefore, alignments and crossings can only occur on the remaining k segments of the path
nd hence a + c ⩽ k holds. If both paths start on the same grid line, then let without loss of generality the first segment
f P1 lie to the left of the first segment of P2. It is easy to see that the second segment of P1 can neither be aligned to nor
ross any segment of P2. Therefore, also in this case we have a + c ⩽ k. This proves (d). □

Next we combine the bounds on the number of crossings derived in Lemma 2.4 with Lemma 2.2 in the following result.

emma 2.5. Let 3 ⩽ m ⩽ n. In every Bm
k -EPG representation of Km,n

n(2m − k − 2) ⩽ k(m − 1)m +
1
2
m2

+ 2(k + 1)m

holds.

Proof. Let c denote the number of crossings of the paths in PA. Every Bm
k -EPG representation is also a Bk-EPG

epresentation. Therefore, it follows from Lemma 2.2 that

n(2m − k − 2) ⩽ 2c + 2(k + 1)m (2)
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olds for every Bm
k -EPG representation of Km,n. Now we give an upper bound on c . Let ℓ be the number of paths in PA

hich start with a horizontal segment. Then, m − ℓ paths of PA start with a vertical segment. Since the paths in PA are
pairwise non-intersecting, the number c of crossings of PA can be calculated as c =

∑
{v,v′}⊆A cv,v′ , where cv,v′ is the

number of crossings of {Pv, Pv′}.
If both Pv and Pv′ start with a horizontal (vertical) segment, then cv,v′ ⩽ k by Lemma 2.4(d). If one of the paths Pv and

Pv′ starts with a horizontal segment and the other one starts with a vertical segment, then cv,v′ ⩽ k+ 1 by Lemma 2.4(b).
Notice that there are exactly ℓ(m− ℓ) pairs of paths Pv and Pv′ with the latter property and

(m
2

)
− ℓ(m− ℓ) pairs of paths

Pv and Pv′ both starting with a horizontal (vertical) segment. In total we get

c =

∑
{v,v′}⊆A

cv,v′ ⩽ k
(
m
2

)
+ ℓ(m − ℓ).

Since ℓ(m − ℓ) ⩽
(m

2

)2 for all 0 ⩽ ℓ ⩽ m we get

c ⩽ k
(
m
2

)
+

m2

4
=

1
2

(
k(m − 1)m +

1
2
m2

)
,

which in combination with (2) completes the proof. □

Next we combine the bounds on the number of crossings derived in Lemmas 2.4 and 2.3 as follows.

Lemma 2.6. Let 3 ⩽ m ⩽ n. In every Bm
k -EPG representation of Km,n

n
(
m −

⌈
k + 1
2

⌉)
⩽

(
m
2

)(
2
⌊
k + 1
2

⌋⌈
k + 1
2

⌉
+ k

)
+

1
4
m2

(
1 +

⌈
k + 1
2

⌉
−

⌊
k + 1
2

⌋)
olds.

roof. We combine Lemmas 2.3 and 2.4 by proceeding analogously as in the proof of Lemma 2.5.
In particular, let a, c and p be the number of alignments, crossings and pseudocrossings of PA, respectively. As done in

he proof of Lemma 2.5 we can compute c as the sum of the number of crossings cv,v′ of {Pv, Pv′} over all pairs {v, v′
} ⊆ A.

Similarly we write p and a as the sum of the number of pseudocrossings pv,v′ (alignments av,v′ ) of {Pv, Pv′} over all pairs
{v, v′

} ⊆ A. Thus, we obtain a + 2c + p =
∑

{v,v′}⊆A(av,v′ + cv,v′ ) +
∑

{v,v′}⊆A(cv,v′ + pv,v′ ).
Then, we use Lemma 2.4 (b) and (d) to bound each summand of the first sum from above and Lemma 2.4 (a) and (c)

to bound each summand of the second sum from above. Then we transform the sum of these upper bounds analogously
as in the proof of Lemma 2.5 and finally use Lemma 2.3 to bound a + 2c + p from below. This completes the proof. □

To summarize Lemmas 2.5 and 2.6 provide inequalities on m, n and k which hold whenever a Km,n with 3 ⩽ m ⩽ n is
in Bm

k . These inequalities are used in Sections 2.3 and 3.2.

2.3. Upper bounds on the monotonic bend number

In [18] a lot of work has been done to determine the bend number of Km,n in dependence of m and n. In particular, it
was proven that b(Km,n) = 2m − 2 for m ⩾ 3 and n ⩾ m4

− 2m3
+ 5m2

− 4 m + 1. We deduce a similar result for the
monotonic case.

We first generalize a result of [4]. There it was shown by slightly modifying a construction of [16] that Km,n ∈ B2m−2
or all n. We modify the construction of [4] and give an analogous result for the monotonic case.

heorem 2.7. It holds that Km,n ∈ Bm
2m−2.

Proof. In order to prove this, it is enough to give a Bm
2m−2-EPG representation of Km,n, which can be found in Fig. 3.

Each vertex of Km,n belonging to the partition class A of size m is represented in the grid by a path consisting of just
one horizontal segment. Each of the n vertices of the other partition class B is represented in the grid by a staircase with
2m − 2 bends. The staircases have pairwise empty intersections. □

Note that Theorem 2.7 implies that bm(G) ⩽ 2m − 2 holds for every graph G that is an induced subgraph of Km,n.
Furthermore, Theorem 2.7 shows that for fixed m and varying n, b(Km,n) ⩽ bm(Km,n) ⩽ 2m − 2 holds. Hence, the upper
bound on the number of bends needed for an EPG representation of Km,n with 3 ⩽ m ⩽ n is the same, namely 2m − 2,
no matter whether all kind of bends or only monotonic bends are allowed. This fact is even more surprising if we take
into account Theorem 4.1, which states the existence of graphs for which the gap between the bend number and the
monotonic bend number can be arbitrarily large.

However, it turns out that the upper bound on bm(Km,n) is already reached for a smaller n than the upper bound on
b(Km,n). In particular, the above stated result from [18] implies that b(Km,n) = 2m − 2 for n ⩾ N1 for some N1 ∈ Θ(m4).

m 3
As a consequence of the next result it follows that b (Km,n) = 2m − 2 for n ⩾ N2 already for some N2 ∈ Θ(m ).
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Fig. 3. A Bm
2m−2-EPG representation of Km,n .

Fig. 4. (a) The graph H1 . (b) The graph H2 contained in every gray area of H1 .

heorem 2.8. Let 3 ⩽ m. If n ⩾ 2m3
−

1
2m

2
− m + 1 then Km,n ̸∈ Bm

2m−3.

roof. Suppose, in order to derive a contradiction, that Km,n ∈ Bm
2m−3. By applying Lemma 2.5 for k = 2m− 3 we get that

n(2 m − (2m − 3) − 2) ⩽ (2m − 3)(m − 1)m +
1
2
m2

+ 2(2m − 2)m

hen, doing the maths operations we have that n ⩽ 2m3
−

1
2m

2
−m has to hold. This contradicts n ⩾ 2m3

−
1
2m

2
−m+1. □

. Relationship between Bm
k and Bk

It is an open question of [16] to determine the relationship between Bm
k and Bk for k ⩾ 1. Obviously Bm

k ⊆ Bk holds
or every k. In [16] Golumbic, Lipshteyn and Stern conjectured that Bm

1 ⫋ B1. This conjecture was confirmed by Cameron,
haplick and Hoàng in [10] by showing that the graph S3, which was known to be in B1 from [16], is not in Bm

1 . The graph
3 is isomorphic to the subgraph induced by the vertices {a, b, c, d, e, f } in the graph represented in Fig. 8(a).
In this section we consider the question whether Bm

k ⫋ Bk holds also for k ⩾ 2. We first consider the case k = 2 in
ection 3.1 and then the remaining cases k ⩾ 3 in Section 3.2. The case distinction is due to the different methods used
n the investigations.

.1. Relationship between Bm
2 and B2

The aim of this section is to prove that Bm
2 ⫋ B2 holds. For this purpose we show that the graph H1 represented in

ig. 4 is in B but not in Bm. H is defined as follows.
2 2 1
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Fig. 5. A part of the hypothetical Bm
2 -EPG representation of H1 .

efinition 3.1. The graph H1 depicted in Fig. 4 is constructed in the following way. The vertices {u, v} and {a1, . . . , a50}
orm a K2,50. Furthermore, for every 1 ⩽ j < 50 the vertices {aj, aj+1} and {b1,j, . . . , b50,j} form a K2,50. Additional to that
for every 1 ⩽ j < 50 and for every 1 ⩽ i < 50 there is the graph H2 of Fig. 4(b) placed between the vertices bi,j and bi+1,j.

The next result follows from a proof of Heldt, Knauer and Ueckerdt given in [17]. In Proposition 1 of [17] they use
a similar construction in order to prove that there is a planar graph with treewidth at most 3 which is not in B2. Their
construction builds also on the graph H1 (called G in their paper) but the graph suspended between any two vertices
bi,j, bi+1,j, for 1 ⩽ i, j < 50, (called H in their paper) is a 29-vertex graph different from H2. In the first part of the proof
of Proposition 1 Heldt, Knauer and Ueckerdt prove some properties of B2-EPG representations of the subgraph of H1 as
summarized in the following lemma.

Lemma 3.2 (Heldt, Knauer, Ueckerdt [17]). In any B2-EPG representation of the graph H1 depicted in Fig. 4 there exist two
indices i and j, 1 ⩽ i, j ⩽ 49, with the following properties:

(a) the paths Pbi,j and Pbi+1,j consist of three segments each,
(b) there is a segment Sj of the path Paj which completely contains one end segment of Pbi,j and one end segment of Pbi+1,j ,
(c) there is a segment Sj+1 of the path Paj+1 which completely contains the other end segments of Pbi,j and Pbi+1,j ,
(d) Sj and Sj+1 are either both vertical segments or both horizontal segments.

With this auxiliary result we are able to prove the following lemma.

emma 3.3. The graph H1 is not in Bm
2 .

Proof. Suppose, in order to derive a contradiction, that H1 is in Bm
2 . Every Bm

2 -EPG representation is a B2-EPG representation
s well, therefore Lemma 3.2 holds also for any Bm

2 -EPG representation of H1. Assume without loss of generality that the
enter segment (i.e. the second segment) of Pbi,j is a horizontal segment, that it is above the center segment of Pbi+1,j and
hat the segment Sj of Paj is on the left side of the segment Sj+1 of Paj+1 . Then the positioning of the segments of the paths
as to look like in Fig. 5.
Each vertex cℓ, 1 ⩽ ℓ ⩽ 6, of the copy of H2 between bi,j and bi+1,j is adjacent to both bi,j and bi+1,j, but neither to aj

nor to aj+1. Therefore, each of the six paths Pc1 , . . ., Pc6 has to share a grid edge with the center segments of both Pbi,j
and Pbi+1,j . As a result, Pci starts with a first horizontal segment intersecting the center segment of Pbi+1,j , continues with
a second vertical segment and ends with a third horizontal segment intersecting the center segment of Pbi,j , for every for
1 ⩽ i ⩽ 6.

Now consider the vertices c1, c3 and c5. They are pairwise nonadjacent, so Pc1 , Pc3 , Pc5 are non-intersecting. Therefore,
he three vertical segments of these paths are disjoint and can be ordered from the left to the right. Let PL, PM and PR be
he path in {Pc1 , Pc3 , Pc5} with the left-most, the middle and the right-most center segment, respectively. In the following
e say that a path Pci lies to the left of, to the right of and on another path Pcj if the center segment of Pci lies to the left
f, to the right of and on the center segment of Pcj for some 1 ⩽ i ̸= j ⩽ 6, respectively.
Next take a closer look at the paths Pc4 and Pc6 . Each of them intersects each of the three paths PL, PM and PR, since

oth vertices c4, c6 are adjacent to each of c1, c3 and c5. Since c4 and c6 are not adjacent to each other, Pc4 and Pc6 do not
ntersect and hence the vertical segments of Pc4 and Pc6 are disjoint. Assume without loss of generality that Pc4 is to the
eft of Pc6 .

If Pc4 lies to the right of or on PL, then Pc6 cannot intersect PL on the first or second segment of PL, because Pc6 is to
he right of Pc4 and does not intersect Pc4 . Therefore, Pc6 intersects PL on its third segment. This implies that Pc6 lies to
he left of or on PM . But Pc4 is to the left of Pc6 , which is to the left of or on PM . Thus, no point of Pc4 can lie to the right
f the center segment of PM , which implies that Pc4 does not intersect PR, a contradiction. Analogously, it follows that Pc6
annot lie to the left of or on PR.
As a result Pc4 lies to the left of PL and Pc6 lies to the right of PR. Pc4 has to intersect PR, so the third segment of PL and

M are completely contained in the third segment of Pc4 . Similarly Pc6 has to intersect PL, so the first segment of PM and
are completely contained in the first segment of P . For an illustration of this configuration see Fig. 6.
R c6
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Fig. 6. The only possible placement of paths Pc4 , Pc6 and {PL, PM , PR} = {Pc1 , Pc3 , Pc5 } in the hypothetical Bm
2 -EPG representation of H1 .

Fig. 7. (a) A B2-EPG representation of the graph H1 of Fig. 4. Every gray area represents the B2-EPG representation of H2 depicted in (b).

Now consider the path Pc2 . Note that if Pc2 intersects the middle segment of PM , then Pc2 is on PM , in which case
c2 also intersects the first and third segments of PM . So we can conclude that if Pc2 intersects PM , then Pc2 intersects
ither the first segment of PM or the third segment of PM . But the former is completely contained in Pc6 and the latter is
ompletely contained in Pc4 , which means that Pc2 intersects either Pc4 or Pc6 , which is a contradiction to the fact that c2
s nonadjacent to c4 and c6. We can therefore conclude that Pc2 does not intersect PM . Since c2 is adjacent to both c1 and
3, this means that PM = Pc5 and {PL, PR} = {Pc1 , Pc3}. But now it is not possible for Pc2 to intersect both PL and PR without
ntersecting PM . Hence, H1 cannot have a Bm

2 -EPG representation. □

After proving that H1 is not in Bm
2 , we observe that H1 is in B2 and obtain the following theorem.

heorem 3.4. It holds that Bm
2 ⫋ B2.

roof. The fact that Bm
2 ⊆ B2 follows by definition. In order to see that strict inclusion holds, we consider the graph H1

epicted in Fig. 4.
We have already seen in Lemma 3.3 that the graph H1 is not in Bm

2 . So it is enough to show that H1 is in B2. To this
nd, consider a B2-EPG representation of H1 given in Fig. 7. □

Summarizing Bm
k ⫋ Bk holds for k = 1 as shown in [10] and also for k = 2 as shown in this paper.

.2. Relationship between Bm
k and Bk for k ∈ {3, 5} and k ⩾ 7

In this section we use the results from Section 2 in order to investigate the relationship between Bm
k and Bk for k ∈ {3, 5}

nd k ⩾ 7.
We start with k = 3 and prove that Bm

3 ⫋ B3 holds. To this end we use a result of [18] to show that a particular graph
s in B , and then use results of Section 2 to prove that this graph is not in Bm.
3 3

97



E. Çela and E. Gaar Discrete Applied Mathematics 331 (2023) 88–103

L

b

T

L

F

T

w
h

w

w
e

T

a
W

emma 3.5. It holds that Bm
3 ⫋ B3.

Proof. Since Bm
3 ⊆ B3 obviously holds, it is enough to show that Bm

3 ⫋ B3. Heldt, Knauer, Ueckerdt [18] showed that
(K3,36) = 3, hence K3,36 belongs to B3. Now assume that K3,36 is in Bm

3 . Then by Lemma 2.6 we have

36
(
3 −

⌈
4
2

⌉)
⩽ 3

(
2
⌊
4
2

⌋⌈
4
2

⌉
+ 3

)
+

1
4
32,

hat is, 36 ≤ 35.25, a contradiction. Hence, K3,36 is not in Bm
3 . □

Now we know that Bm
k ⫋ Bk holds for k ⩽ 3. Next we show Bm

5 ⫋ B5. Similarly as in the case of k = 3 we use a result
of [18] to show that a particular graph is in B5 and then use results of Section 2 to prove that this graph is not in Bm

5 .

emma 3.6. It holds that Bm
5 ⫋ B5.

Proof. Since Bm
5 ⊆ B5 obviously holds, it is enough to show Bm

5 ̸= B5.
Heldt, Knauer, Ueckerdt [18] showed that Km,n ∈ B2m−3 if n ⩽ m4

− 2m3
+

5
2m

2
− 2 m − 4 (see Theorem 4.5 in [18]).

or m = 4 this implies that K4,156 ∈ B5. Assume that K4,156 ∈ Bm
5 . Then, by Lemma 2.5 we get

156(2 · 4 − 5 − 2) ⩽ 5 · 3 · 4 +
1
2
42

+ 2 · 6 · 4

hat is, 156 ≤ 116, a contradiction. So K4,156 ̸∈ Bm
5 but K4,156 ∈ B5, hence Bm

5 ̸= B5. □

Finally we show Bm
k ⫋ Bk for k ⩾ 7. To this end, we use Lemma 2.5 and Theorem 2.1.

Lemma 3.7. It holds that Bm
k ⫋ Bk for k ⩾ 7.

Proof. We first prove the statement for odd k. Theorem 2.1 implies that Kk+1, 14 (k+1)3−
1
2 (k+1)2−(k+1)+4 = Kk+1, 14 k

3+
1
4 k

2−
5
4 k+

11
4

∈

Bk for k ⩾ 3. Suppose, in order to derive a contradiction, that this graph is in Bm
k . Then, by Lemma 2.5 with m = k+ 1 and

n =
1
4k

3
+

1
4k

2
−

5
4k +

11
4 it follows that(

1
4
k3 +

1
4
k2 −

5
4
k +

11
4

)
(2(k + 1) − k − 2) ⩽ k2(k + 1) +

1
2
(k + 1)2 + 2(k + 1)2

⇔ k
(
1
4
k3 +

1
4
k2 −

5
4
k +

11
4

)
⩽ k3 +

7
2
k2 + 5k +

5
2

⇔ k4 − 3k3 − 19k2 − 9k − 10 ⩽ 0,

hich is a contradiction for k ⩾ 7. Hence, for odd k ⩾ 7 there is a graph in Bk which is not in Bm
k and therefore Bm

k ⫋ Bk
olds for odd k ⩾ 7.
Now consider the complementary case of even k. Theorem 2.1 implies that the graph Kk+1, 14 (k+1)3−(k+1)2+

3
4 (k+1) =

Kk+1, 14 k
3−

1
4 k

2−
1
2 k

∈ Bk for k ⩾ 6. Suppose, in order to derive a contradiction, that this graph is in Bm
k . Then, by Lemma 2.5

ith m = k + 1 and n =
1
4k

3
−

1
4k

2
−

1
2k we get(

1
4
k3 −

1
4
k2 −

1
2
k
)
(2(k + 1) − k − 2) ⩽ k2(k + 1) +

1
2
(k + 1)2 + 2(k + 1)2

⇔ k
(
1
4
k3 −

1
4
k2 −

1
2
k
)

⩽ k3 +
7
2
k2 + 5k +

5
2

⇔ k4 − 5k3 − 16k2 − 20k − 10 ⩽ 0,

hich is a contradiction for k ⩾ 8. Hence, for even k ⩾ 8 there is a graph in Bk which is not in Bm
k . Therefore Bm

k ⫋ Bk for
ven k ⩾ 8 and this completes the proof. □

Lemmas 3.5–3.7 imply the following theorem.

heorem 3.8. It holds that Bm
k ⫋ Bk for k = 3, k = 5 and k ⩾ 7.

Summarizing, in Theorems 3.4 and 3.8 we have shown that Bm
k ⫋ Bk, for k ∈ {2, 3, 5} and for k ⩾ 7, addressing herewith

question raised in [16]. Recall that Bm
1 ⫋ B1 was already shown in [10]. Thus, the only open cases are k = 4 and k = 6.

e conjecture that Bm
k ⫋ Bk holds also for these two remaining cases.

Conjecture 3.9. Bm
k ⫋ Bk holds also for k = 4 and k = 6.

However, this remains an open question.
98



E. Çela and E. Gaar Discrete Applied Mathematics 331 (2023) 88–103

4

w

h

. Relationship between Bk and Bm
ℓ for ℓ > k

Recall that the inclusions chains Bi ⊆ Bi+1 and Bm
i ⊆ Bm

i+1 trivially hold for all i ∈ N. In other words the size of the
classes of graphs that have a (monotonic) k-bend EPG representation increases with increasing k. Also the relationships
B0 = Bm

0 and B0 ⊆ Bm
1 are trivial. Moreover, Bm

k ⫋ Bk holds for almost all k ∈ N, as shown in Section 3.
This means that in general the minimum number of bends needed for an EPG representation of a graph increases

when the representing paths on the grid are required to be monotonic. Analogously, in general the minimum number of
bends needed for an EPG representation of a graph decreases as compared to the minimum number of bends needed in
a monotonic EPG representation. Quantifying the magnitude of such an increase (decrease) arises as a natural question
in this context. More generally, it would be interesting to investigate the existence of non-trivial functions f , g :N → N
such that bm(G) ⩽ f (b(G)) and b(G) ⩽ g(bm(G)) hold for all graphs G, or only for all G belonging to some particular class
of graphs.

To the best of our knowledge questions of this kind have not been addressed in the literature so far. In this section we
present some related results. In particular, in Section 4.1 we show that the increase (decrease) of the number of bends as
mentioned above cannot be bounded by one, in general. More precisely, by combining the results of Theorems 4.1 and
2.7 with some result known in the literature we show that none of the inclusions Bk ⊆ Bm

k+1, B
m
k+1 ⊆ Bk holds, a result

not known so far in the literature. Then in Section 4.2 we show that B1 ⊆ Bm
3 holds.

4.1. Relationship between Bk and Bm
2k−9

Theorem 4.1. Let k ⩾ 5. If k is odd, then there is a graph which is in Bk but not in Bm
2k−8. If k is even, there is a graph which

is in Bk but not in Bm
2k−9.

Proof. Consider first the case where k is odd. In this case Theorem 2.1 implies that Gk := Kk+1, 14 (k+1)3−
1
2 (k+1)2−(k+1)+4 =

Kk+1, 14 k
3+

1
4 k

2−
5
4 k+

11
4

is in Bk for k ⩾ 3.
Assume that Gk belongs to Bm

2k−8 for k ⩾ 5. Then, Lemma 2.5 implies(
1
4
k3 +

1
4
k2 −

5
4
k +

11
4

)
8 ⩽ (2k − 8)(k + 1)k +

1
2
(k + 1)2 + 2(2k − 7)(k + 1)

⇔ 8
(
1
4
k3 +

1
4
k2 −

5
4
k +

11
4

)
⩽ 2k3 −

3
2
k2 − 17k −

27
2

⇔ 7k2 + 14k + 71 ⩽ 0 ,

hich is a contradiction for k ⩾ 0. So Gk is not in Bm
2k−8. Hence, for odd k ⩾ 5, there is a graph in Bk which is not in Bm

2k−8.
Consider now the case where k is even. Theorem 2.1 implies G′

k := Kk+1, 14 (k+1)3−(k+1)2+
3
4 (k+1) = Kk+1, 14 k

3−
1
4 k

2−
1
2 k

∈ Bk

for k ⩾ 6. If we assume that G′

k is in Bm
2k−9 for k ⩾ 6, we obtain the following inequality by applying Lemma 2.5(

1
4
k3 −

1
4
k2 −

1
2
k
)
9 ⩽ (2k − 9)(k + 1)k +

1
2
(k + 1)2 + 2(2k − 8)(k + 1)

⇔ 9
(
1
4
k3 −

1
4
k2 −

1
2
k
)

⩽ 2k3 −
5
2
k2 − 20k −

31
2

⇔ k3 + k2 + 62k + 62 ⩽ 0 ,

which is a contradiction for k ⩾ 0. Hence, G′

k is in Bk but not in Bm
2k−9 for even k ⩾ 6. □

Theorem 4.1 reveals that Bk ̸⊆ Bm
2k−8 for odd k ⩾ 5 and that Bk ̸⊆ Bm

2k−9 for even k ⩾ 5. Thus, restricting the paths of
the EPG representation to be monotonic is a significant limitation. Theorem 4.1 clearly implies that Bk ⊆ Bm

k+1 does not
old in general.
We can also settle the question whether Bm

k+1 ⊆ Bk holds in general. Indeed, in [18] it was proven that b(Km,n) = 2m−2
for m ⩾ 3 and n ⩾ m4

− 2m3
+ 5m2

− 4 m + 1. Hence, in particular, Km,m4−2m3+5m2−4 m+1 is in B2m−2, but it is not in
B2m−3. On the other hand, Theorem 2.7 implies that Km,m4−2m3+5m2−4 m+1 is in Bm

2m−2, so Bm
2m−2 ̸⊆ B2m−3 for all m ⩾ 3.

Thus, Bm
k+1 ⊆ Bk does not hold in general.

4.2. Relationship between B1 and Bm
3

As mentioned at the beginning of Section 4, in general the minimum number of bends needed for an EPG representation
of a graph increases when the paths on the grid are required to be monotonic. In order to quantify the amount of this
increase we would like to find the minimum ℓ such that Bk ⊆ Bm

ℓ . Theorem 4.1 shows that 2k− 9 is a lower bound for ℓ,
i.e. ℓ ⩾ 2k − 9 for k ⩾ 5.

In the following we focus on small values of k. Since B0 = Bm
0 holds, 1 is the smallest value of k for which ℓ and/or

bounds on it are not known. In the following we show that B1 ⊆ Bm
3 , i.e. 3 is an upper bound on the minimum value of

ℓ for which B ⊆ Bm.
1 ℓ
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f

T

P
i

Fig. 8. (a) A graph G. (b) The B1-EPG representation R of G.

Fig. 9. The grid with the two copies R1 and R2 of R shown in Fig. 8(b).

Fig. 10. The final status of the modifications R1 and R2 of the B1-EPG representation R shown in Fig. 8(b) and its copy. This final status is obtained
or any order ≺ of vertices in which c ≺ b and e ≺ g ≺ a ≺ d.

heorem 4.2. The inclusion B1 ⊆ Bm
3 holds.

roof. Let G be a graph in B1. We show that G is in Bm
3 by presenting a monotonic B3-EPG representation of G. The latter

s constructed by transforming a B -EPG representation of G into a Bm-EPG representation of G as described below. The
1 3
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ransformation is illustrated by means of an example; Figs. 8(a) and 8(b) show a graph G and a B1-EPG representation of it,
espectively, whereas Fig. 11 shows the corresponding Bm

3 -EPG representation obtained as a result of the transformation
entioned above.
Let R be an arbitrary B1-EPG representation of G. We place another copy of the same B1-EPG representation to the top

ight of R, see Fig. 9, and then step by step modify both the original B1-EPG representation and its copy as described below.
t any point in time during this modification process we denote by R1 and R2 the current modified B1-EPG representation
nd the current modified copy of the original B1-EPG representation, respectively. For a vertex v of G we denote by Pv ,
1
v and P2

v the path corresponding to v in R, R1 and R2, respectively. At the beginning of the modification process R1 and
2 coincide with the original B1-EPG representation and its copy, respectively, as in Fig. 9.
Now consider the vertices of G one by one in an arbitrary order and for every vertex perform the modifications

escribed below. Let v be the currently considered vertex. The modification of R1 is driven by the horizontal segment
f the path Pv , if any, whereas the modification of R2 is driven by the vertical segment of Pv , if any. If Pv has a horizontal
egment, we modify R1 as follows. We introduce a new vertical grid line L|

v directly to the left of the vertical grid line
ontaining the right end point of the horizontal segment of P1

v in R1 and shorten the horizontal segment of P1
v to end in

L|
v instead of ending at the original right end point. Then, if the path Pv contains a vertical segment which starts at the
original right end point of the horizontal segment mentioned above, we modify P1

v in R1 by shifting its vertical segment
to lie on L|

v .
If Pv has a vertical segment, we modify R2 as follows. We introduce a new horizontal grid line L−

v directly beneath the
horizontal grid line containing the lower end point of the vertical segment of P2

v in R2 and extend the vertical segment of
P2

v until L−
v . Then, if the path Pv contains a horizontal segment which starts at the original lower end point of the vertical

segment mentioned above, we modify P2
v in R2 by shifting its horizontal segment to lie on L−

v . An example of the modified
rid and paths and the final R1, R2 for the graph in Fig. 8(a) can be seen in Fig. 10.
Now we construct a Bm

3 -EPG representation of G with a path Qv for every vertex v in the following way. If the path
Pv consists of a single horizontal segment, we define Qv as the horizontal segment of P1

v in R1 and call this segment the
lower segment of Qv . If the path Pv consists of a single vertical segment, we define Qv as the vertical segment of P2

v in
R2 and call this segment the upper segment of Qv . If the path Pv contains a horizontal and a vertical segment, then the
path Qv starts with the horizontal segment of P1

v in R1; this segment is called the lower segment of Qv . Further the path
Qv continues with a vertical segment lying on the vertical grid line L|

v and ending at the intersection of L|
v and L−

v . This
intersection is the upper end point of this segment. Starting at this grid point Qv proceeds with a horizontal segment lying
on L−

v until it reaches the vertical grid line containing the vertical segment of P2
v in R2. Finally Qv ends with the vertical

segment of P2
v in R2; this segment is called the upper segment of Qv . The result of this construction for the graph given

in Fig. 8(a) and its B1-EPG representation R is depicted in Fig. 11.
Observe that this construction has the following properties. If Pv contains two segments, then Qv contains 4 segments,

the lower one being the horizontal segment of P1
v in R1 and the upper one being the vertical segment of P2

v in R2. The
two remaining segments, a vertical and a horizontal one, are contained in the two additionally introduced grid lines that
are used by no other path, because every path Qv uses only the additional grid lines L|

v and L−
v introduced exclusively for

the vertex v. If Pv consists of one horizontal (vertical) segment, then Qv consists also of one horizontal (vertical) segment
which coincides with the corresponding segment of P1

v (P2
v ) in R1 (R2) and is a lower (upper) segment. It is easy to see

that every path Qv in this construction is monotonic and bends at most 3 times.
What is left to show is that the above construction indeed leads to an EPG representation of G, i.e. that any two paths

Qv and Qv′ intersect if and only if the vertices v and v′ are adjacent in G. To this end, it is enough to show that two paths
Qv and Qv′ intersect, if and only if the paths Pv and Pv′ intersect in the original B1-EPG representation R.

Assume Qv and Qv′ intersect. First consider the case that at least one of Qv and Qv′ consists of only one segment.
Assume without loss of generality that Qv consists of one horizontal segment. Due to the properties of the construction
this segment of Qv is a lower segment and hence the unique segment of P1

v in R1. Consequently, again due to the properties
of the construction, the segment of Qv′ intersecting Qv is the horizontal segment of P1

v′ in R1. Hence P1
v and P1

v′ intersect
in the final R1 on their horizontal segments. By construction this is only the case if Pv and Pv′ intersect on their horizontal
segments in R, because during the update of R1 only vertical segments of paths are moved into new grid lines in such a
way that no new intersections are created.

Now assume that both paths Qv and Qv′ consist of more than one segment. There are no intersections of the paths
in any additionally introduced grid lines because every additionally introduced grid line is related to one vertex and the
additionally introduced grid line related to different vertices are different. Moreover, by construction every additionally
introduced vertical grid line contains at most one segment of the path P1

v in R1 representing the vertex v to which the
line is related. Analogously every additionally introduced horizontal grid line contains at most one segment of the path
P2

v in R2 representing the vertex v to which the line is related. These considerations together with the fact that R1 and R2
do not share any grid lines imply that the intersection of Qv and Qv′ involves either the lower segments of each path, or
it involves the upper segments of each path. Consequently, according to the properties of the construction, the paths Qv

and Qv′ intersect in their lower segments (in R1) or in their upper segments (in R2). In both situations we can proceed as
in the previous case.

Next we show the other direction of the equivalence, that is we assume that Pv and Pv′ intersect in the original B1-EPG
representation R of G and show that also Q and Q ′ intersect. By construction, if P and P ′ intersect in a horizontal grid
v v v v
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Fig. 11. The obtained Bm
3 -EPG representation of the graph given in Fig. 8(a).

line, then the modified paths P1
v and P1

v′ intersect in a horizontal grid line in R1 at all times. Thus, the properties of the
construction imply the intersection of the lower segments of Qv and Qv′ . Analogously, if Pv and Pv′ intersect in a vertical
rid line, then the modified paths P2

v and P2
v′ intersect in a vertical grid line in R2 at all times, and the properties of the

onstruction imply the intersection of the upper segments of Qv and Qv′ . □

Notice that it is an open question whether the result of Theorem 4.2 is the best possible, that is whether ℓ = 3 is really
he minimum ℓ such that B1 ⊆ Bm

ℓ or whether even B1 ⊆ Bm
2 holds.

We conclude this section with a few comments related to the size of the grid in EPG representations, that is the number
f horizontal and vertical grid lines used by the paths in the EPG representation. Recently this question was investigated
y Biedl, Derka, Dujmović and Morin [3]. The size of the Bm

3 -EPG representation obtained by the construction in the proof
f Theorem 4.2 depends on the size of the B1-EPG representation of the graph; in the worst case the constructed Bm

3 -EPG
epresentation uses twice as many horizontal grid lines and twice as many vertical grid line as compared to the original
1-EPG representation and an additional horizontal and vertical grid line for every vertex. This gives rise to the natural
uestion whether the construction given in the proof of Theorem 4.2 is the best possible with respect to the size of the
rid. Currently we cannot answer this question.
When considering the dependency of the grid size of the Bm

3 -EPG representation on the grid size of the starting B1-EPG
epresentation in the construction given in [3], another natural question arises. What is the smallest possible size of the
rid in a B1-EPG representation of a B1-EPG graph? In the small EPG representations dealt with in [3] no fixed number of
ends is considered, so the question above is also open.

. Conclusions and open problems

In this paper, we investigated the relationship between the classes Bk and Bm
ℓ for different values of k, ℓ ∈ N.

In particular, we considered the bend number and the monotonic bend number of complete bipartite graphs. We
xtended the already known result b(Km,n) ⩽ 2m − 2 (see [18]) to the monotonic bend number, that is we proved
m(Km,n) ⩽ 2m − 2 for any 3 ⩽ m ⩽ n, and showed that the upper bound 2m − 2 is attained for smaller values of n
n the monotonic case.

As auxiliary results we derived two different inequalities which hold whenever Km,n is in Bm
k . We used these inequalities

o prove the strict inclusion Bm
k ⫋ Bk for k ∈ {3, 5} and k ⩾ 7. Furthermore, we showed that Bm

2 ⫋ B2 by specifying a
articular graph which is in B2 but not in Bm

2 . Thus, we gave an almost complete answer to the open question on the
orrectness of Bm

k ⫋ Bk for k > 1, posed in [16]. We showed that Bm
k ⫋ Bk holds for all k > 1 except for k ∈ {4, 6}. Of

ourse, it is a pressing question to prove Bm
k ⫋ Bk also for the remaining cases k = 4 and k = 6. In order to prove Bm

4 ⫋ B4
y using Lemma 2.5 it would be enough to show that K4,49 ∈ B4 or K5,36 ∈ B4. In the case of k = 6 it would suffice to
how that K5,102, K6,71 or K7,63 is in B6.
Additionally, we considered the relationship of Bk and Bm

ℓ for ℓ > k. In this context the existence and the identification
f non-trivial functions f , g :N → N such that bm(G) ⩽ f (b(G)) and b(G) ⩽ g(bm(G)) hold for any graph G (or for any graph
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elonging to some particular class of graphs) is a general question the answer of which seems to be out of reach at the
oment. However, we could deal with some specific problems related to that question.
In particular, we showed that for every k ⩾ 5 there is a graph in Bk which is not in Bm

2k−9, proving that Bk ̸⊆ Bm
2k−9

olds. In terms of the function f above this implies f (x) ⩾ 2x − 8 for all x ⩾ 5, x ∈ N. Furthermore, we deduced that
m
k+1 ⊆ Bk does not hold in general by providing a graph that is Bm

2m−2 but not in B2m−3 for every m ⩾ 3. This implies that
(2x) ⩾ 2x for all x ⩾ 2, x ∈ N for the above function g .
Further, we showed that B1 ⊆ Bm

3 , but we do not know whether this result is the best possible, i.e. whether there is a
raph in B1 which is not in Bm

2 or whether B1 ⊆ Bm
2 holds.

Another natural question which seems to be simple but has not been answered yet concerns the inclusion Bm
k ⊆ Bm

k+1.
e conjecture this inclusion to be strict, that is we conjecture that Bm

k ⫋ Bm
k+1 holds. A possible approach to prove this

onjecture for a given k ∈ N would be to specify a particular pair of natural numbers (m, n) with 3 ⩽ m ⩽ n for which (a)
ome Lower-Bound-Lemma implies Km,n ̸∈ Bm

k and (b) a Bm
k+1-EPG representation can be constructed. The identification of

uch a pair (m, n), 3 ⩽ m ⩽ n, would clearly prove the existence of a complete bipartite graph Km,n with monotonic bend
number equal to k for any k ⩾ 2.

Finally, the size of (monotonic) EPG representations is another subject of interest. In particular, it would be interesting
to determine the minimum number of grid lines needed for a Bk-EPG representation and Bm

ℓ -EPG representation of a graph
G with b(G) ⩽ k and bm(G) ⩽ ℓ, respectively.
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