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ground) and endosphere (inside tissues) microbiome. Plant 
microbiomes are diversified in each of these habitats and 
adapt to the specific conditions that require functional 
engagement (Cordovez et al. 2019). Moreover, they are 
specific for each plant species/genotype and each stage of 
development (Berg and Smalla 2009).This specificity is a 
result of plant-microbe coevolution (Delaux and Schornack 
2021). Since plants colonized land, they have evolved a 
range of symbiotic associations with microorganisms that 
include protection mechanisms (Delaux and Schornack 
2021). These symbiotic associations were likely required by 
plants to grow under harsh, nutrient-poor, and difficult con-
ditions and involved symbiotic plant-microbe interactions 
resulting in survival and cooperation (Fig. 1).

Plant symbionts are part of the plant holobiont and live 
in relationships with plants. They have tremendous effects 
on plant growth, confer resistance to abiotic stresses and 
pathogens, aid in the accumulation of metabolites, and have 
crucial relationships with other plant-associated microor-
ganisms (Yang et al. 2013). Although a long list of phylo-
genetically diverse plant symbionts has been reported, they 
mainly involve bacteria and fungi (Yang et al. 2013). The 
majority of plant-associated bacteria can be considered as 

1 Plants are holobionts and consist of the 
plant and its co-evolved microbiota

All plants are holobionts; they form a structural and func-
tional unit with microorganisms (Vandenkoornhuyse et al. 
2015). Plant-associated microorganisms comprise bacteria, 
archaea, fungi, algae and protists, the so-called plant micro-
biota (Berg et al. 2020). On surfaces and within plant tissues 
they are the plant microbiome, which can be differentiated 
into the phyllosphere (above ground), rhizosphere (below 
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beneficial; they help to acquire nutrients, rare elements and 
minerals, stimulate the native immune system of plants 
and are able to antagonize plant pathogens (Cordovez et al. 
2019; Santoyo 2022). In plant microbiomes, bacterial com-
munities show a greater degree of specificity than the entire 
fungal and archaeal communities (Berg and Smalla 2009; 
Cordovez et al. 2019). However, symbionts from all micro-
bial lineages show a certain degree of specificity and can be 
vertically transmitted (Vandenkoornhuyse et al. 2015). Fun-
gal symbionts have been classified into three types (Yang et 
al. 2013) (i) mycorrhizal fungi (mainly including arbuscular 
mycorrhizal fungi and ectomycorrhizal fungi), (ii) endo-
phytic fungi, and (iii) specific root endophytes, e.g. Pirifor-
mospora indica as well as various dark septate endophytes.

Less is known about archaea and protists and their bene-
ficial traits, and interactions. Based on metagenomic mining 
and targeted amplicon sequencing, archaea have been iden-
tified in several plant microbiomes, especially under harsh 
conditions, e.g. bog ecosystems and saline soils, as well as 
some trees (Jung et al. 2020). They also occur at compara-
tively low abundances in crop plants (Taffner et al. 2020). 
Beneficial properties, related to phytohormone production, 
have been identified within such archaeal communities 
(Taffner et al. 2018). Interestingly, under extreme conditions 
like in the highly polluted, highly saline dried out basin of 
the Aral Sea, archaea can be the dominant structural and 
functional component of the plant microbiota (Wicaksono 
et al. 2022). Despite their different phylogenetic origin, all 
symbiotic associations share a number of highly conserved 
features, including specific plant symbiotic signalling path-
ways, root colonization strategies that circumvent plant 
immune responses, functional host-microbe interface for-
mation, and the central role of phytohormones in symbio-
sis-associated root developmental pathways (Harman 2011; 
Yang et al. 2013). Moreover, they fulfill functions including 

nutrition that usually depends on fair trade between both 
partners – the plant and its microbes. Thus plant-associated 
microbes often provide protection against biotic and abiotic 
stress (Cordovez et al. 2019) and resilience traits achieved 
by an intense metabolic interplay and exchange of (second-
ary) metabolites. This interplay was disentangled by Car-
rión et al. (2019) who showed that endophytic symbionts 
protected plant roots against pathogens. The resistome is 
a term that describes all antimicrobial resistances (AMR) 
within a microbiome that are encoded in antimicrobial resis-
tance genes (ARGs) in the genome of microorganisms or on 
mobile genetic elements (Berg et al. 2020). In addition to 
AMR, the resistome mediates resilience by providing the 
required plasticity for the plant holobiont (Obermeier et al. 
2021). Finally, native plant microbiomes often harbor a high 
diversity of ARGs (Berg and Cernava 2022). The functions 
of plant-derived resistomes remain poorly understood, and 
targeted approaches will be needed in the future to decipher 
their importance and ubiquity.

2 The anthropogenic impact changed the 
plant microbiome: more plant pathogens 
and less symbionts?

Anthropogenic activities have shaped our planet in such 
a drastic way that they have resulted in the definition of 
a human-dominated geological epoch, the Anthropocene 
(Lewis and Maslin 2015). Intense agriculture in interplay 
with continuous human population growth is one of the 
major drivers of the Anthropocene. The Anthropocene is 
also reflected in the planetary boundary concept. Five of 
the nine boundaries have already been crossed: extinction 
rate, deforestation, climate change, the flux of nitrogen and 
phosphorus, and the introduction of novel entities (Persson 

Fig. 1 Plants have coevolved 
with their microbiome, resulting 
in a symbiotic inter-dependency, 
with the microbiome provid-
ing essential functions for plant 
growth and survival under natural 
conditions
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et al. 2022; Steffen et al. 2015). These are all factors that 
influence the plant microbiota either on local scale (e.g. 
over-fertilization) or global scale (e.g. climate change) and 
are connected with changes in the environmental micro-
biota (Cavicchioli et al. 2019). Despite this, the impact of 
these anthropogenic factors on the various host-associated 
and inter-linked microbiomes and the consequences for 
our planet are not well understood (Flandroy et al. 2018). 
Changes on a global scale are expected to have a substan-
tial impact on the functioning of ecosystems, which could 
affect the health of their inhabitants. Therefore, it will be 
of utmost importance to take countermeasures to maintain 
various microbiomes in their native state.

Berg and Cernava (2022) suggest that human activities 
have already substantially affected the plant microbiome 
(see Fig. 2). This impact is reflected by a shift of diversity 
and evenness of the plant microbiota, which characterized by 
a decrease of host specificity, and an increase of r-strategic 
microbes (copiotrophic, fast growing microbes according 
to the r/K selection theory), pathogens, and hypermutators 
(strains with substantially increased mutation rates) (Berg 
and Cernava 2022). The resistome, anchored in the micro-
biome, follows this shift by an increase of specific AMR 
mechanisms as well as an increase of plasmid-associated 
resistance genes. This typical microbiome signature of the 

Anthropocene is often associated with dysbiosis and loss of 
resilience. It leads to frequent pathogen outbreaks.

Climate change, nitrogen, and phosphorus (over)fer-
tilization, chemical pollution, biodiversity loss, as well as 
stratospheric ozone depletion have influenced the envi-
ronmental microbiome in different ways, but they follow 
the same direction as described above (Berg and Cernava 
2022: see Fig. 2). Although understanding, and predicting, 
the impacts of anthropogenically-driven climate change on 
plant–associated microbiota is important (Hacquard et al. 
2022), the combined, and synergistic effects have also to be 
considered (Rillig et al. 2019).

Microbiota shifts have been found in studies that address 
the consequences of climate change. Fast selection pro-
cesses were described in situations where the taxonomy 
of selected species showed variations, but there was also a 
clear tendency towards enrichment of pathogens and spore-
forming organisms (Ning et al. 2020), especially when vari-
ous parameters were combined (Guerra et al. 2021; Roux 
et al. 2021). Baldrian et al. (2022) performed a meta-study 
on the effect of global change including the increase of CO2 
concentration, temperature, change of precipitation, and 
nitrogen (N) deposition on fungal species and communities 
in terrestrial ecosystems. They found that the plant-mutual-
istic fungal guilds – ectomycorrhizal fungi and arbuscular 
mycorrhizal fungi – appear to be especially responsive to 

Fig. 2 The Anthropocene is shaped by human activities which have also affected the plant microbiome substantially. The incorporation of symbi-
otic microbial functions will be key to counteract the rising issues
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was shown to affect arbuscular mycorrhizal fungal com-
munities while long-term phosphorous fertilization limited 
phosphorous provision to plants (Williams et al. 2017). 
Thus, both, nitrogen and phosphorus fertilization consis-
tently favour pathogenic over mutualistic fungi in grassland 
soils (Lekberg et al. 2021).

Chemical pesticide treatments were also shown to affect 
plant symbioses. For example, neonicotinoid seed treat-
ments induced shifts in the phyllosphere and soil microbial 
communities in soybean-corn agroecosystems. The micro-
biota shifts were reflected by a decline in the relative abun-
dance of some potentially beneficial soil bacteria (bacteria 
involved in the N cycle) in response to pesticide applica-
tions (Parizadeh et al. 2021). The engineered nanomaterials 
SiO2, TiO2, and Fe3O4 induced a reduction of N-fixing bac-
teria and iron-redox bacteria in the maize rhizosphere along 
microbiome shifts; however, the occurrence of plant growth 
promoting bacteria was enhanced (Zhang et al. 2020). These 
disruptions must be more considered in the future when fer-
tilization and plant protection strategies are developed.

The seed microbiome is of special importance because it 
mainly consists of a core of plant beneficial bacteria (Bergna 
et al. 2018) and can be vertically transmitted symbionts 
(Gundel et al. 2017). The composition of the seed micro-
biota reflects the anthropogenic impact as well. Especially 
breeding activities were previously shown to have changed 
the composition and abundance of native microbial commu-
nities (Kim et al. 2020; Matsumoto et al. 2021; Rybakova et 
al. 2017). Moreover, chemical seed treatments were found 
to reduce bacterial diversity even before the onset of germi-
nation (Chen et al. 2020). Counteracting such changes could 
facilitate sustainability in agriculture.

3 Symbionts—the key for sustainable 
agriculture?

The plant microbiome, is already affected by the Anthro-
pocene, and has led to missing symbionts in modern crop 
varieties that require targeted microbiome management 
strategies. There is a need for the development and applica-
tion of microbiome-based products. The latter would help to 
replace harmful agrochemicals in the future for a more sus-
tainable agriculture. This is not only a vision, it’s a strategic 
aim of the European Green Deal, and anchored in the WHO 
Global Strategy for maintenance of antimicrobial resistance 
and the UNO Sustainable Development Goals.

In general, microbiomes can be managed directly by 
applying (i) microbiome transplants, (ii) microbes with ben-
eficial properties, or (iii) microbiota-active metabolites, or 
indirectly by changing environmental conditions in a way 
that microbiomes also shift their structure and function from 

global change factors with N deposition and warming hav-
ing the strongest adverse effects (Baldrian et al. 2022). They 
also reported an increase in the abundance and dispersal of 
plant pathogenic fungi. Thus, it can be concluded that the 
entire ecosystem was weakened by global change-induced 
phenomena, such as drought, and consequently was more 
vulnerable to pathogen outbreaks.

Emerging and potential pathogens have been reported 
in recent years. Delgado-Baquerizo et al. (2020) predicted 
the occurrence of new pathogens into agricultural produc-
tion areas, especially fungal plant pathogens. Experimental 
evidence for the impact of global warming on pathogens 
was provided using Prunus padua. This study showed a 
significantly increased abundance of pathogenic fungi and 
infections (Liu and He 2021). An increase of spore-forming 
bacteria and pathogens was also observed after increased 
UV-B radiation in the peanut phyllosphere; predominant 
UV-tolerant bacteria were identified as Bacillus coagulans, 
Clavibacter michiganensis, and Curtobacterium flaccumfa-
ciens (Jacobs and Sundin 2001). The increase of pathogens 
also involves a migration polewards and expansion of the 
areas affected (Bebber et al. 2013). This phenomenon will 
have to be given additional attention in the future to ensure 
the nutrition of a growing world population under increas-
ingly adverse conditions.

In contrast, a decrease of symbionts has been reported 
involving decreasing diversity, abundance and functioning. 
For example, Carrell et al. (2019) noted a microbiome shift 
in Sphagnum connected with a decreased diversity of bac-
teria and diazotrophs as well as a reduced nitrogen fixation 
rate. Long-term warming also induced microbiome shifts 
and affected nifH gene abundance for another common 
moss species Racomitrium lanuginosum in the sub-Arctic 
tundra (Klarenberg et al. 2022). The excessive use of nitro-
gen-containing fertilizers is particularly damaging, because 
a substantial amount of the nitrogen, that is not taken up by 
plants, is transformed into nitrate which is easily leached. 
Moreover, N as well as P fertilizer usage results in the loss 
of important functions provided by the mycorrhiza and 
plant-associated bacteria. In forests, nitrogen fertilization 
has a strong effect on soil nitrogen-fixing bacterial commu-
nities (Berthrong et al. 2014). For example, in pine forests, 
N fertilization has a strong effect on the nifH-associated 
bacterial community structure and suppressed the diversity 
and abundance of N-fixing bacteria.

Babalola et al. (2022) showed that nitrogen fertilisation 
disrupts the temporal dynamics of arbuscular mycorrhizal 
fungal hyphae but not spore density and community com-
position in a wheat fields. On the other hand, one-time inor-
ganic phosphate amendments caused shifts in soil bacterial 
and fungal communities and reduced mycorrhization rate in 
ryegrass (Ikoyi et al. 2018). Long-term nitrogen fertilization 
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a highly diverse core of the microbiome of these plants is 
vertically transmitted and actively colonizes newly emerg-
ing seedlings upon germination (unpublished results). This 
reinforces the observation that the seed is an important car-
rier for beneficial symbionts in sustainable agriculture (Berg 
and Raaijmakers 2018). Interestingly, vertical transmission 
of microbial symbionts seems to be a frequent phenomenon 
(Bright and Bulgheresi 2010).

What are currently the biggest hurdles for microbiome 
management and microbiome-based products? Humankind 
requires further intensification of agriculture. Microorgan-
isms provide the means to achieve this in a sustainable way 
(Basu et al. 2021). However, only a small proportion of 
the plant-associated microbial biodiversity can be cultured 
despite progress in analyzing the plant microbiome based 
on meta-omics technologies. There are interesting examples 
where keystone species were discovered by high-through-
put sequencing and bioinformatic tools, and subsequently 
verified by isolating and applying the identified candidate 
(Matsumoto et al. 2021). They led to the first discoveries 
of disease-preventing microorganisms, so-called “sotero-
bionts” (Cernava and Berg, 2022). However, cultivation-
based approaches have to be further expanded and better 
integrated, because there are many ways in which microor-
ganisms can positively influence plants (Vessey 2003). Only 
a small proportion of the plant-associated microbial biodi-
versity is currently exploited. Missing fermentation and 
formulation methods, especially for Gram-negative bacte-
ria, are reasons for this bottleneck. Spore-forming bacteria 
like Bacillus thuringiensis and B. amyloliquefaciens and 
their relatives currently prevail in the commercially avail-
able products. While there are new formulation methods 
on the market (Berg and Müller 2018), strain-specific pro-
duction methods have to be developed. Developments are 
still hampered due to inconsistent results and effects under 
field conditions. Modelling and machine learning can offer 
new solutions (Corander et al. 2022). For example, the opti-
mization of synthetic microbial communities (SynComs) 
(Vorholt et al. 2017) from Arabidopsis has been selected 
by a computational approach and successfully employed 
against the plant pathogen Pseudomonas syringae (Vogel et 
al. 2021).

4 The plant microbiome is embedded in one 
health and planetary health issues

The role of the microbiome for plant health is widely 
accepted, but the importance of inter-linked microbiomes, 
especially those associated with plants, for health issues 
of other organisms is less of a research focus. The connec-
tion of human, animal and plant microbiomes is evident in 

dysbiosis into a healthy state (Berg et al. 2020). Studying 
native symbioses is a key to understand a healthy plant 
microbiome and its functioning, but can also help to isolate 
microorganisms with unique traits, design microbial trans-
plants or microbiota-derived metabolites for use in sustain-
able agriculture (Fig. 2).

Native plants are a reservoir for plant-beneficial bac-
teria. This was demonstrated for Sphagnum, identified as 
rich source for plant-beneficial microbes, as well as many 
other microorganisms, and a new model for climate change 
studies on plant holobionts (Carrell et al. 2019; Hingley 
1993, 1999). This plant has an extraordinarily high propor-
tion of plant-beneficial microbes (Opelt et al. 2007a), that 
are species-specific, independent of the site (Opelt et al. 
2007b). Vertical transmission of a beneficial core micro-
biota described by (Bragina et al. 2012), provides plant-
beneficial properties within the moss metagenome (Bragina 
et al. 2014). The observation that mosses are an important 
reservoir for plant-beneficial microorganisms was applied 
by (Shcherbakov et al. 2013) to isolate plant growth pro-
moting bacteria, which are now commercialized for sustain-
able agriculture. The distinct trait of the moss-associated 
microbiota to withstand abiotic stress has been exploited by 
Zachow et al. (2013) to isolate and design stress-protect-
ing agents, which are commercialized. Sphagnum is only 
one example but there are exploitable symbiont reservoirs 
within the large group Bryophyta, which comprises liver-
worts, mosses and hornworts. Mosses were early land colo-
nizers on Earth. Most of them depend on specific symbionts 
such as mycorrhiza and/or nitrogen-fixing cyanobacteria 
(Delaux and Schornack 2021), their potential as a source for 
plant-beneficial microorganisms is mostly untapped.

Composts serve as traditional microbial transplants that 
are still of great importance, especially in organic agricul-
ture. Composts can substantially vary in their composition 
of microorganisms and other materials. However, for the 
enrichment of soil biodiversity, this is an advantage. Ver-
micompost is a specific type of compost produced by earth-
worms. Its high microbial diversity makes it suitable for a 
very broad range of crop species and cultivars, which can 
be selected to benefit best from this compost (Wolfgang et 
al. 2020). Suppressive soils also showed promising results 
from compost applications and researchers generally differ-
entiate between natural and acquired suppressiveness. The 
former, can be found in diverse native ecosystems while 
the latter can spontaneously establish after several years of 
monoculture. Establishment of such soils mostly relies on 
microbial diversity and antagonism that the taxonomically 
different microbes mediate.

Plant microbiota assembly can result from vertical and/
or horizontal transmission (Abdelfattah et al. 2021). As a 
result of a survey with native Alpine seeds, we know that 
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provides basic and applied knowledge about the microbi-
ome (https://imoox.at/course/microbiome) to a very large 
audience.
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