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1. Introduction
1.1. Motivation

Under the impending climate crisis, many high-temperature
processes need to be revised or replaced to maximize energy effi-
ciency and minimize CO2 emissions. Granular media happen to be a
part of many currently explored concepts to achieve this vision.

For example, a pebble bed is regarded as one of the most
promising very-high temperature nuclear reactor designs (Stocker
& Niessen, 1997). Natural and ceramic particles are proposed as a
low-cost heat transfer media in concentrating solar plants (Siegel
et al, 2014). Solar energy is also studied as a means to drive
chemical reactions, e.g. in particle suspensions (Kopping et al.,
2019) or in rotary kilns (Moumin et al., 2019). Further examples
include processes such as pyrolysis and gasification of biomass
(Peters et al., 2019; Zhong et al., 2016).

All aforementioned applications are affected by thermal radia-
tion. The solution of accurate radiation models tends to be
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computationally expensive, which is unfortunately incompatible
with typical requirements of industrial or applied research. Also,
the scarcity of relevant verification and validation cases does not
allow the use of various approximate models with sufficient con-
fidence. This leads to the fact that radiative energy transfer is often
grossly mis-predicted, or even completely neglected.

The main purpose of our present study is to carefully evaluate
the predictive capabilities of the P1 approximation (Jeans, 1917;
Modest, 2013) for gas-particle systems. Due to its simplicity, the P1
model is extremely computationally efficient, and also compatible
with techniques such as coarse-graining and multi-threading.
Recent Monte Carlo ray tracing studies of packed beds (Liu et al.,
2021) confirm that the radiative transfer in random assemblies of
particles is diffusive, suggesting a solid physical basis for applying
the P1 model in a wide range of industrial settings.

1.2. State-of-the-art radiation models

Literature on radiation, and radiation in granular media is vast
and cannot be covered here completely. A detailed overview can be
found in books on radiative heat transfer (Howell et al., 2010;
Modest, 2013). In what follows, we briefly review the most
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important concepts that are needed to correctly perceive our cur-
rent contribution.

Numerical models for radiative heat transfer in granular media
can be roughly grouped into discrete and continuum-based models.
Discrete models handle particles as individual objects which
engage in radiative heat exchange via their surfaces. Continuum-
based models treat the mixture of particles and the ambient gas
as one continuous medium with effective attenuation properties
distributed between the phases.

1.2.1. Discrete models

Discrete models are based on evaluation of view factors be-
tween individual particles. A view factor is a geometrical quantity
which represents the amount of energy which, after being emitted
by one particle, arrives at the surface of another particle.

The accuracy-standard for view factor calculations is the Monte
Carlo ray tracing (MCRT), described, for example, in (Amberger
et al.,, 2013). While being accurate, MCRT is extremely computa-
tionally demanding and therefore justified only for cases where the
radiative heat transfer is the sole focus. Recent examples include
assessment of view factor correlations to solid fraction in a double-
screw reactor (Qi & Wright, 2018), and investigation of poly-
dispersity in a free-falling particle solar receiver (Chen et al., 2022).

View factors can also be calculated using the projection method
(Forgber & Radl, 2018), or, as of recent, the machine learning-based
concepts (Tausendschoen et al., 2023; Tausendschoen & Radl,
2021). While the projection method is limited to systems with
relatively small numbers of particles, machine learning signifi-
cantly improves computational speeds for mono-, bi- and poly-
disperse static systems. However, the accuracy is dependent on the
quality of the training data, and the method is yet not available for
coarse-graining and multi-threading.

Industry demands for efficiency created approximate models,
such as (Peters, 2002; Peters et al., 2019), where the view factor is
taken as the ratio of surface areas of neighbouring particles. Even
simpler, the model proposed in (Zhou et al., 2009) abandons the
view factors altogether and estimates the radiative contribution to
a particle using the average local temperature. Recently, such a
model was used for a coarse-grained reacting flow (Wang & Shen,
2022), and for biomass gasification in a bubbling fluidized bed
(Kong et al., 2022). Both studies validated the heat transfer model
with experimental data in the range of 20 °C—90 °C, even though
the operating temperature of the considered fluidized beds exceeds
1000 K. Since the radiation contribution becomes significant at
above 500 K, validation at lower temperatures might lead to inac-
curate conclusions.

1.2.2. Continuum-based models

Continuum-based models are derived from the radiative trans-
fer equation (RTE). While, according to the definition, RTE is limited
only to homogeneous media, it has been frequently applied to gas-
particle systems (Viskanta & Mengiic, 1987). Even more so, the
extension of RTE to heterogeneous media (Gusarov, 2009) is rec-
ommended only for cases with partially transparent particles.
Recently, the validity of the RTE for spatially random assemblies of
particles was also confirmed by Monte Carlo ray tracing simulations
(Liu et al., 2021).

In its general form, the RTE is a function of 3 spatial coordinates,
2 angular coordinates (i.e., the zenith and azimuthal angle), and
wavelength. The angular dependency is treated either by the
discrete ordinates method (DOM) or by the spherical harmonics
approximation.

The discrete ordinates method (Chandrasekhar, 1950; Modest,
2013) features additional discretization of the domain along a set
of spatial angles. The DOM is commonly applied to model soot
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particles and combustion gases (Viskanta & Mengtic, 1987). Other
examples include water droplets in fire-suppression systems
(Oluwole et al., 2021), wet biomass carbonization in a rotary kiln
(Tavakkol et al., 2021), and solar gasification of coal-coke in a
circulating fluidized bed (Bellan et al., 2018).

Alternatively, in the family of Pn-approximations, the RTE is
developed using spherical harmonics of the n-th order. Simplest,
and most popular, is the first-order approximation: the P1 (Jeans,
1917; Modest, 2013). Here, the multi-dimensional RTE is reduced
to a single diffusion-like scalar equation for radiative intensity,
yielding a significant efficiency improvement compared to the
DOM. However, since the angular dependency is completely lost, P1
is accurate only for an isotropic radiative field (Dombrovsky, 1997;
Dombrovsky, 2010; Modest, 2013; Viskanta & Mengiic, 1987).

Yet, good agreement with experiments is reported for various
gas-particle systems. For example, both P1 and DOM were used to
model monodisperse and polydisperse mixtures of fuel particles for
underwater combustion. Tested against experiments, DOM per-
formed only slightly better than P1. Furthermore, P1 was applied to
model biomass gasification in an Euler-Euler simulation (Liu et al.,
2013), in an Euler-Lagrange simulation (Ku et al., 2015), and
recently even in an Euler-Lagrange simulation with coarse-graining
(Yang et al., 2022), all agreeing with experimental data. However,
since the aforementioned studies focused on chemical reactions,
critical details regarding the radiation modeling (i.e., treatment of
the dependent scattering, closure for coarse-graining) were
omitted.

On the other hand, P1 is also reported to be in disagreement
with experiments. Inaccurate heating rates where found in an
attempt to simulate transient heat-up of a directly irradiated
bubbling fluidized bed (Diaz-Heras et al., 2021). While a steady rise
in temperature was observed in the experiment, the simulation
settled earlier at a lower temperature. A reason for this deviation
might be the approximate boundary condition for an imposed
radiative heat flux used in (Diaz-Heras et al., 2021).

1.3. Goals

The purpose of this study is twofold: 1) to verify the current
implementation of the P1 model in the context of a coarse-grained
CFD-DEM approach, and 2) to test the applicability of the P1 model
to general gas-particle systems with size-disperse particles.

For verification, we consider (i) the steady-state temperature
profile, (ii) the steady-state heat flux, and also (iii) the transient
heat-up process of a gas-particle mixture.

As a benchmark for the steady-state, we use the well-known
exact solution for a homogeneous gray medium between two
infinite black plates (Heaslet & Warming, 1965). We compare the
results obtained for a) a uniform monodisperse bed, b) a uniform
bidisperse bed, and c¢) a randomly packed polydisperse bed.

To verify the transient temperature profile, we study: a) a soli-
tary particle in an isothermal black enclosure, and b) a packed bed
placed between two isothermal black plates. For the former, we
find an analytical solution alongside important dimensionless pa-
rameters, and for the latter, we use a semi-analytical solution for a
continuous gray medium (Lipinski & Steinfeld, 2005).

Our second goal is to determine whether the P1 model is
appropriate for describing radiative heat transfer in granular flows.
Being an approximation of the 1st order, P1 model compromises
precision. Based on comparisons with other methods, excellent
agreement is possible for optically thick media, and for an isotropic
radiative field (Viskanta & Mengiic, 1987). Both of the requirements
are tested in our present study: first, we estimate the number of
particles needed for reaching the opacity limit, and second, to
challenge the isotropy condition, we derive an approximate
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solution for the radiative balance at the interface between two
media of disparate optical thickness. This allows us to quantify the
influence of variations in void fraction when making predictions
with the P1 model.

Finally, we also show how the P1 model compares with exper-
imental data: (i) in a packed pebble bed under vacuum (De Beer,
2014), and (ii) in a packed pebble bed cooled with nitrogen
(Stocker & Niessen, 1997).

Our present study is limited to gray particles, isotropic scat-
tering, and transparent gases. Furthermore, due to compatibility
with available verification and validation test cases, only densely
packed systems were considered. While the main findings of the
study will also hold true for moving granular systems with mod-
erate variations in void fraction, future research is still needed to
further probe the reliability of the P1 model: this might be espe-
cially important for flows involving extreme gradients in the void
fraction field. Note that the temporal fluctuations will not affect the
radiative energy transfer, since there are no time derivatives in the
P1 model.

14. Content
The manuscript is organized as follows:

e The mathematical model is detailed in section 2. To start, we
define the radiative properties of the involved phases (including
closures for dependent scattering and coarse-graining) in
subsection 2.1. Next, we formulate the P1 model in subsection
2.2. The present formulation gives rise to unphysical heat flux
oscillations at locations of change in void fraction. Numerical
strategies employed to control these oscillations are given in
subsection 2.3.

e Results are collected in section 3. Assessment of the opacity of

granular media is presented first, in subsection 3.1, as it contains

definitions necessary for understanding the rest of the text.

Next, verification with the steady-state analytical solution is

given in subsection 3.2. This steady-state solution is further

expanded in order to study the effects of non-uniform void
fraction in subsection 3.3. In addition to thermal radiation,
validation cases presented in subsection 3.4 feature other
modes of heat transfer: i.e., conduction in subsection 3.4.1, and

conduction and free convection in subsection 3.4.2.

Major findings are summarized in section 4.

Verification of the transient heat up process is given separately

in Appendix A, followed by a brief comment on the influence of

the particle size and absorption properties in Appendix B.

Furthermore, verification of the boundary conditions for

imposed radiative heat flux, and isothermal gray walls are car-

ried out respectively in Appendix C, and Appendix D.

2. Mathematical model

The mathematical model presented in this chapter deals
exclusively with thermal radiation. Radiative properties of a gas-
particle mixture are described in subsection 2.1. Formulation of
the P1 model follows in subsection 2.2. Numerical strategies
employed to control the unphysical heat flux oscillations are given
in subsection 2.3.

The model is implemented in the software CFDEMCoupling
(CFDEMcoupling open source CFD, 2011; Goniva et al., 2012). For
particle calculations we use LIGGGHTS (Kloss et al., 2012;
LIGGGHTS open source DEM particle, 2011), and as the basis for the
fluid flow solution we use OpenFOAM (Weller et al., 1998;
Greenshields, 2018; OpenFOAM v6 C++ Source Guide, 2018). A
more detailed description of the CFD-DEM procedure and the

27

Particuology 82 (2023) 25—47

associated governing equations can be found in a previous work of
ours (Macak et al., 2021), or in a large number of other references
(Goniva et al., 2012; Norouzi et al., 2016; Zhou et al., 2010).

2.1. Radiative properties

Radiative properties (Table 1) indicate how much of the radia-
tive energy is emitted, absorbed, or scattered by a medium. Media
present in a typical industrial scenario includes particles, intersti-
tial gas, and surfaces of the enclosure walls.

Generally, radiative properties change with wavelength, solid
angle, and temperature. We circumvent these dependencies by
employing the widely-employed gray body assumption.

Under local thermodynamic equilibrium, emission and absorp-
tion properties are interchangeable (Howell et al., 2010). This is
commonly exploited to reduce the number of variables. According
to the standard practice, particles and gases are described with
their absorption properties, while emissivity (¢ in Table 1) is used
for the wall boundaries. Additionally, walls are considered gray and
opaque, allowing the wall reflectivity to be replaced by a relation of
the emissivity: g = 1 — ey,

The following two sections provide a more detailed description
of the radiative properties of the involved phases.

2.1.1. Particle properties

Radiative properties of a single particle are measured in terms of
extinction efficiency Qey;, scattering efficiency Qsq, and scattering
phase function &5 (Howell et al., 2010; Modest, 2013).

The extinction efficiency represents the total attenuation of a
radiative beam by a particle, due to both scattering and absorption:

Qext = Qsca + Qgps- (1

The scattering efficiency, Qs¢q, expresses the amount of radiative
energy that is scattered away by a particle, while the scattering
phase function, ®4(®), specifies how the scattered energy is
distributed across the spatial angle ®. In the P1 approximation, the
scattering phase function reduces to the following angle-
independent relation:
‘1)553 — A] . (2)
The asymmetry factor, A;, stems from the cosine of the average
scattering angle (Howell et al., 2010; Modest, 2013), and can acquire
values in the range of —1 to 1. Negative values correspond to
backward scattering, positive values to forward scattering, and
A1 =0 to isotropic scattering.

The absorption efficiency Qgps — which represents the relative
amount of energy that is absorbed or emitted by a particle — cannot
be directly measured. Instead, it is evaluated from Eq. (1).

Most industrial applications feature particles that are large
compared to the incoming radiation wavelength. For large particles,
the following relations hold true:

Qext:L

Qsca = %> 3)

i.e., the extinction efficiency always equals 1, and the scattering
efficiency equals the reflectivity of the material (Howell et al., 2010;
Modest, 2013). Moreover, following from Eqs. (1) and (3), the ab-
sorption efficiency will equal the particle material's emissivity:

Qups =1 - Op = €p- (4)
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Table 1
Overview of radiative properties of the involved phases.

Particuology 82 (2023) 25—47

Function Solid surface Particle

Gas Gas-particle mixture

scattering reflectivity ¢ [— |
absorption absorptivity « [— ] absorption efficiency Qgps [— |

emission” emissivity e (= «) [—] absorption efficiency Qg [— ]

scattering efficiency Qscq [ — ], scattering phase function &; [ — |

scattering coefficient o [1 /m] effective scattering coefficient
Uejf [1 / m]

absorption coefficient absorption coefficient « [1 /m]

& [1/m]

absorption coefficient -

Ky [1/m]

*assuming local thermodynamic equilibrium.

2.1.2. Continuum properties

Radiative properties of continua (i.e., media assumed to have
continuous properties, such as gases or liquids) are defined per unit
length. Within a fluid, emission and absorption are described with
the absorption coefficient k7, and scattering is described with the
scattering coefficient oz While some gases, such as combustion
products, significantly contribute to absorption and emission,
scattering from a gas is generally considered negligible (Howell
et al,, 2010; Modest, 2013; Viskanta & Mengiic, 1987). However,
for numerical reasons described in subsection 2.3, we also include a
scattering coefficient for the gaseous phase. For air, this amounts to
of= 123 x 107> m~! (Penndorf, 1957).

Continuum-based radiation models (based on solving the radi-
ative transfer equation) view the mixture of gas and particles as a
continuum. The collective absorption coefficient is found by sum-
ming up the fluid and particle contributions:

K = Kf + Kp. (5)
In the expression for the effective scattering coefficient:
Oe = 305 +0p(3 — Ay), (6)

the particle contribution is additionally corrected for anisotropy
with Eq. (2). Emission is accounted for separately for each phase
(see subsection 2.2).

Egs. (5) and (6) call for particle properties specified as attenu-
ation coefficients. For a collection of N, particles, enclosed within a
volume V, the attenuation coefficients follow from:

1 dpi
(517, Op, Kp> = m Z <Qext,i7 Qsca,iv Qabs,i>pT77T7

i

N, 2
(7)

-1

where @, 0p, and «;, are the particle extinction, scattering, and ab-

sorption coefficient, each calculated using the respective efficiency.

Here, subscript i denotes the individual particles.

The equation above holds true for the volume of the entire
enclosure. In our simulations, we apply it to the volume of a single
computational cell to account for the spatial heterogeneity of a
typical gas-particle system. For this purpose, particle properties are
projected onto the CFD-cell using the divided scheme
(CFDEMcoupling documentation, 2016a; Norouzi et al., 2016).
When using the divided scheme, each particle's volume is parti-
tioned into 29 non-overlapping regions of equal volume. Subse-
quently, the solid fraction of each single CFD-cell is calculated via
summation of the regions whose centroids are enclosed within the
respective cell.

Similar to Eq. (1), the extinction coefficient represents the
complete attenuation, both by absorption and by scattering:

(8)

ﬁp =Kp + 0p.
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2.1.2.1. Dependent scattering. We note in passing that the term 1}—%
in Eq. (7) was introduced by Brewster (Brewster, 2004) to model the
effect of surrounding particles on the radiative field (i.e., the so-
called dependent scattering or shadowing (Tien & Drolen, 1987)).
The term stems from the exact estimations of the mean penetration
distance of a photon in packings of spheres.

2.1.2.2. Coarse-graining. In the case of coarse-graining, Eq. (7)
reads:

1 M deci\*m
<6pvaP7KP>:7Z‘/’%G<Qext,ivosca,inabs,i>( CGJ) 1
i-1

(1- ‘/’p)v PcG
9)
with N¢¢g being the number of parcels within the considered vol-
ume V, dcc the parcel diameter, and ¢cc = ‘L—f’f the particles'

enlargement ratio.

2.2. P1 model formulation

The P1 model is the first order spherical harmonics approxi-
mation of the radiative transfer equation (Jeans, 1917; Modest,
2013). Generally, the radiative transfer equation is a function of
spatial coordinates, angular coordinates, and wavelength. The P1
model eliminates the angular coordinates, while the gray body
model assumption eliminates the wavelength dependency. The
result is a diffusion-like conservation equation of the local incident
radiation intensity G:

V+(I'VG) — kG = —4ks0T} — Ep. (10)

In the equation above, I' is the radiative diffusivity, «G is the in-
tensity collectively absorbed by the particles and the fluid, 4;<f<77}l is
the intensity emitted by the fluid, and E,, is the intensity emitted by
the particles. The quantity ¢ is the Stefan-Boltzmann constant, and
Tris the temperature of the fluid. The emission contribution of the
particles is evaluated at the computational cell volume V:

N 2 4
Z Qabs,iﬂ'dp,i‘TTp,i
1

B Ve

(11)

In the relation above, N, is the number of the particles within the
cell, T,; is the i-th particle temperature, and ¢, is the local solid
fraction, computed at the cell level from the particle position and
size using the divided scheme (CFDEMcoupling documentation,
2016a; Norouzi et al., 2016).

The radiative diffusivity is defined as:
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1
=3 i (12)
where « and o are respectively the absorption coefficient ac-
cording to Eq. (5), and the effective scattering coefficient according
to Eq. (6).

At the emitting walls, Marshak's boundary condition (Marshak,
1947) is imposed:

202 ew)

n-VG + G = 40T},
Ew

(13)

with &, being the emissivity of the wall, fi the unit normal vector of
the wall, and T,, the wall temperature.

Alternatively, if the amount of radiative heat flux coming from a
boundary (|qqq,5|) is known, the gradient of the incident radiation
intensity is prescribed according to:

_ |qrad,b|
-

The heating rate due to radiation, experienced by a single par-
ticle, is the difference between the intensity that is absorbed:

QubsGi/(1 — ¢p;), and the intensity that is emitted: 40Qab5Tgv,v/(1 —

VG = (14)

¢p,i), through the particle surface wdﬁj /4:

2
Qabs Trdpi
1—op; 4

Qradi = (Gi - 40T§,i)- (15)
Subscript i denotes that the solid fraction ¢p; and the incident
radiation intensity G; are interpolated to the particle location from
continuum fields (i.e., the CFD-mesh). Division by (1 — ¢;,) takes
the surrounding particles into account (see section 2.1.2).
Similarly, the radiation contribution to specific fluid enthalpy
equation is:

sm:q@—%ﬁ)

To improve the numerical stability, the above term is typically
split into explicit and implicit contribution (Patankar, 1980). Details
on the corresponding computational procedure are provided for
example in (Cintolesi et al., 2017). Since we encounter only trans-
parent fluids in our present study, the above term is zero, and does
not affect the computational procedure.

Once the radiative intensity is known, the radiative heat flux is
evaluated from:

(16)

Qrad = -I'VG. (17)

The relation above could also be injected in Eqgs. (10) and (13).
This would form a system of two 1st-order partial differential
equations for the incident radiation and the radiative heat flux.
Such a formulation (although preferred for radiative equilibrium in
a gray medium (Modest, 2013)) is not compatible with the finite
volume method used in CFD. Moreover, most CFD codes are inter-
ested only in the heat flux that comes to the surfaces of the
enclosure, evaluating Eq. (17) only at the boundaries of the domain
(e.g. (Cintolesi et al., 2017)). Here, we calculate the radiative heat
flux over the entire domain, since it is of interest how the radiative
heat flux varies over the particle bed. The next section details the
numerical strategies employed for diminishing oscillations in the
heat flux solution.
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2.3. Handling of heat flux oscillations

P1 model is expected to lose accuracy if radiative properties are
non-uniform (Dombrovsky, 1997; Dombrovsky, 2010; Modest,
2013; Viskanta & Mengiic, 1987). Most gas-particle applications,
such as fluidized beds and rotary Kkilns, feature non-uniformity due
to spatial fluctuations of the particle concentration.

Radiative heat transfer equation predicts temperature jumps at
discontinuities (Heaslet & Warming, 1965), which the P1 model,
being a 1st order approximation, cannot resolve. Instead, we
observe unphysical heat flux oscillations near sharp gradients in the
solid fraction field (see subsection 3.3).

Several measures are taken to reduce the influence of these
sharp gradients on the solution.

First, a harmonic interpolation from cell centres to cell faces
(Moukalled et al., 2016) is enforced for the radiative diffusivity (Eq.
(12)).

Second, to avoid the diffusivity tending to infinity in the case of a
cell completely void of particles, we add the fluid scattering
contribution in Eq. (6). The value for the fluid scattering coefficient
is set to gp=1.23 x 107> m~". This is the scattering coefficient of the
atmosphere, responsible for the blue color of the sky (Penndorf,
1957).

Third, the radiative heat flux from Eq. (17) is re-written by
exploiting the differentiation product rule, arriving at:

Qrog = GVI' — V(I'G). (18)

While the aforementioned measures improve the numerical
solution, a certain amount of heat flux oscillations is mathemati-
cally bound to occur. This becomes a large issue even for densely
packed beds if the computational cells are small compared to the
particle size. As demonstrated in subsection 3.2.3, such cases can
lead to heat flux oscillations as extreme as 10%%.

These extreme oscillations can be removed by artificially
reducing discontinuities in radiative properties. Specifically, we
suggest two correction strategies: 1) smoothing of the radiative
diffusion field, and 2) pseudo-scattering of the fluid.

Smoothing is a procedure of redistributing values over a length
Lsmooth in order to achieve a more uniform field. The procedure is
today routinely applied to void fraction and momentum-exchange
fields in CFD-DEM simulations, as detailed in (Capecelatro &
Desjardins, 2013; Pirker et al., 2011; Radl et al., 2014). Here, we
apply smoothing to the radiative diffusivity field I by solving:

ar

5= DV°T, (19)

where the diffusion coefficient is:

D:LLZWMﬁ (20)
At

Alternatively, the variations of the radiative diffusivity field

might be ameliorated by introducing pseudo-scattering of the fluid
to Eq. (6):
Teff = (1= @p) g +0p(3 — A1) (1)
According to above, cells devoid of particles will have attenuation
properties proportional to ¢. If ¢ris selected as a small fraction of the
overall extinction coefficient (i.e., 5% < ¢r < 20%8), the difference
between the gas-filled and the particle-filled cells will be reduced,
while keeping the increase of the overall opacity negligible.
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3. Results
3.1. Optical thickness of granular media

The optical thickness, defined as:

L

= [Bexdx, 22)

0

describes the degree of transparency of a system to radiation. For a
medium with uniform properties, the optical thickness (or opacity)
along the path L reduces to:

TL = 51. (23)

In such a medium, the extinction coefficient § is the inverse of
the mean penetration distance (Howell et al., 2010):

- (24)

The mean penetration distance is the average distance a photon
can reach in a medium without being absorbed or scattered away.
This physical quantity is similar to the mean free path of a molecule.
In a vacuum, the extinction coefficient is zero, and the mean
penetration distance tends to infinity. In contrast, for an infinitely
large extinction coefficient, the mean penetration distance tends to
zero, and the medium is completely opaque. Practically, e.g. solid
metals are considered completely opaque, with a typical mean
penetration distance of 10 nm to 1 um (Tolochko et al., 2000).

Systems are classified as optically thin if 7; < 1, or as optically
thick if 7, > 1. Based on comparisons with other methods, P1
model is reported as being accurate for large opacities, i.e., 7 > 2
(Viskanta & Mengiic, 1987). In that case, all incident radiation is
attenuated locally, eliminating the directional dependency at the
enclosure scale. Already at 7; = 10, according to the Beer-
—Bouguer—Lambert law (Howell et al., 2010), 99.995% of energy is
attenuated within the medium, making it effectively opaque.

Most granular media fall into the optically thick category, as
seen in Fig. 1. Combining Egs. (7) and (23) for a monodispersion of
large spheres (Qexr = 1), we obtain the relationship between the
optical thickness 71, and the system parameters including solid
fraction ¢, particle diameter dp, and enclosure length L (we note in
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Fig. 1. Optical thickness in packed beds of large particles with Qey = 1.
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passing that the absorptivity of the particles does not influence the
optical thickness).

As seen in Fig. 1, a dilute system with ¢, = 0.1 requires a length of
only 10 particle diameters to comprise an optically thick medium,
and 60 particle diameters for an opaque medium. In a densely
packed system, with ¢, = 0.5, the opaqueness limit is reached
already at 6 particle diameters. This — alongside recent insights
from Monte Carlo simulations of radiation in randomly packed beds
of spheres (Liu et al., 2021) — suggests that the P1 model is suitable
for describing radiative heat transfer in granular media.

3.2. Equilibrium heat flux and temperature distribution

To verify our P1 implementation, we use the exact solution for a
radiative equilibrium in a gray medium between two isothermal
black plates from Heaslet and Warming (Heaslet & Warming, 1965).
This solution is well-known in literature: for example, it was
already used to benchmark the P1 implementation in OpenFOAM
for a gray gas (Cintolesi et al., 2017), and it was used to validate the
Monte Carlo ray tracing method for polydisperse particles (Chen
et al., 2022) — albeit without details provided on the specific vali-
dation case setup.

Still, repeating the same benchmark is necessary here, as our
implementation differs in a few details, most notably in the way the
heat flux is treated. In the formulation intended for fluid calcula-
tions, the radiative heat flux is usually defined only at the wall
boundaries of the domain, as it is the case in (Cintolesi et al., 2017).
We, however, compute the heat flux over the entire domain. As
detailed in subsection 2.3, the heat flux is prone to both numerical
and model errors if applied to a non-uniform medium.

Another departure from the standard P1 implementation is the
addition of Brewster's correction to model dependent scattering
(see Eq. (7)). This inclusion alters the extinction efficiency of
granular media and also alters the transient behaviour.

3.2.1. Test case setup
We consider three situations, as depicted in Fig. 2: (a) a uniform
packing of monodisperse spheres, (b) a uniform packing of bidis-
perse spheres, and (c) a random packing of polydisperse spheres.
Relevant simulation parameters are given in Table 2. At the
emitting walls, Marshak's boundary condition is imposed (Eq. (13)).
Cyclic boundary condition is imposed elsewhere. The fluid
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soolecelece
veos[evele e
T e e[e s el e
soclecelecs
Tes[esele s
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Fig. 2. Simulation domain for steady-state simulations.
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temperature is set to 273.15 K. As the fluid is non-absorbing (only
slight scattering is allowed, as discussed in subsection 2.3) and
convective heat transfer is excluded, the fluid temperature remains
constant and is hence unaffected by thermal radiation. The fluid
velocity is set to no-slip at the hot wall, and to zero gradient at the
cold wall. The pressure is set to 1 bar at the cold wall, and to zero
gradient at the hot wall. Drag is calculated according to the closure
of Koch-Hill (Koch & Hill, 2001), but since the particles are fixed, no
signification variations of the flow field are observed. The void
fraction is mapped from particle positions according to the divided
scheme (CFDEMcoupling documentation, 2016a; Norouzi et al.,
2016).

Test case-specific particle properties are given in Table 3. Size
distribution for the polydisperse case is shown in Fig. 3. In all cases,
particles are given a uniform extinction efficiency, stemming from
Eq. (7) and the prescribed optical thickness according to Eq. (23).
Contributions to extinction from absorption and scattering are
considered equal, i.e., Qups = Qscq = 0.5, with the scattering being
isotropic (i.e., A1 = 0). However, as demonstrated in Appendix B, the
ratio of absorption and scattering affects only the transience, and
does not influence the steady-state results presented in this
section.

The uniform particle packing used in the monodisperse and the
bidisperse setup ensures equal solid fraction distribution in CFD
cells. However, continuum-based models are generally not appli-
cable to regular arrangements of particles (Li & Chandran, 2022; Liu
et al., 2021), due to the ray transmission through the interstitial
spaces. On the other hand, random arrangements diffuse the heat
transport by enforcing multiple scatterings and absorptions. Para-
doxically, as discussed before in subsection 2.3, spatial variations,
i.e.,, inhomogeneities in the domain, tend to cause calculation errors
(Dombrovsky, 1997; Dombrovsky, 2010; Modest, 2013; Viskanta &
Mengiic, 1987).

3.2.2. Temperature distribution
The equilibrium emissive power (i.e., the normalized tempera-
ture) for a gas-particle system of various opacities is shown in Fig. 4.

Table 2
Simulation parameters.
Parameter Value
hot wall temperature T; = 1000 K
cold wall temperature T, =500 K
wall emissivity ewl = enp = 1
domain length L=002m
number of cells 3x3x20
initial particle temperature Tpo = 300K
particle density kg
pp = 1000 3
particle heat capacity -~ ]
cp = 10000 kek
Table 3
Particle properties.
Monodispersion Bidispersion Polydispersion

Np 1440 4860 1000

dp 375 pm 167 um, 333 um 375 pm*

?p 0.221 0.082 0.194

Qext/B 0.00088177 0.0014020 0.0012086

*mean, see Fig. 3.
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Fig. 3. Volumetric size distribution in polydispersion.
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Fig. 4. Emissive power established in granular media (setup from Table 3).

Based on comparisons with other methods, the P1 model is
expected to show excellent agreement for optically thick media,
with 7 > 1. Our results confirm this, as for an opacity of 7, = 10
almost perfect agreement is achieved. In this case, the emissive
power changes linearly with the normalized location between the
hot and the cold boundary, according to the following approximate
relation (Heaslet & Warming, 1965):

3 1 1
RGNS E I e (G R i (25)
$="4_ 4 |11 _q1.3 :
T —Tz €w1+€w2 1+4TL

T>1

However, as the case is one-dimensional and isotropic, good
agreement is achieved also at lower opacities. The greatest depar-
ture is observed at the boundaries, where non-linear effects are
dominant. However, the discrepancy does not exceed approxi-
mately 10%. Having in mind that the emissive power is proportional
to the 4th power of temperature, the associated temperature error
is at least four times smaller:
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(p+0,)—p _(T+op)*—T*

® T4 ’
Oy _ (T*+46rT° + 66772 + 4077 + 67) — T* (26)
® T4 ’

A, = 4A7 + 6AF + 4A3 + Af=4Ar.

In the relation above, 6 is the absolute and A the relative error.
According to Eq. (15), at the equilibrium, the incident intensity G is
also proportional to the 4th power of the temperature, holding the
same relative error relationship. Illustrated in Fig. 5, error as large
as 20% in incident radiation leads to only 5% error in temperature.
Thus, we next consider the heat flux as a more sensitive measure of
the computational precision.

3.2.3. Equilibrium radiative heat flux

The mean dimensionless heat flux (average across the domain)
for various opacities is shown in Fig. 6 against the exact solution
(Heaslet & Warming, 1965):

4/3

di _
- {1 42089 + TJ 1

o(T-T3)
The dimensionless heat flux above is valid for radiative equi-
librium established between black walls (i.e., ey1 = ew2 = 1). We

note in passing also the dimensionless equilibrium heat flux for
gray walls (Heaslet & Warming, 1965; Modest, 2013):

v qi _ Yp _
o(T“—T‘z‘) 1+¢b(i+gﬁ—z)

1) (27)

(28)

Ewl

Even though the mean heat flux agrees well with the exact so-
lution in the whole range of opacities, variation of the local cell
values is observed. This is especially pronounced for the poly-
disperse packing, where the void fraction, and therefore radiative
properties, vary from cell to cell. If the size of the computational cell
drops below the average particle diameter, the extreme local heat
flux oscillations also affect the mean heat flux.

As seen in Fig. 7, for the polydisperse packing at 7, = 10, the error
in the mean heat flux jumped at over 108% when the number of
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Fig. 5. Relationship between relative errors in temperature and incident radiation
intensity.
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Fig. 6. Equilibrium mean heat flux in a particle bed (setup from Table 3).

cells per length increased (N; > 50). These extreme oscillations are
completely removed by smoothing (CFDEMcoupling
documentation, 2016b). In contrast, the error due to small cell
size (i.e., large N;), even though reduced, is still too large after
correction with pseudo-scattering. The temperature solution
retained high precision (less than 10% discrepancy from Eq. (25))
for all correction procedures.

Even with correction procedures employed, there is a dispersion
of local heat flux values: Fig. 8 shows the coefficient of variance
(ratio of the standard deviation and the mean value) for the radi-
ative diffusivity and the heat flux.

While smoothing certainly outperforms pseudo-scattering ac-
cording to the data shown here, pseudo-scattering is still useful for
cases with a small number of particles (e.g. as in subsection 3.4.1),
since large smoothing lengths may cause unbounded temperatures.

3.2.4. Verification of coarse-graining

To verify the coarse-graining implementation, we compare the
simulation results to the exact solution from Heaslet and Warming
(Heaslet & Warming, 1965). The simulation setup remains the same
as described previously, with parameters detailed in Table 2. Again,
we use the three cases depicted in Fig. 2: (a) a uniformly packed
monodispersion, (b) a uniformly packed bidispersion, and (c) a
randomly packed polydispersion.

Particle parameters are as defined in Table 3 with one important
exception: the assigned extinction efficiency Qg is divided by the
particles’ enlargement ratio ¢cc = dcg/dp. This allows the same
geometrical setup to represent different levels of coarse-graining.

The resulting emissive power achieved with coarse-graining of
occ = 1000 and ¢cc = 1000 000 is shown in Fig. 9 for an opacity of
TL = 10.

The results agree extremely well, with no discernible difference
in data obtained with and without coarse-graining. Monodisperse,
bidisperse, and polydisperse systems all retained their precision in
temperature, heat flux, and time, as described in previous sections.

This demonstrates practically limitless applicability of coarse-
graining with P1, given that the system is self-similar (i.e., iden-
tical solid fraction distribution in each computational cell). How-
ever, and as mentioned, in practice particle coarse-graining may
typically result in parcels being larger than a computational cell.
This again stresses the importance for smoothing of the particle
volume fraction field to ensure particle coarse graining yields
realistic results.
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Fig. 7. Relative error in the mean heat flux A, and temperature Ar for polydispersion with 7, = 10 versus number of cells per length N;.
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Fig. 8. Coefficient of variation in the radiative diffusivity CVr and the heat flux CV, versus number of cells per length Nj.

3.3. The effect of packing heterogeneity on the solution

The P1 model is reported to lose accuracy in a non-uniform
medium (Dombrovsky, 1997; Dombrovsky, 2010; Modest, 2013;
Viskanta & Mengii¢, 1987). In order to quantify the degree of the
tolerable non-uniformity, we analytically derive approximate re-
lations for the equilibrium-state in a packed bed with a step change
in opacity. While this setup is very simple, it has the advantage that
we are able to derive an approximate solution for it, based on the
exact solution given by Heaslet and Warming (Heaslet & Warming,
1965).

As seen in Fig. 10, we construct such a bed from two uniform
monodisperse regions, each with identical number of particles, but
of a different diameter. As a result, each region has a different void
fraction and a different opacity.

According to Eq. (22), the total opacity of the bed is found by
summing up the opacities of the two involved regions:

33

7L = B1L1 + 8oLy = 711 + 712 (29)

In thermal equilibrium, the heat flux is constant along the bed
length:

Y(T1-T13) = v (T4 -T%) = v (T, - T3). (30)

Assuming both regions of the bed are optically thick (73,
T2 > 1), the normalized heat fluxes (¥, Y1 and y») stem from Eq.
(27) (Heaslet & Warming, 1965). Temperatures Tq; and Ty;, which
denote respectively the left- and the right-hand side of the inter-
face, follow from:
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Fig. 9. Influence of coarse-graining on the emissive power in granular media with
opacity 7, = 10 (setup adapted Table 3).

- (i),
%(T?—T‘z‘).

It is easily shown that there is a temperature jump at the
interface, such that Tj; > Ty;. From Eq. (31), it follows that:

T4~ Th = (1 - 14) [1 - WL;IZZ} .

The term containing the normalized heat fluxes can be
expanded using Eqs. (27) and (29) into:

(31)

4 4
Ti2 - T2 +

(32)

A A
Vit A B tEm 2B+7

= A A =
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>1, (33)
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(Heaslet & Warming, 1965), a temperature slip was found next to
the wall boundary (see Fig. 4).

In a real-world granular medium, there is no sharp interface
separating densely packed and dilute regions, and therefore the
temperature distribution should be smooth.

However, when applying a continuum-based radiation model,
temperature jumps are mathematically imposed. Being a low-order
approximation, the P1 model is not able to fully resolve the
discontinuity and predicts an interface temperature between Ty;
and Tj,. As a consequence, heat flux oscillations arise.

To showcase these oscillations, we use a domain as shown in
Fig. 10. The overall opacity is set to 7, = 50, while opacities of the
regions are varied according to Table 4. The rest of the simulation
parameters remained as shown in Table 2, with the exception of the
domain length L which is here extended to 0.1 m. The two regions
of the bed each occupy half of the domain: L; = L, = L/2, and the
diameter of the bigger particle is set to 0.4 mm.

The resulting temperature and emissive power are shown in
Fig. 11, and the heat flux (sampled along the bed length) is shown in
Fig. 12.

While the interface temperature settles between the predicted
limiting values from Eq. (31), heat flux responds with an oscillation.
The oscillation is proportional to the change in properties: relative
errors of 53%, 15%, and 5% compared to Eq. (27) correspond to
particle diameter change of 50%, 25%, and 10%, respectively.

To achieve the displayed results, a fine mesh with Ny = 200 was
needed. As seen in Fig. 13, coarser meshes lead to higher maximum
heat fluxes, as well as larger departures from the average interface
temperature (Ty; + Tj3)/2.

In the future, a more complex setup for a non-uniform particle
distribution (e.g., with a fixed gradient) should be investigated,
ideally considering a (semi-)analytical solution as a reference.

3.4. Validation of the radiation model
In this section, we validate our code with experimental mea-

surements of heat transfer quantities in a pebble bed. First, in
subsection 3.4.1, we consider vacuum conditions, involving heat

where constants A = 3/4 and B = 1.42089 are introduced to simplify Table 4
the expression. Returning to Eq. (32), since (T?fTézl) ~1 and Parameters used in simulations of a bed with a step change in opacity.
dyy /d /T
(1 —%ﬁ?) <1, also (T‘ll,- - ;‘2) <1 must be true. o1/ dp2 Qo b b2 Ak
. . 0.5 6.1216 159.19 840.81 5.28
In other words, the interface temperature facing the cold 075 49723 317.03 682.96 215
boundary is greater than the interface temperature facing the hot 0.9 41918 42405 575.75 135
boundary. 1.11 41918 575.75 424.25 0.74
Temperature discontinuities are expected in radiative heat ;-33 451’;23 632-9? 317.03 0.46
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Fig. 10. Packed bed with a step change in opacity.
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Fig. 11. Temperature distribution (left) and emissive power (right) established in a
packed bed with a step change in solid fraction (setup from Table 4). Solid lines refer to
the numerical solution; left and right triangles represent analytically obtained tem-
peratures at the left and right side of the interface.
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Fig.12. Heat flux per length of a packed bed with a step change in solid fraction (setup
from Table 4).

transfer via radiation and conduction at the pebble contacts. Our
results are compared to predictions of a view-factor—based model
(Tausendschoen & Radl, 2021) and to experimental data (De Beer,
2014). Second, in subsection 3.4.2, we consider also the influence
of an interstitial gas using the experimental data from the SANA test
facility (Stocker & Niessen, 1997).

3.4.1. Pebble bed under vacuum conditions

Here, we recreate a pebble bed under vacuum conditions, as
studied experimentally by De Beer (De Beer, 2014). The experi-
mental setup involves about 300 pebbles placed between a heated,
and a cooled reflector wall. Measured quantities include the steady-
state temperature profile and the steady-state heat flux.
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Fig. 13. Relative error in maximum heat flux and interface temperature for a bed with
a step change in opacity (case dp;/dp; = 0.5 from Table 4).

Fig. 14. Pebble bed under vacuum—simulation domain.

The simulation domain is shown in Fig. 14. Pebbles and reflector
walls are graphite, with a temperature sensitive heat conductivity
(De Beer, 2014). We interpret the setup as one-dimensional,
excluding the influence of non-graphite boundaries. Hot and cold
wall boundaries are isothermal. Remaining simulation parameters
are summarized in Table 5.

3.4.1.1. Radiative heat transfer. We start by examining the
radiation-only solution (no conductive heat transport). We first
briefly discuss (data not shown) the influence of simulation pa-
rameters such as mesh resolution, strategies for removal of heat
flux oscillations, and the closure for dependent scattering. Next, we
compare our results to the view-factor—based predictions given by
Tausendschon and Radl (Tausendschoen & Radl, 2021). Since the
setup is one-dimensional (similar to subsection 3.2), we also
consider the analytic solution (Heaslet & Warming, 1965).
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Table 5
Pebble bed under vacuum—simulation parameters.

Parameter Value
particle diameter dp =0.06 m
domain size 042 mx 042 mx 042 m
number of particles 332
particle density kg

=1650 —=

Pp m3
Young's modulus for heat transfer Yorig = 11 x 109 Pa
Young's modulus for bed creation Y =5x 108 Pa
particle heat capacity _ ]
¢ =710 keK

particle absorption efficiency Qups = 0.8
particle scattering efficiency Qscqa = 0.2
reflector wall emissivity ew =0.8
simulation time step At =1s
400 °C
inner reflector temperature T, =673.15K
outer reflector temperature T, =332.54K

800 °C
inner reflector temperature
outer reflector temperature

T, =1073.15K
T, =4365K

3.4.1.2. Influence of mesh resolution. The small length of the
domain (7 particle diameters) limits the choice of the mesh reso-
lution. Meshes of 4, 6, and 8 cells per length yield less than 10%
relative difference for the temperature solution. However, all
meshes produce a large dispersion of the equilibrium radiative heat
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flux. Least dispersion, attained for the coarse mesh with 4 cells per
length, results in a coefficient of variation of 20% (i.e., ratio of the
standard deviation and the mean value). Finer meshes, with 6 and
8 cells per length, both have cells devoid of particles, and therefore
heat flux oscillations in the scale of 10 and more are observed.
While both smoothing and pseudo-scattering are able to remove
these large oscillations, unfortunately neither technique eliminates
the dispersion.

3.4.1.3. Influence of smoothing and  pseudo-scattering.
Smoothing with Lgmeoth = Leenn/2 and Lsmooth = Leenn applied to the
mesh with 8 cells per length, yields a coefficient of variation in heat
flux of respectively 55% and 38%. For the coarse mesh, with 4 cells
per length, the coefficient of variation remains around 20% after
smoothing with Ley/2, and increases to 35% for L.y Moreover,
smoothing adversely affects the temperature, introducing up to 20%
difference for all meshes.

On the other hand, the temperature remains unaffected by
pseudo-scattering, with less than 1.5% difference. For the coarse
mesh with 4 cells, a pseudo-scattering coefficient of 5 m™! (i.e., 20%
of the extinction coefficient) is needed to reduce the coefficient of
variation to 19%. The same amount of pseudo-scattering yields 28%
variation coefficient for mesh with 8 cells per length.

3.4.14. Influence of dependent scattering. Influence of the closure
for dependent scattering is tested for the 800 °C-case. While the
effect on the resulting temperature profile is only slight (around

800°C: radiation only
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Fig. 15. Steady-state temperature distribution established in a pebble bed under vacuum (setup from Table 5).
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Table 6 W
Equilibrium heat-flux [W] for a pebble bed under vacuum (setup from Table 5).

Particuology 82 (2023) 25—47

Case 400°C radiation only 800°C radiation only 400°C full heat transfer 800°C full heat transfer
P1, total - - 2296 9419

P1, radiative 1165#(2817) 78174(1771%) 1232#(392%) 8150/(22407)

analytic (Heaslet & Warming, 1965) 1134 7583 — —

view-factor (Tausendschoen & Radl, 2021) 806.9 5421 1654 6733

experimental (De Beer, 2014) - - 1629 9397

4 — mean, ¢ — standard deviation

Fig. 16. Schematic of the simulation domain for the SANA test case.

1%), a simulation without depended scattering yields a 60% greater
mean heat flux, and also takes 35% longer time to reach the steady
state.

3.4.1.5. Temperature distribution and heat flux. The equilibrium
temperature distribution shown in Fig. 15 (top, left and right) uses a
mesh of 6 cells per length with a pseudo-scattering coefficient of
2.5 m™! (i.e., 10% of the extinction coefficient).

Good agreement of our P1 model predictions is obtained with
view-factor — based predictions (Tausendschoen & Radl, 2021): the
mean relative difference is around 3% for the 400 °C-case, and
around 6% for the 800 °C-case. Compared to the analytical solution
(Eq. (25)), the mean difference stays around 3% for both cases.

Results for the equilibrium heat flux are summarized in Table 6.
The relative difference of the mean heat flux compared to
(Tausendschoen & Radl, 2021) is around 44% for both cases. Better
agreement, with 3% relative difference, is achieved with the exact
solution for a continuous gray medium (Eq. (28)) (Heaslet &
Warming, 1965).

The discrepancy from the view-factor—based results suggests
that continuum assumption adopted by us might not be valid in
systems with small number of particles. The coefficient of variation
remained at around 24% in both cases.

3.4.1.6. Full heat transfer. As the bed is under vacuum, only radia-
tion and conduction within particles contribute to the heat transfer.
A temperature-sensitive heat conductivity is taken from (De Beer,
2014). The contact area for conduction is corrected for the
Young's modulus for graphite (Entegris, 2013).

Bottom left and right graph in Fig. 15 show the resulting tem-
perature profile compared to the experimental measurements (De
Beer, 2014) and the view-factor—based numerical predictions
(Tausendschoen & Radl, 2021). Steady-state heat fluxes are given in
Table 6.

Temperature profiles agree well with experimental data, with
4% precision at 400 °C, and 2% at 800 °C. Similarly, compared to the
view-factor—based solution, the mean discrepancy in temperature
is around 3% at 400 °C, and around 5% at 800 °C. It should be also
highlighted here that the temperature profiles exhibit slip at the
boundaries, most notable near the cold boundary in the radiation-
only solution. Thus, even though the boundaries are set as
isothermal, influence of radiation significantly affects the final
state. Still, for such a case heat flux is a more relevant measure of
accuracy.

The discrepancy of the total heat flux (i.e., the sum of the
conductive and the mean radiative heat flux) is at about 40%
compared to (Tausendschoen & Radl, 2021). The same discrepancy
is found with the experimental data at 400 °C, which is expected
since the view-factor—based solution was calibrated for this data
point. However, the relative error for the heat flux at 800 °C is only
0.23%, while the view factor solution is 28% off. The reason why
both numerical models fail to predict the correct heat flux in the
entire temperature range could lay in some unaccounted-for tem-
perature dependency, such as change of Young's modulus.

Only steady-state—quantities were measured in the experiment.
Tausendschon and Radl (Tausendschoen & Radl, 2021) report a
physical time of 70 000 s as the typical time for the heat transfer
simulations to reach the steady state. In our simulations, the steady
state is reached much sooner: for example, at 400 °C, 90% of the
final mean particle temperature is reached already at 3100 s.
However, this discrepancy might be due to differences in

Table 7
Boundary conditions used for the SANA test case (Stocker & Niessen, 1997).
Nominal power 5 kW 35 kw z[cm]
outer boundary temperature Tcr 326 K 449 K 0-6
Teo 334K 499 K 6—15
Tcs 358 K 574 K 15-85
Tcq 374K 595 K 85—94
Tes 367 K 569 K 94-100
protective tube temperature Ty 578 K 1498 K 0-15
T 650 K 1524 K 15—-85
Tys 703 K 1523 K 85—100
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Table 8

Simulation parameters used for the SANA test case (Stocker & Niessen, 1997).
Parameter Value
graphite heat capacity closure from Entegris, 2013

Li and Mason, 2000
Sutherland, 1893

closure from ToolBox, 2004
Koch and Hill, 2001

particle-fluid convection
fluid viscosity

fluid heat capacity

drag model

definitions, as it is not clear what is understood by the “steady
state” in (Tausendschoen & Radl, 2021).

Furthermore, the view-factor—based simulations are reported
to typically take 671 s of computational time. Our model takes 335 s
to simulate 70 000 s (keeping identical time step duration, initial

5 kW: no radiation
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— 600
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&
400
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800
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temperature distribution, and particle heat capacity as in
(Tausendschoen & Radl, 2021)). However, as the transient process
ends sooner, the simulation could have been truncated already at
10 000 s of simulated time, taking only 50 s of computational time.

3.4.2. Pebble bed with nitrogen: validation with data from the SANA
test facility

Next we replicate the pebble bed setup from the SANA test fa-
cility (Stocker & Niessen, 1997). This experimental data is often
used to validate codes intended for assessing nuclear safety
(Baggemann et al., 2016; Niu & Wang, 2019; Novak et al., 2019).

The nuclear reactor used in the SANA experiments carries
around 9500 pebbles. The height of the pebble bed is 1 m, and the
diameter is 1.5 m. A heating element is placed in the centre of the
bed. A protective graphite tube with 141 mm diameter separates

35 kW: no radiation

1,500 ' z=09lcm
= 50cm
=9cm
X
= 1,000
&
500
|
0 0.2 0.4 0.6 0.8
, [m]
35 kW: full heat transfer
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E" 1,000
&
500
|
0 0.2 0.4 0.6 0.8
, [m]
35 kW: full heat transfer, calibrated
1,500
E" 1,000
&
500
!
0 0.2 0.4 0.6 0.8
7, [m]

Fig. 17. Influence of simulation parameters on the temperature distribution across radial direction (fixed temperature boundary condition). Numerical results for fluid and particle
temperature against experimentally measured particle temperature (Stocker & Niessen, 1997).
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Fig. 18. Steady-state heat flux at domain boundaries (fixed temperature boundary condition).

the pebbles from the heating element. Pebbles are the same as
described in the previous section, with 6 cm diameter.

The simulation domain is shown in Fig. 16. The protective
graphite tube and the outer bed wall are split into sections, each
with temperature assigned according to the experimental mea-
surements (see Table 7). Top and bottom of the vessel are insulated
and assumed to be non-participating in the simulation.

The pebble bed is filled with nitrogen at 1 bar. Presence of ni-
trogen gives rise to natural convection. To account for this, we use
OpenFOAM's “buoyantPimpleFoam” as the basis for the fluid flow
calculations (OpenFOAM, 2018). Solid-fluid interaction parameters
are given in Table 8.

Since the pebbles are the same as used in the experiment with
vacuum conditions (De Beer, 2014), conduction and radiation pa-
rameters are first kept as given in Table 5. However, as will be
discussed later, this leads to an underestimation of the conductive
contribution (see top and middle row in Fig. 17).

In contrast to vacuum conditions, the conductive transport does
not happen only through the pebble-pebble contact area, but also
through the thin layer of stagnant gas near the contact points. To
take this effect into account, we increase the corrective Young's
modulus from Y,g = 11.5 GPa (Entegris, 2013) to Yorig = 11.5 MPa,
which yields approximatively 10 times larger contact area.
Furthermore, the thermal conductivity of graphite decreases with
temperature (De Beer, 2014; Entegris, 2013; Stocker & Niessen,
1997). However, this decrease in conduction through the pebble-
pebble contact areas is effectively counterbalanced by the in-
crease in stagnant gas conductivity (Ren et al., 2017). Thus, we also
impose a constant conduction coefficient of 150 % (i.e., the value
for graphite at 100 °C (Stocker & Niessen, 1997)).
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The resulting temperature distribution is illustrated in Fig. 17,
where the top and middle row respectively show simulation results
without radiation, and simulation results for full heat transfer, both
with conductive properties as under vacuum. The bottom row in
Fig. 17 shows the full heat transfer, but with aforementioned cali-
bration of conductive properties. The corresponding heat flux is
illustrated in Fig. 18 (note the logarithmic scale). Since the heat flux
is recorded only at the domain boundaries, no strategies for oscil-
lation removal are used.

Judging from the temperature profile, the radiation contribution
is miniscule in the low-power case, since the simulation without
radiation yielded fluid temperatures that are nearly perfectly
matching the experiment (Fig. 17, top left). On the other hand, the
particle temperature is slightly overestimated near the reactor
bottom. This suggests that the conductive transport is under-
estimated, even without radiative contribution. In the high-power
case, temperatures are 20% lower than the experimental data
(Fig. 17, top right). Also, the heat flux is severely underestimated: for
both low- and high-power case, neglecting to include radiation
resulted in a heat flux several magnitudes lower than that imposed
in the experiment (Fig. 18).

Inclusion of radiation yields a heat flux closer to the experi-
mental values, but also leads to the overestimation of temperatures
(Fig. 17, middle left and right).

Finally, adding also the conduction contribution due to the gas
near the contact points reduces the mean fluid temperature error in
both cases to less than 10% (Fig. 17, bottom left and right). However,
the temperatures in the high-power case are still exaggerated. Also,
while the fluid temperature displays a buoyancy-induced vertical
distribution as recorded in the experiment, the particle



J. Macak, C. Goniva and S. Radl

T
300.0 350.0 4000 4500 500.0 550.0 600.0 650.0 700.0

Y Axis
-0.8 -0.6 0.4 -0.2 0.0 0.2 0.4 0.6
-0.7 -0.7
-0.6 -0.6
-05 -0.5
X A4 0% Axis
-0.3 -0.3
-0.2 -0.2
-0.1 0.1
0.0 0.0
1.0 1.0
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
Z Axi®.5 0.2 Axis
0.4 0.4
0.3 03
0.2 0.2
0.1 0.1
0.0 0.0
-0.8 -0.6 -04 0.2 0.0 0.2 04 0.6
Y Axis

5 kW: vertical cross-section

0.0 0.0

-0.1 0.1
-0.2 0.2
-0.3 -0.3

X AXig) 4 4 AXis
-0.5 05
-0.6 0.6
-0.7 -0.7
-0.8 -0.6 0.4 -0.2 v 2)85 0.2 0.4 0.6

(e) 5 kW: bottom

temperature profile is more uniform. This is especially pronounced
in the high-temperature case.

The experimental heat flux displayed in Fig. 18 is calculated from
the effective power divided by the surface area of the boundary.
After subtracting losses from the electrodes and water cooling
(Stocker & Niessen, 1997), the nominal powers of 5 kW and 35 kW
amount to effective powers of respectively 2.6 kW and 25.16 kW.
Final simulation results (calibrated full heat transfer) yielded error
of 30% and 70% at the protective tube, and of 117% and 170% at the
outer boundary, respectively for the low- and the high-power case.

Snapshot of the temperature distribution for the calibrated
simulation is shown in Fig. 19. The left-hand side of each view
represents fluid values, and right-hand side particle values.
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Fig. 19. Temperature distribution (fixed temperature boundary condition).

Additionally, we show the temperature distribution for the sit-
uation where a constant radiative heat flux is imposed at the pro-
tective tube boundary. The heat flux measured in experiments is
not purely radiative: the heating element radiatively heats up the
graphite protective tube, which in turn heats up the pebbles and
the nitrogen via all three modes of heat transfer. Still, as a complex
multiphase heat flux boundary condition is out of the scope of our
current work, we treat the heat flux as purely radiative, and impose
a zero-gradient temperature condition for the fluid. The outer wall
boundary remains as described previously.

As seen from Fig. 20, in the case of an imposed heat flux, the
influence of conductivity seems to be overestimated. Here, the low-
power case barely heats-up. The high-power case also results in
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Fig. 20. Temperature distribution in the radial direction (fixed radiative heat flux
boundary condition). Numerical results for fluid and particle temperature against
experimentally measured particle temperature (Stocker & Niessen, 1997).

overall lower temperatures. Snapshots of the temperature distri-
bution are given in Fig. 21.

The sources of discrepancy between our results and the exper-
imental data could be attributed to imprecise boundary conditions
and to the scale of the particles. First, the walls in simulation are
treated as infinitely thin. However, the temperatures from Table 7
are measured at a certain distance from the pebble bed. Detailed
simulations (Baggemann et al., 2016) show that the temperature
field significantly decays through the protective tube, which ex-
plains the large departure in the high-power case. Second, pebbles
in our simulation are assumed to have constant temperature. Being
quite large (6 cm in diameter) it is reasonable to assume that a
temperature gradient over each pebble exists.

More successful attempts at recreating this experiment can be
found in literature. For example, Baggeman et al. (Baggemann et al.,
2016) presented an almost perfect agreement using a porous media
approach. The pebble bed geometry was described in detail,
including the electrodes, heating element, and the protective tube.
Radiation was taken into account via an effective conductivity of
the solid phase. The axial symmetry of the case was used to reduce
the problem into two dimensions, resulting in a grid of 55 000 el-
ements. Novak et al. (Novak et al., 2019) also used a porous media
approach, with radiation handled implicitly with an effective con-
ductivity. The mean temperature error was reported to be within
25°C(grid data unknown). Niu and Wang (Niu & Wang, 2019), used
a resolved CFD-DEM approach. The contact points between the
pebbles were modelled using cylindrical bridges of radius
e = 0.1d,. An unstructured grid with five layers of prismatic mesh
elements was applied at the fluid-solid interfaces. To reduce the
computational effort, only one quarter of the bed was simulated,
numbering 37 million computational elements. Radiation was
modelled using a surface-to-surface (view factor) approach.

While our simplified approach cannot compete in precision with
detailed simulations, we were able to successfully predict general
trends using extremely low computational effort. Unfortunately,
computational times were not reported in literature, so a direct
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comparison is not possible. However, with 9428 Lagrangian
computational points and 4096 Eulerian cells, we represented the
entire geometry of the bed. Baggeman et al. (Baggemann et al.,
2016) used 4 times as much cells to represent a single slice of the
domain, while Niu and Wang (Niu & Wang, 2019) used approxi-
mately 2000 times more cells to represent a quarter of the domain.
Our slowest-running case (5 kW, fixed temperature boundary
condition), split on two processors, took only 1770 s of computa-
tional time.

4. Conclusion

This work explored radiation modeling via the P1 approxima-
tion in the context of combined computational fluid dynamics and
discrete element method (CFD-DEM).

Due to its simple mathematical formulation, the P1 approxi-
mation is a popular radiation model, often used in multiphysics
industrial-scale simulations. However, being approximative, the P1
model performs well only in the case of optically thick, and ho-
mogeneous media.

Granular media is often optically thick: we show that in dilute
packings, with a solid fraction of 0.1, a length of only 60 particle
diameters is needed to effectively constitute an opaque medium. In
dense packings, with a solid fraction of 0.5, this number reduces to
6 particle diameters.

The homogeneity constraint is more challenging. Randomly
distributed particles create spatial variations of solid fraction and
therefore also variations of radiative properties. Any sharp,
discretization-induced fluctuation is mathematically analogous to
an existence of immiscible fluids with an interface, where the
radiative transport equation predicts temperature jumps. We
demonstrate this by developing an approximate solution for a one-
dimensional bed with a step change in solid fraction. While the P1
model fails to predict the temperature jump, the abrupt change of
opacity gives rise to heat flux oscillations.

Dilute and dense regions of a particle bed have no sharp inter-
face, hence no temperature jump should be discernible. The ten-
dency of the P1 model to settle at some medium interfacial
temperature therefore produces the anticipated results. However,
the oscillations in heat flux can cause severe errors if the compu-
tational grid is relatively small compared to the particle size,
leading to intermittent occurrence of densely packed cells, and cells
completely devoid of particles.

In that case, the mean heat flux (averaged over the domain) can
be remedied by employing smoothing of the radiative diffusion, or
by pseudo-scattering. Smoothing is a standard procedure, often
used to improve the temporal behaviour of the solid fraction and
the particle-fluid momentum exchange terms, while pseudo-
scattering artificially increases the scattering contribution of the
fluid. Both procedures assuage the heat flux oscillations by reducing
the disparity of attenuation properties between the adjacent
particle-filled and particle-empty cells.

Smoothing outperforms pseudo-scattering almost always;
pseudo-scattering is useful for relatively small domains, with less
than 1000 particles.

Both smoothing and pseudo-scattering remove the extreme
heat flux oscillations, improving the prediction of the mean heat
flux. However, dispersion of local heat flux values persists even
after an oscillation-removal strategy is employed. Therefore, the P1
model appears less suitable for studying changes of heat flux across
the domain.

Still, excellent agreement with an analytical solution is obtained
for the steady-state temperature distribution, and for the mean
steady-state heat flux. The model also reliably predicts the tran-
sient behaviour: cooling and heating of a single particle agrees with
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an analytical solution, and cooling of a particle mixture agrees with
a semi-analytical solution.

Precision is retained for size-disperse systems, with various
absorption characteristics.

Dependent scattering effects are taken into account using
Brewster's closure (Brewster, 2004). While dependent scattering is
often overlooked (Li & Chandran, 2022), we found that neglecting
this term leads to an inaccurate mean heat flux (i.e., an increase of
=~60%) and also affects the transients.

With an appropriate closure, the applicability to coarse-graining
is practically limitless: we found no discernible difference in the
results by varying coarse-graining level to up to a million.

In comparison with experimental data, satisfactory agreement is
found for an application in vacuum. The steady-state temperature
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Fig. 21. Temperature distribution (fixed radiative heat flux boundary condition).

and the (mean) heat flux are of similar precision as predictions of a
view-factor—based approach. In the presence of an interstitial fluid,
calibration is necessary to represent the conduction correctly (i.e.,
to account for surface roughness, and fluid at contact points). With
calibration, it is possible to obtain a temperature distribution
within 10% margin of error. The predictions could have been
potentially improved by more accurate boundary conditions, and
by introducing an intra-particle temperature distribution.

While the more precise radiation models take up most of the
computational time, the P1 approximation is extremely fast, and,
alongside proper calibration of other heat transfer properties, has
the potential to also be very accurate. Used on its own, the P1 model
has the capacity to reliably predict trends, and in conjunction with a
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more elaborate method, it can immensely speed up the simulation
process.
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Appendices
A. Transient heat transfer

To verify the transient behaviour of the P1 model, we study
temperature evolution of: a) a solitary particle in an isothermal
black enclosure, and b) a packed bed placed between two
isothermal black plates. For the first case, we find an analytical
solution alongside important dimensionless parameters, and for
the second case, we use the semi-analytical solution for a contin-
uous gray medium given by Lipifski and Steinfeld (Lipinski &
Steinfeld, 2005).

A.1. Solitary particle in an isothermal enclosure

We study temperature evolution of a single black particle placed
in an isothermal black enclosure (Fig. A1).

The particle is fully enveloped by the enclosure, therefore all
emitted and absorbed power is spent into the change of the par-
ticle's internal energy:

3 2
ppcp%d" % - Qabsﬂpo (4aT4 - 4org). (34)
Meaning of the symbols in the equation above is summarized in
Table A1l.
A similar test case was used in (Amberger et al., 2013), where
Monte Carlo simulation was compared to direct forward Euler time
integration of Stefan-Boltzmann's law. Since Eq. (34) is an ordinary

differential equation, we re-write it to:

_ ppCpdp  dTp
6Qabs0 Tg — Ty

Integrating the above from state 1 (t = ty, T, = Tp1) to state 2
(t=t, Ty = Tp) results in:

dt (35)

43

where

C = M (37)
24Qqps0 Ty
is extracted as the characteristic time constant of the system.

Next we compare the simulation results to Eq. (36). Two situa-
tions are considered: particle cooling (T, > Tp) and particle heating
(Tpa1 < To). Simulation parameters are defined in Table A1. The effect
of the enclosure temperature Ty on the time constant should be
emphasized: as seen in this example, using 2 times larger enclosure
temperature results in 8 times smaller time constant, due to inverse
proportionality to the third-power.

The time evolution of the particle temperature is given in
dimensionless form in Fig. A2. Using the 20-th part of the time
constant C; as the time step yields relative mean error of 3.9% for
cooling and 3.7% for heating. The largest discrepancies are at the
start of the simulation. By decreasing the time step, it is possible to
further improve precision: e.g. time step of C;/100 in the cooling
simulation reduced the mean error to 0.9%.

Changing the length of the enclosure side from 1 m to 10 m did
not affect the simulation results, which is not surprising since the
enclosure size does not enter Eq. (34). The test case is also insen-
sitive to the mesh resolution, as the discrepancies in the results
stayed below 1% for meshes of 3,5, 9, and 15 cells per enclosure side
length.

A.2. Cooling of a packed bed

Lipinski and Steinfeld (Lipinski & Steinfeld, 2005) developed a
semi-analytical solution to verify the Monte Carlo method for
transient radiative heat transfer in suspensions of coal particles. We
adapt here the same solution to evaluate the P1 model in granular
media.

The semi-analytical solution is derived for a continuous gray
medium between two isothermal black plates at a temperature T,
The temperature profile established in the medium is given in the
dimensionless time instances:

4ng,0

t=—2 ¢
PpPpCpl

(38)

where T g is the initial particle temperature, ¢, the solid fraction, pj
the particle density, c, the particle heat capacity, L the length of the
domain, and ¢ the Stefan-Boltzmann constant.

We test three simulation setups as shown in Fig. A3: a) a uni-
formly packed monodispersion, b) a randomly packed mono-
dispersion, and c) a randomly packed polydispersion.

Particle initial temperature is set to Tpp = 1000 K, and wall
boundaries are set to T, = 300 K. The rest of the simulation pa-
rameters is given in Table 2. Particle properties are as defined for
the monodisperse and polydisperse case in Table 3. To recreate the
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setup from (Lipinski & Steinfeld, 2005), the absorption to scattering
ratio is fixed at 0.535, with an overall opacity of 7; = 2.

Fig. A4 shows the simulation results against the semi-analytical
solution (Lipinski & Steinfeld, 2005). For the uniform monodisperse
packing, the mean difference stays below 2%, while it rises to about
5% for the other two cases. The maximum difference of 12% is found
for the polydisperse packing, due to different heatings rates for
different-sized particles.

Tested for the polydispersion, decreasing the time step (from 1 s
to 0.1 s), varying the mesh resolution (from 10 to 100 cells per
length), as well as adding the correction procedures (i.e., smoothing
with Lymoorn = 2dp and pseudo-scattering with ¢r = 10%6), did not
alter the results for more than 1%.

Recently, Diaz-Heras et al. (Diaz-Heras et al., 2021) applied the
P1 model to study an irradiated bubbling fluidized bed. A departure
from experimental data was observed regarding the time evolution
of the mean particle temperature. As our results verify that the P1
model is able to accurately predict transient heat-up in a radiation-
only situation, the error reported in (Diaz-Heras et al., 2021) could
be attributed to some other factor present in experimental condi-
tions. Still, future research might be needed to increase the fidelity
of the simulation model.

B. Influence of particle size and absorption properties

It is established in subsection 3.2, that the steady-state is nearly
identical for size-disperse systems of the same opacity. Moreover,
since the opacity is determined by the overall extinction, the
relative amount of absorption and scattering contributions is also
inconsequential. The only exception where the ratio of absorption
and scattering affects the steady-state is the limiting case of pure
scattering: here, no energy is absorbed and the medium remains
isothermal.

However, particle size and absorption coefficient do affect the
transients. To demonstrate this effect, we use the setup from
subsection 3.2.1 at opacity 7, = 10. We consider the moment when
the average particle reaches 90% of its steady-state value as the
equilibrium (Atggy), i.e., the end of the transient heat-up phase.

In the case of pure absorption (Qgps/Qext = 1), the equilibrium
times of 1020 s, 403 s, and 870 s are found respectively for the
monodispersion, bidispersion, and polydispersion. Remembering
Eq. (37), the characteristic time is proportional to the particle
diameter and the material density. The equilibrium times thus
correlate to the total mass of the system: as defined in Table 3, the
monodispersion has the highest mass and accordingly takes the
longest time to settle. On the other side, the bidispersion features
the smallest particles and thus the fastest change.

Furthermore, reducing the absorption contribution, while
keeping the extinction constant, will increase the duration of the
transient phase. As seen in Fig. B1, case with 10% absorption and
90% scattering caused a prolongation of =15% for the bidispersion,
and of =25% for the monodispersion and the polydispersion.

Meanwhile, there is virtually no difference between the steady-
state values for various Qgps/Qexs ratios. Captured at 5000 s, the
discrepancy is below 0.2% for temperature, and below 0.04% for the
heat flux. The same heat flux is found also for pure scattering, while
the particle temperature remained at its initial value.

C. Imposed radiative heat flux at boundaries
Many applications, such as solar or laser heating, need to impose

a radiative heat flux at the boundaries. Here, this is possible ac-
cording to Eq. (14). For verification, we use an analogous test case to
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the one from subsection 3.2. We keep the temperature fixed at the
cold boundary, but impose a constant heat flux from Eq. (27) at the
opposite side.

The resulting temperatures at the boundary with the fixed heat
flux applied are shown in relation to the number of cells per length
in Fig. C1. Displayed results are for the polydisperion from Table 3 at
opacity 7, = 10.

While the error in regard to Eq. (25) remains below 5%, both
smoothing and pseudo-scattering introduce unboundedness of the
temperature. Heat flux corrections of intermediate magnitude
cause the overshoot of the theoretically possible temperature slip,
while high-magnitude corrections lead to the overshoot of the
theoretical wall temperature.

Since the spatial distribution of particles is the same as in
subsection 3.2.3, local heat flux values are dispersed with an
identical coefficient of variation, while the overall mean heat flux
achieves the same or slightly better precision.

D. Gray walls

For simplicity, we assumed black enclosure walls in all previous
verification cases. Since gray walls are more common in practice,
we also briefly show results for such a situation.

The test case setup is as described in subsection 3.2.1, with wall
emissivities reduced to 0.8 and 0.2. We consider the polydisperse
case from Table 3 at 7, = 10.

The resulting steady-state emissive power is shown against the
analytical solution from (Heaslet & Warming, 1965) in Fig. D1.
Compared to Eq. (25), the temperature discrepancy stayed below
2%: the maximum error amounts to 0.26% when the higher emis-
sivity is at the hot wall (¢,,7 = 0.8), and to 1.38% in the opposite case
(ew2 = 0.8). The error in the mean heat flux is in the former and
latter case respectively 9.76% and 7.86% according to Eq. (28).

P

1

Fig. Al. Solitary particle in an isothermal enclosure.
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between gray walls (setup from Table 3).
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Table A1
Solitary particle in an isothermal enclosure—simulation parameters.
Parameter Value
densi k;
v pp = 1000 m%
heat capacity ]
¢p = 1000 keK
particle diameter d, =0.05m
absorption efficiency Qups =1
enclosure wall emissivity ew =1
enclosure side length 1m,10 m
mesh resolution per enclosure side 3,5,9, 15
simulation duration 8C;
time step C:/20
Cooling
initial particle temperature T,1 = 1000 K
enclosure temperature To =500 K
time constant C;=300s
Heating
initial particle temperature T,1 = 500K
enclosure temperature To = 1000 K
time constant C;=40s
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