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This contribution introduces linear differential–algebraic equation (DAE) systems and provides the explicit construction steps
of spectral projectors for DAEs with indexes 1 or 2. Furthermore, an interpolatory projection-based model order reduction
method using spectral projectors is applied to an eddy current problem as well as an electrical circuit to compute a reduced
order model.
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I. INTRODUCTION

THE input–output behavior of many dynamic linear mod-
els can be described by using linear differential–algebraic

equation (DAE) systems, for example, semi-discretized partial
differential equations (PDEs) or electrical circuits using a
modified nodal analysis (MNA). Here, in the case of passive
systems, the algebraic part results in a dominating linear
behavior of the transfer function in the upper frequency range.
However, some model order reduction (MOR) techniques are
unsuitable to approximate the behavior of the algebraic part
of the transfer function, e.g., the rational Krylov method [5].
Therefore, different MOR techniques for solving DAE sys-
tems exist that require spectral projectors to decompose the
DAE into a differential and an algebraic part, e.g., [2], [5].
However, Gugercin et al. [5] use solely analytical constructed
spectral projectors, which restrict the introduced MOR method
to DAE systems with special structures. In addition, the
presented approach in [5] preserves the algebraic part, which
results only in a partial degrees of freedom (DOFs) reduction.

The novelty of this contribution consists in the usage
of spectral projectors constructed according to [1] and the
application of the H2 optimal interpolatory MOR [5] to the
differential part of the DAE system. Furthermore, the algebraic
part is reduced to increase the compression level.

In the following, Section II introduces DAE systems for
single-input single-output (SISO) as well as the definition
of DAE index and spectral projectors. In the case of DAE
systems with index 1 or 2, Section III demonstrates the explicit
construction of spectral projectors based on [1]. Furthermore,
Section IV introduces theH2 optimal interpolatory MOR tech-
nique using spectral projectors. This proposed MOR method
is applied to an index 1 and 2 DAE system to compute a
reduced order model (ROM), where the results are presented
in Section V. Finally, Section VI provides a concluding
discussion of the proposed approach.

Manuscript received 6 November 2022; revised 7 January 2023;
accepted 2 February 2023. Date of publication 3 February 2023; date of
current version 25 April 2023. Corresponding author: S. Kvasnicka (e-mail:
samuel.kvasnicka@tugraz.at).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TMAG.2023.3242426.

Digital Object Identifier 10.1109/TMAG.2023.3242426

II. SELECTED PROPERTIES OF LINEAR DAE

Let a linear SISO DAE system be represented as follows:

E
dx(t)

dt
= A x(t) + b u(t), y(t) = c⊤ x(t) + d u(t) (1)

with matrices E, A ∈ RN×N , vectors b, c ∈ RN , d ∈ R, as well
as time-dependent input u(t) ∈ R, solution x(t) ∈ RN , and
output y(t) ∈ R, respectively. If there exists a λ0 ∈ C, such
that det(λ0E−A) ̸= 0, then the matrix pencil (E, A) is denoted
as regular. In this case, there exist nonsingular matrices S, T ∈

RN×N , such that E, A can be represented by the Weierstraß–
Kronecker canonical form [5]

E = S
(

In f 0
0 N

)
T−1, A = S

(
J 0
0 In∞

)
T−1 (2)

where n f + n∞ = N , In f ∈ Rn f ×n f , and In∞
∈ Rn∞×n∞ are

identity matrices, and J ∈ Rn f ×n f , N ∈ Rn∞×n∞ are matrices in
Jordan canonical form. Moreover, N is a nilpotent matrix with
index µ ≤ n∞, i.e., N, . . . , Nµ−1

̸= 0 and Nµ
= 0. Here, µ is

called the (Kronecker) index of (1) whereby, e.g., many semi-
discretized parabolic PDEs and electrical circuits using MNA
result in µ ≤ 2. Further, n f and n∞ denotes the number of
generalized finite and infinite eigenvalues of the regular matrix
pencil (E, A), respectively. Using Laplace transform with s ∈

C, the transfer function H(s) = c⊤ (sE − A)−1 b + d can be
decomposed into H(s) = Hsp(s) + Himp(s), where the strictly
proper (sp) part Hsp(s) corresponds to an ordinary differential
equation (ODE), and the improper (imp) part Himp(s) is a
polynomial of degree at most µ [1]. This decomposition can
be implemented effectively using left (ℓ) and right (r ) spectral
projectors

Pℓ = S
(

In f 0
0 0

)
S−1, Pr = T

(
In f 0
0 0

)
T−1. (3)

III. CONSTRUCTION OF SPECTRAL PROJECTORS

As described in [1], spectral projectors Pℓ, Pr can be itera-
tively constructed using canonical projectors. The construction
depends on the index µ of (1), and it is summarized in the
following for µ ∈ {1, 2}. However, [1] provides the general
construction procedure.
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Algorithm 1 Construction of projector Qk onto ker Ek

A. Construction of Right Spectral Projector Pr

First, setting E0 := E, A0 := A, and compute iteratively

Ek+1 := Ek + AkQk

Ak+1 := Ak(IN − Qk), for k = 0, . . . , µ − 1 (4)

where Qk is a projector onto ker Ek = {x ∈ RN
: Ek x = 0},

i.e., Q2
k = Qk and Im Qk = {Qkx : x ∈ RN

} = ker Ek .
This construction leads to singular matrices E0, . . . , Eµ−1
and a nonsingular matrix Eµ according to [1, Theorem 1].
Therefore, [2] provides an efficient approach to compute the
projector Qk onto ker Ek , which is summarized in Algorithm 1
using MATLAB1 syntax and functions. The essential step in
the computation of Pr is to construct canonical projectors Q0,c

and Q1,c onto ker E0 and ker E1, respectively, fulfilling (4) and
other properties detailed in [1].

1) Case µ = 1 [1]: For the canonical projector Q0,c =

Q0 E−1
1 A0, the right spectral projector is given due to

Pr = (IN − Q0,c).
2) Case µ = 2 [1]: Initially, the projectors Q0 and

Q1 according to (4) are used to compute admissible
projectors Q0,a = Q0 and Q1,a = −Q1 E−1

2 A1, fulfilling
Q1,a Q0,a = 0 [4]. Then, E2,a = E1 + A1 Q1,a is used
to compute the canonical projector Q1,c = Q1,a E−1

2,a A1.
Furthermore, computing E2,c = E1 + A1 Q1,c leads to
the canonical projector Q0,c = Q0,a (IN − Q1,c)E−1

2,c A0.
Finally, Pr = (IN − Q0,c) (IN − Q1,c).

B. Construction of Left Spectral Projector Pℓ

The construction of Pℓ for µ ∈ {1, 2} follows in the same
way as Section III-A, but with the difference that the initial
matrices of (4) are set to E0 = E⊤ and A0 = A⊤.

1) Case µ = 1 [1]: The construction of the canonical
projector Q̂0,c according to 1) in Section III-A leads to
Pℓ = (IN − Q̂0,c)

⊤.
2) Case µ = 2 [1]: Constructing the canonical projectors

Q̂0,c and Q̂1,c, in accordance with 2) in Section III-A,
results in Pℓ = ((IN − Q̂0,c)(IN − Q̂1,c))

⊤.

1Registered trademark.

Algorithm 2 Interpolatory H2 optimal MOR for SISO DAE

IV. H2 OPTIMAL INTERPOLATORY MOR FOR DAE

Projection-based MOR methods applied to a full order
model (FOM), such as (1), provides, for n ≪ N , the ROM

En
dxn(t)

dt
= Anxn(t) + bnu(t)

y(t) = c⊤

n xn(t) + d u(t) (5)

where En = W⊤EV, An = W⊤AV, bn = W⊤ b, and c⊤
n =

c⊤V using appropriate projection matrices V, W ∈ RN×n .
Furthermore, Hn(s) = c⊤

n (s En − An)
−1bn + d defines the

reduced transfer function. As a specific method, the H2 opti-
mal interpolatory MOR method [5] is chosen, which relates
to a non-convex optimization problem using H2-norm, to find
V, W for stable reduced order SISO models, such that

∥H − Hn∥H2 := min
DAE order(H̃n)=n

H̃n stable

∥∥H − H̃n
∥∥
H2

(6)

where ∥H∥H2 := ((1/2π)
∫

∞

−∞
|H( jω)|2 dω)(1/2). Here, the

used approach of the implemented H2 optimal interpolatory
MOR technique based on [5, Algorithm 4.1] and Algorithm 2
summarizes the main steps to compute the ROM using MAT-
LAB syntax, functions and toolboxes sssMOR [6] and MOR-
LAB [7]. Therefore, in accordance with Section III, spectral
projectors Pℓ, Pr are constructed in MATLAB to decompose
the transfer function H(s) into Hsp(s) and Himp(s). Since the
strictly proper part can be associated with an ODE, the iterative
rational Krylov algorithm (IRKA) is applicable to the strictly
proper part to compute an ROM of Hsp(s). Furthermore, the
polynomial part of H(s) corresponding to Himp(s) can be
approximated by an ROM using techniques for the generalized
discrete-time dual Lyapunov equations [8]. Finally, according
to Algorithm 2, matrices V, W ∈ RN×n are provided to
compute the ROM, where n = nsp + nimp is decomposed into
the DOF of the strictly proper and improper part, respectively.
The benefit of Algorithm 2 is the simplicity of IRKA, and
if IRKA converges, then in numerous applications, a rapidly
convergence has been observed [5]. But, IRKA has also some
drawbacks, for example, it is not guaranteed to converge to a
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Fig. 1. Investigation of inductive coupling of two wire coils using 2-D finite-
element approach, which result in an index 1 DAE system.

local minimum, and the H2 norm does not decrease mono-
tonically during the iteration. Furthermore, unstable ROMs
may occur, since, according to [5], IRKA satisfies only the
first-order necessary optimality condition of (6). In addition,
the choice of initial values has a strong influence on the
convergence behavior.

V. NUMERICAL RESULTS

In the following, the presented approach is applied to
two test problems corresponding to an index 1 and 2 DAE
system, respectively. Here, spectral projectors Pℓ, Pr for
µ ∈ {1, 2} are constructed according to Section III, and
the H2 optimal interpolatory MOR is applied in accordance
with Section IV. Therefore, computational costs and runtimes
are provided, whereby the computation was performed on a
Windows machine equipped with an intel processor (i7-6500U
CPU@2.50 GHz) and 16 GB RAM.

A. Index 1 DAE System

Fig. 1 depicts the test problem of two parallel wire coils
with a distance of b = 10 mm apart. Each wire has a
diameter of D = 2 mm, and the outer radius of the wire
coils is R = 30 mm. In the first wire coil, an impressed
current density Ji is prescribed corresponding to the single
input u(t) = i0(t). The second short-circuited wire coil is
implemented with a conductivity γ = 56 · 106 (�m)−1.
Here, the single output y(t) corresponds to the eddy cur-
rent i1(t) =

∫
01

γ (−∂t A) • dS, which result in the transfer
function H( j 2π f ) = ((I1( j 2π f ))/(I0( j 2π f ))), where I0(s)
and I1(s) correspond to the Laplace transform of i0(t) and
i1(t). As noted in Fig. 1, this application is modeled with
an index 1 DAE system using the 2-D magneto-quasistatic
A∗ formulation taking advantage of the radial symmetric
geometry, where the spatial finite-element semi-discretization
is implemented with the first-order nodal elements using
openCFS [9]. Moreover, the 16 initial expansion points
s0 ∈ {± j 2π 10k

: k ∈ N, 1 ≤ k ≤ 8} guarantee the construc-
tion of real-valued matrices V f , W f , Vimp, and Wimp. Fig. 2
depicts the strictly proper parts |Hsp| and |Hsp,nsp | and the
reduced improper part |Himp,nimp |. Here, the full order improper
part relates to n∞ = 7814 DOF corresponding to the air
domain in the test problem, which confirms the importance of
an ROM for the improper part, since a reduction to nimp = 1 is
possible. Fig. 3 shows that the ROM leads to an accurate

Fig. 2. FOM and ROM of strictly proper and improper parts of the transfer
function H( j 2π f ) = ((I1( j 2π f ))/(I0( j 2π f ))).

Fig. 3. Transfer functions H( j 2π f ) = ((I1( j 2π f ))/(I0( j 2π f ))),

Hn( j 2π f ) as well as error relating to FOM and ROM.

approximation of the FOM and reduces the DOF from N =

9440 to n = 17 significantly. Therefore, the construction of the
spectral projectors Pℓ, Pr needed a runtime of 189.12 s, and
the total runtime of the ROM is 687.90 s, including 3.62 s for
the strictly proper part. Furthermore, the computation of one
frequency step of the transfer function requires a runtime of
224.61 ms for FOM and 2.01 ms for ROM using the sssMOR
function “freqresp” [6].

B. Index 2 DAE System

Following [5], the electrical circuit according to Fig. 4 is
used to investigate the H2 optimal interpolatory MOR method
regarding Section IV, but with the difference, that instead
of analytical spectral projectors, Pℓ and Pr are constructed
numerically, and an ROM of the improper part is computed.

Here, the application of MNA [10] to the circuit in
Fig. 4 results in an FOM (1) with index 2 [5], with
respect to the given input u(t) = u0(t) and output y(t) =

−i0(t). Therefore, the transfer function corresponds to the
input admittance H(s) = ((−I0(s))/(U0(s))), where I0(s)
and U0(s) designate the Laplace transform of i0(t) and
u0(t), respectively. Fig. 5 depicts the strictly proper parts
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Fig. 4. Electrical circuit consisting Gk = 0.2 �−1, Lk = 50 · 10−9 H, and
Cℓ = 1 · 10−9 F, for q = 500, k ∈ {1, . . . , q} and ℓ ∈ {0, . . . , q}.

Fig. 5. FOM and ROM of strictly proper and improper parts of the input
admittance H( j 2π f ) = ((−I0( j 2π f ))/(U0( j 2π f ))).

Fig. 6. Input admittance H( j 2π f ) = ((−I1( j 2π f ))/(U0( j 2π f ))),

Hn( j 2π f ) as well as error relating to FOM and ROM.

|Hsp| and |Hsp,nsp | using the 16 initial expansion points
s0 ∈ {± j 2π 10k

: k ∈ N, 1 ≤ k ≤ 8}, as well as the reduced
improper part |Himp,nimp |. Here, the full order improper part
relates to n∞ = 502 DOF, which allows a reduction of the
improper part to nimp = 2 DOF.

Fig. 6 shows that the ROM leads to an accurate approxi-
mation of the FOM and reduces the DOF from N = 1502 to
n = 18. Therefore, the construction of the spectral projectors
Pℓ, Pr needs a runtime of 3.35 s, and the total runtime of the
ROM is 3.10 s, including 0.59 s for the strictly proper part.
Furthermore, the computation of one frequency step of the
transfer function requires a runtime of 10.14 ms for FOM and
1.88 ms for ROM using the sssMOR function “freqresp” [6].

VI. CONCLUSION

Decomposing a DAE system into the algebraic and differ-
ential part leads to the possibility of constructing an ROM
for both parts separately, which result in a more accurate
ROM. Here, the availability of spectral projectors Pℓ and
Pr is essential for the practical implementation. Therefore,
the presented approach for index 1 and 2 DAE systems,
according to Section III, provides the usage of constructed
spectral projectors Pℓ, Pr with the major advantage, that it
is independent of the DAE system structure. Furthermore,
it provides the DAE index µ as an additional result, which is an
important property, e.g., choosing an appropriate time stepping
method solving a DAE. Therefore, according to Section III,
Algorithm 1 can be used to determine µ by checking if
rank Ek = N .

On the basis of the results obtained, the discussed approach
can be recommended for different applications resulting in a
DAE system with less than 104 DOF. However, large-scale
problems with more than 104 DOF require some improve-
ments with respect to computational costs, e.g., using parallel
programming or avoiding the computation of inverse matrices,
whenever possible.

In future work, the proposed approach can be investigated
for multi-input multi-output (MIMO) DAE systems, since
[5, Algorithm 4.1] is not restricted to SISO DAE systems.
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