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Abstract: Electric vehicle (EV) batteries, i.e., currently almost exclusively lithium-ion batteries, are
removed from the vehicle once they no longer meet certain requirements. However, instead of being
disposed of or recycled, the removed batteries can be used in another, less demanding application,
giving them a “second life”. Research in the field of second-life batteries (SLBs) is still at an early stage
and, to better understand the “second life” concept and the related challenges, potential second-life
applications need to be identified first. Using a detailed study of the scientific literature and an
interview with field experts, a list of potential second-life applications was drafted. Afterwards, a
technical, economic, and legal evaluation was conducted to identify the most promising options. The
findings of this research consisted of the identification of 65 different mobile, semi-stationary and
stationary second-life applications; the applications selected as most promising are automated guided
vehicles (AGVs) and industrial energy storage systems (ESSs) with renewable firming purposes. This
research confirms the great potential of SLBs indicating that second-life applications are many and
belong to a broad spectrum of different sectors. The applications identified as most promising are
particularly attractive for the second-life use of batteries as they belong to fast-growing markets.

Keywords: lithium-ion batteries; second-life batteries; second-life applications; safety; circular
economy; electric vehicles

1. Introduction

Lithium-ion batteries (LIBs) are a common solution for powering electric motors
in electric vehicles (EVs). During use, the batteries are subject to calendar and cyclic
ageing [1,2] which leads to continuous degradation [3]. Therefore, the properties of the
battery will change over time, and it will need to be replaced once certain automotive
requirements are reached, e.g., 70–80% state of health (SOH) [4–21].

The average lifetime of a battery used in an EV is typically estimated to be between
8 and 15 years [14,17,20,22–33]. Thus, considering the significant increase in the number
of EVs sold [34], more than 200 GWh of batteries from EVs will have reached their end of
first life (EOFL) by end of this decade and will need to be replaced [35]. Batteries removed
from EVs still have a high value, even if they no longer meet automotive requirements.
Thus, instead of disposing of or recycling them, the batteries can be reused in another,
less demanding application, giving them a second life. Using batteries in a second life
is a solution in line with the European Union’s (EU) goal of greater sustainability and a
more circularly oriented competitive economy [36–38]. This solution is valuable because it
prolongs the life of the battery and thus the resources and emissions required to produce
the battery are spread over a longer period [39]. As a result, the environmental impact of
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the battery is reduced [40–44]. In addition to the environmental benefits, using batteries for
a second life may also increase their economic efficiency and enable the emergence of new
markets and business models (BMs) [41,45–50].

Research in the field of second-life batteries (SLBs) is still in its infancy, and there are
still many challenges to be overcome, especially in terms of safety, to enable a successful
transition from the first to the second life. As a first step, the potential applications for using
SLBs (in this paper referred to as second-life applications) need to be identified and have to
be critically assessed not only in technical terms but also by considering the economic and
legal aspects.

From an economic point of view, the battery of an EV contributes about one-third of
the total value of the vehicle [51]. Therefore, it is important to consider how this expensive
component can be used beyond its EOFL. With the increasing number of EVs on the
roads, the higher availability of SLBs leads to novel business opportunities that need to be
explored, but which are strongly influenced, and in many cases also limited, by political
regulations, profitability considerations as well as rising environmental awareness.

From a legal perspective, the issue of the second-life use of LIBs is a global one. The
UNECE World Forum for Harmonization of Vehicle Regulations (WP.29), with its Working
Party on Pollution and Energy (GRPE), is attempting to create global technical regulations
(GTRs) for the standardisation of the legal framework in the automotive sector. In particular,
a proposal for mandatory minimum battery durability guarantees for electric and plug-in
hybrid vehicles has been published [52].

At the European level, the European Union is planning to enact specific, harmonized
legal regulations in the future. In particular, the new European Battery Regulation [53] will
be the most important legal text related to the second-life use of batteries. This harmonizing
regulation is expected to be directly applicable in all European member states in 2023 (but
latest by 2026 [54]) and will represent the central legal regulation. In addition, however,
national regulations will also be adapted to second-life use cases. Regarding the UNECE
GTRs, the European Union was authorized by the European Council to negotiate and adopt
them on behalf of the member states, which gives these regulations—once adopted by the
UNECE—a mandatory character for the entire Union [55].

There are several review papers covering the topic of SLBs [41,45,56–61], however,
none of them focuses exclusively on potential second-life applications.

Summarising potential second-life applications in a cohesive manner provides a
good basis for future studies on SLBs. Therefore, the research task of this paper is to
collect potential applications with SLBs and then identify which ones are most promising
in technical, economic and legal terms using a specific assessment methodology. The
investigation findings not only enable a better understanding of the state of the art but also
provide a targeted selection of the most promising applications, which can be analysed in
more detail in future investigations.

2. Materials and Methods

The purpose of this research is to accomplish two findings. The first one is to draft
a list of potential second-life applications, while the second one is to identify the most
promising second-life applications. The workflow followed to achieve the purpose of this
research is schematically shown in Figure 1. The list of potential second-life applications
is derived from in-depth literature research and comprehensive expert interviews in the
form of an online survey (see Appendix A). The most promising applications are obtained
through the definition of a set of evaluation criteria derived from the literature research.
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Figure 1. Schematic research workflow.

2.1. Potential Second-Life Applications

The literature research laid the groundwork and provided an overview of the second-
life applications addressed by the scientific literature, while the interview with experts
provided novel second-life applications. The online survey gathered feedback from 70 in-
ternational experts in the fields of mobility, automotive, electrification and batteries.

A more specific insight into second-life applications was then made by selecting the
most relevant applications. The selection was guided by the number of scientific publi-
cations concerning the application under consideration and the feedback obtained from
the expert interviews in which experts were asked to evaluate the examined applications.
The average of the two normalised scores was taken as the final score. After that, all
applications that scored above the average of the grades plus a standard deviation were
selected. Consequently, the list of potential second-life applications was narrowed down to
focus on only eight applications that were currently considered the most relevant by the
scientific and industrial actors.

2.2. Most Promising Second-Life Applications

The next step in this research was then to identify the most promising applications. The
applications were assessed using an evaluation catalogue containing technical, economic
and legal evaluation criteria. The focus of the technical aspects considered as evaluation
criteria are on safety. Hence, technical aspects influencing the useful life of the battery (e.g.,
the number of cycles or state of charge (SOC) range) were not considered, however, they
may be relevant for research in which the remaining useful life (RUL) is evaluated. The
following criteria were considered to evaluate the applications:

• Maximum discharge rate. This criterion value depends on the type of application and
is considered relevant because when the discharge current is too high, this results in
lithium plating, capacity fade and internal resistance increase [62–64].

• Maximum charge rate. This criterion directly influences the charging time, which is a
crucial aspect for certain applications (e.g., EVs). When the charging rate is too high,
this leads to lithium plating, capacity and power fade, faster ageing and, in the worst
case, thermal runaway [63–68].

• Required capacity. This criterion is relevant for both practical feasibility and safety
reasons. On the one hand, it is inconvenient to use batteries for applications where
the required capacity is less than that provided by a single module or even a single
cell [69,70]. On the other hand, it is complicated to have a sufficient number of SLBs to
meet the demands of applications where the overall capacity required is very high [41].
Furthermore, the safety issues (and consequent maintenance costs) associated with
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high energy densities confined to a geographically limited area must also be taken
into account [41].

• Degree of mobility (stationary, semi-stationary, mobile). This criterion influences the
likelihood of the battery being subjected to mechanical loads (e.g., mechanical shock,
indentation) that could eventually lead to catastrophic consequences [71–74].

• Operating and storage temperature. Temperature is a major concern in terms of safety.
There is a temperature safety window (25 ◦C–35 ◦C) in which the battery is intended
to operate [75]. A battery that is thermally abused by elevated temperatures is subject
to the decomposition of active material and, in the worst case, exothermic reaction
and thermal runaway [63,64,76,77]. If, on the other hand, temperatures are too low, there
is a decrease in the reaction rate, metallic lithium depositing, irreversible capacity loss
and an increased risk of internal short-circuit [63,64,76,78]. The temperature depends not
only on the battery and the cooling system but also on the surrounding environment.

• Applicable BM patterns. The 55 highly successful field-proven BM patterns published
by Gassmann et al. [79] have been taken as a basis to build up consecutive analyses
and trains of thought. A promising BM pattern in terms of second-life applications can
either lead to a successful BM or can be combined with other promising BM patterns
into a bundle forming a prosperous BM.

• Legal knock-out criteria. The legal assessment (analysing the thematically pertinent
legal texts and case law including broad comprehensive research of the legal literature on
European and Austrian/German national level to identify potential problems) was carried
out to find possible knock-out criteria that would make certain applications unfeasible.

In order to narrow the scope of the investigation, only the eight most relevant applica-
tions were considered for the selection of the most promising applications. The relevant
second-life applications determined previously are then assessed using the technical, eco-
nomic and legal evaluation criteria given above. This evaluation method enables us to
rank the investigated second-life applications and identify which applications are most
promising. Finally, the most promising applications are validated by comparing the use of
LIBs with alternative energy storage technologies.

3. Results
3.1. Potential Second-Life Applications

SLBs exhibit a higher state of degradation than fresh batteries, so applications with
lower requirements than those of the first life must be selected. Potential second-life
applications are those where capacity and density are not critical and fast and continuous
charging and discharging are not expected. Furthermore, batteries removed from a vehicle
at the EOFL can be used in a second-life application at different levels (i.e., pack, module
and cell level). Yet, minimising operations to be performed on the battery also reduces
costs, so it is generally more cost-effective to use the battery directly at the pack or module
level, rather than at the cell level [69,70].

A significant number of potential second-life applications were found with the study
of the scientific literature and innovative ideas were also gathered using expert interviews.
For simplicity’s sake, the applications have been categorised into three categories according
to their degree of mobility (i.e., mobile, semi-stationary or stationary). The list of potential
second-life applications is summarised in Table 1.
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Table 1. Potential second-life applications.

Mobility
Degree Category Application Source

Mobile

Commercial EVs
1 Short-range EVs [19,41,45,60,80]
2 Hybrid trucks [80]

Industrial
Vehicles

3 Forklifts [19,20,20,60,81–84]
4 Pallet trucks [19,20,20,60,82]
5 Tractors [19,20,20,60,82]
6 Transport trolleys [19,20,20,60,82]
7 Sweepers [19,20,20,60,82]
8 Automated guided vehicles (AGVs) [19,20,20,60,82]
9 Excavators [19,20,20,60,82]

10 Dumpers [19,20,20,60,82]
11 Wheel loaders [19,20,20,60,82]
12 Telescopic handlers [19,20,20,60,82]
13 Airport pushback tractors Expert feedback
14 Airport belt loaders Expert feedback
15 Airport passenger stairs Expert feedback

Micro-mobility
16 E-bikes [19,20,20,80]
17 E-scooters [19,20,20]
18 Electric wheelchairs [19,20,20,81]

Lightweight
vehicles

19 Golf carts [19,20,20,80,82,85]
20 Three-wheel vehicles [19,20,20,82,85]

Lead–acid
replacement

21 Automotive starting [86]
22 Automotive lighting [86]
23 Automotive ignition [86]
24 Industrial trucks [86]

Autonomous
mobile robots

25 Robotic vacuum cleaners [80]
26 Robotic lawnmowers Expert feedback

Consumer
electronics

27 Leisure time gadgets [80]
28 Kitchen appliances Expert feedback
29 Working tools Expert feedback

Marine
applications

30 Full propulsion [19,83,85]
31 Hybrid propulsion [19,80,83,85]
32 Spinning reserve Expert feedback
33 Load-levelling Expert feedback
34 Shore-stations [85]

35 Peak shaving/transient load
management [85]

36 Energy recapture Expert feedback

Rail transport

37 Trams power supply [87]
38 Trams backup system Expert feedback
39 Trains power supply Expert feedback
40 Trains backup system Expert feedback

FC-based
transportation 41 Energy buffer for H2FC Expert feedback

Semi-
stationary

Mobile power
supplies

42 Power-stations for construction sites [20,20,82]
43 Power-stations for major events [20,20]
44 Power-stations for outdoor camping Expert feedback

45 Power-stations for outdoor
leisure office Expert feedback

46 Power-stations for outdoor emergency
power supply [20,20]

47 Automotive mobile charging stations [19,56,82]

Other 48 Buffers for stationary traffic signs Expert feedback
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Table 1. Cont.

Mobility
Degree Category Application Source

Stationary

Lead–acid
replacement

49 Telecommunication backup power [5,85,86]
50 Uninterruptible power supplies [85,86,88]

EV chargers
51 On-grid buffer storages at

charging station [19,20,20,41,44,45,56,60,81,83,87,89–92]

52 Off-grid buffer storages at
charging station [5,18,45,56,83,89,91,93,94]

Special grids 53 Micro-grids [20,20,41,45,56,60,85,88,91,95–97]
54 Smart grids [11,41,45,56,60,85,88,91,95–99]

Residential ESS

55 Residential ESSs with load
following purposes

[19,20,20,21,41,45,56,57,60,81,83,85–
87,91,92,95,100–106]

56 Residential ESSs connected to a RES [8,15,16,19,20,20,21,41,43–
45,56,57,81,89,92,100–113]

57 Residential ESSs with backup purposes [19,20,20,41,56,57,60,83,85,90,91,95,111]

Commercial ESS

58 Commercial ESSs with peak
shaving purposes

[5,19,41,43,45,56,57,60,80,82,83,86,88,90,91,
93,95,100–103,111,114–116]

59 Commercial ESSs with load
following purposes

[5,20,20,21,41,45,46,56,57,60,86,88,104,105,
111,116]

60 Commercial ESSs with
backup purposes [19,20,20,41,45,57,60,80,90–92,95,111]

Industrial ESS

61 Industrial ESSs with load
levelling purposes [5,19,20,20,21,41,45,57,60,82,111,117,118]

62 Industrial ESSs with renewable
firming purposes

[5,7,20,20,21,41,45,56,57,60,80–82,85,88–
92,95,100,102,103,108,111,113,114,119–123]

63 Industrial ESSs with spinning
reserve/area regulation purposes

[5,7,19,21,41,44,45,60,86,89–
91,95,103,111,114,124]

64 Industrial ESSs with peak
shaving purposes

[5,19,41,44,45,56,60,80,82,83,86,88,91,93,95,
101–103,111,114,115]

65 Industrial ESSs with transmission
stabilisation purposes

[7,20,20,21,41,45,56,60,80,86,88,91,95,114,
118]

The first major category of possible second-life applications is “mobile applications”,
i.e., applications where the battery is expected to move during use. One possible application
is to reuse the batteries in a short-range EV. In fact, although EOFL is commonly defined
as when the battery reaches 70–80% capacity retention, the range provided by the battery
is sufficient for most daily trips. For example, a battery with 60% capacity retention is
able to meet the daily travel needs of over 75% of drivers [12,41]. Furthermore, this is a
cost-effective solution as reprocessing the battery is hardly, or not at all, necessary [20].
Similarly, SLBs can be installed in hybrid trucks operating in urban areas to provide power
at low speeds before the internal combustion engine (ICE) starts up and recharges the
battery. Another possibility is to use the batteries for the propulsion of micro-mobility
vehicles (e.g., e-bikes, e-scooters, electric wheelchairs), lightweight vehicles (e.g., golf carts,
three-wheel vehicles) and industrial vehicles (e.g., forklifts, pallet trucks, tractors) or for
the internal energy management of some vehicles [83] (e.g., food trucks).

The ability to withstand partial electrochemical cycles without degrading excessively
and the higher energy density in terms of both weight and volume result in LIBs being more
appealing than conventional lead–acid batteries. The main obstacle to using LIBs rather
than lead–acid batteries is the difference in cost, which makes the use of lead–acid batteries
more widespread than LIBs for certain types of applications. However, when considering
the case of SLBs, the price difference flattens out, leaving room for the emergence of new
second-life applications linked to the replacement of lead–acid batteries [60]. Possible
replacements for mobile applications may be the batteries used for automotive starting,
lighting and ignition or the ones used in industrial trucks.

Other examples of mobile second-life applications include the use of SLBs as buffer
storage in fuel cell (FC) vehicles or different types of transportation technologies, e.g.,
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rail (e.g., trams and trains propulsion) or marine applications (e.g., propulsion, backup,
load levelling).

Another category of potential mobile second-life applications includes all consumer
electronic applications (e.g., mobile home robots, household appliances, working tools,
laptops and other leisure time gadgets) as further potential mobile second-life applications.
However, it is not always considered an optimal solution because, in most applications,
the battery provided by a single large-format automotive cell has a higher capacity than
required for the specific consumer electronics application [86].

Second-life applications in which the batteries are not intended to operate while mov-
ing but are expected to be relocated frequently are defined as “semi-stationary”. Examples
are power generators or power stations used in remote areas and automotive mobile
charging stations [19,56,82].

Another major category of second-life applications includes stationary use cases, i.e.,
the battery is not expected to move during its operational cycle. In addition to the degree
of mobility, the difference between stationary and mobile (or semi-stationary) second-life
applications is that they tend to have less stringent weight and volume limits. Moreover,
they have a reduced possibility of being mechanically abused, which could allow for
less stringent safety requirements than those applied in the case of mobile applications.
The first macro-category for stationary second-life applications is energy storage systems
(ESSs). ESSs can be subdivided into smaller categories depending on the type of consumer,
whether attached to the grid or not, and the functions to be fulfilled. In this paper, the first
mentioned classification method is utilised.

The first type of consumer is at the residential level and therefore concerns individual
households (e.g., private houses, flats). Residential second-life battery energy storage
systems (SLBESSs) are a viable solution in terms of performance as the required power and
capacity are provided by most SLBs extracted from EVs. Residential SLBESSs can store
energy when consumption is low and release energy when higher consumption is reached,
which results in smoothing the load and gives the possibility of participating in the energy
arbitrage business; this not only provides economic benefit but also a more environmentally
sustainable solution and reduces the strain on the electric grid. Furthermore, they can be
used in combination with renewable energy sources (RESs), for example, photovoltaics
(PV), encouraging RES use and promoting the decentralisation of the electricity production
system. The SLBESSs can also act as an energy backup in the event of a power failure
or blackout. Depending on the purpose, the scenarios to which the ESS is subjected are
different. Considering a typical residential demand load profile (LP1—Urban Domestic
24-h [125]), in the case of load-following, a capacity of at least 3–4 kWh is required [111]. The
expected load profile is characterised by one deep discharge and several small discharges
during the day, and a typical discharge rate of C/3 (The C-rate refers to the current at which
the battery is charged (or discharged) with respect to its nominal capacity. For example, a
discharging C-rate of C/3 indicates that it ideally takes 3 h to discharge the battery from
100% to 0% SOC). In the case of the backup system, the capacity required is 25 kWh (in
the case of an off-grid application) and moderate daily discharges are expected (depth of
discharge < 50%) [41,111]. The use of SLBs also tackles the problem of the high costs of
using new batteries, which is the main limitation for the installation of domestic ESSs [102].
Nevertheless, there are other limitations to consider, e.g., the needed amount of space and
the high maintenance requirements, which suggest that residential ESSs are often not the
best solution [85]; furthermore, the risk due to the proximity of the residence and people
should also be addressed [41].

ESSs may also be intended for larger applications at the commercial or industrial level.
These types of applications require a greater investment in storage size and tighter safety
standards [41].

The commercial-level consumer is broad and includes different types of businesses
and light industries. Commercial businesses, where the presence of ESS could be beneficial,
are, for example, telecommunication companies, large offices and fresh food distribution
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centres. The commercial load is on average higher than the domestic load, making it more
suitable for applications such as load following and peak shaving. When considering a
typical commercial load (LP5—Non-Maximum Demand Non-domestic 24-h [125]), in the
case of peak shaving, the required capacity is about 3000–4000 kWh, thus a considerable
number of batteries is needed (approximately 178–238 reconditioned Nissan Leaf batter-
ies [111]), which is why a hybrid solution with both new and SLBs is commonly chosen.
The expected discharge rate ranges between C/2 and C and occurs daily. In the case of
load following, the required capacity is 75–100 kWh (approximately 4–6 reconditioned
Nissan Leaf batteries [111]), considerably less than that required by peak shaving, making
this application more likely to be fully managed with SLBs [41,111]. In addition, a deep
discharge and many small discharges are expected on a daily basis. The C-rate required
for load following is typically C/3, which is easily sustained using LIBs. Another possible
application concerns the use of SLBs as a backup system that comes into operation in
the event of unusual scenarios, in this case, the expected discharge rate is approximately
C/5 [41,111].

The power demand for industrial ESS applications (e.g., heavy industry) is even higher
than for residential and commercial applications [41]. In the case of industrial ESS, there
are several possible purposes: load levelling, renewable firming, spinning reserve or area
regulation, peak shaving and transmission stabilisation.

When considering a typical industrial load (LP8—MD Load Factor > 30 to 50% [125]),
the capacity required for industrial load levelling is around 100 MWh (approximately
6000 reconditioned Nissan Leaf batteries), the high number of batteries required makes
this application impractical with SLBs [41,111]. A lower number of batteries is required
in the case of renewable firming (1–10 MWh, approximately 60–595 reconditioned Nissan
Leaf batteries), spinning reserve/area regulation (5–7.5 MWh) and peak shaving where
the capacity required is similar to the one seen in the commercial sector (75–100 kWh,
i.e., 4–6 reconditioned Nissan Lead batteries) [41,111]. Renewable firming is characterised
by frequent discharge cycles with an intensity of C/5, spinning reserve/area regulation
and peak shaving by discharge cycles varying from C/2 up to C, all of which are suitable
for SLBs. Another application worth mentioning is transmission stabilisation (140 kWh,
500 MW), where short bursts of power are used for voltage and frequency regulation; how-
ever, the C-rate required in this application is higher than the capabilities of LIBs [41,111].
Another promising application is to replace grid-connected combustion turbine peakers
with ESS to provide peak shaving services and thus improve the system efficiency [86,124].

SLBs can also be used in microgrids and smart grids to provide localised support
for the production and distribution of energy from alternative power sources. Microgrids
can be either attached to the main grid (on-grid) or belong to a stand-alone system (off-
grid). Microgrids promote the decentralisation of energy storage and allow energy to
be supplied in remote areas in combination with renewable energy production systems,
ensuring increased stability and providing backup power [41,85,91].

EV batteries can also be used as buffer storage at charging stations to reduce the
power demand while charging and to relieve the load on the public grid or decentralised
buffer storages in combination with energy production from renewable sources allowing
the charging of vehicles in remote areas where the public grid does not reach. The use
of new batteries, however, is not cost-effective. In contrast, SLBs, in addition to meeting
the required technical expectations, have a lower cost [41]. Furthermore, for this type of
application, assuming the battery is used from 80% to 60% SOH, the estimated lifespan is
15 years [44].

Finally, as in the case of mobile applications, there are stationary examples of SLBs
replacing lead–acid batteries in stationary applications. For example, for telecommunication
backup power or uninterruptible power supply (UPS).



Energies 2023, 16, 2830 9 of 21

3.2. Most Promising Second-Life Applications

From the list of potential second-life applications, four mobile and four stationary
applications were selected to be analysed in more detail. As mentioned above, the selection
of these eight applications was based on their relevance in the scientific literature and the
feedback obtained from the expert interviews. The selected applications are listed in the
first column in Table 2. The table was then filled with the technical data from real cases or
the scientific literature (see Appendix B). The comparison and ranking of the application
were performed using an evaluation system (see Appendix C) which assigns a score (++, +,
o, -, –, x) based on the value in brackets.

Table 2. Filled evaluation matrix with real values linked to the applications under investigation.

Application
Max

Discharge
Max

Charge
Required
Capacity

Degree of
Mobility Min T Max T Promising BM

Patterns *
Legal Knockout

Criteria Score
[C-Rate] [C-Rate] [kWh] [-] [◦C] [◦C] [-] [-]

Forklift +
(0.71)

++
(0.89)

++
(34)

++
(Mobile)

-
(0)

o
(40)

o
(6)

o
(None) 5

Pallet truck +
(0.56)

-
(3.33)

++
(2)

++
(Mobile)

o
(10)

o
(30)

o
(6)

o
(None) 3

AGV ++
(0.13)

++
(0.50)

++
(10)

++
(Mobile)

o
(10)

o
(30)

o
(6)

o
(None) 7

Golf cart x
(6.90)

++
(0.35)

++
(3)

++
(Mobile)

-
(0)

o
(40)

o
(6)

o
(None) Discarded

On-grid buffer
storage at charging

station

-
(2.29)

+
(1.22)

+
(140)

+
(Stationary)

x
(−30)

-
(50)

+
(7)

o
(None) Discarded

Commercial ESS
with peak shaving

purposes

o
(1.00)

+
(1.00)

o
(4000)

+
(Stationary)

+
(20)

o
(30)

+
(7)

o
(None) 5

Industrial ESS
with peak shaving

purposes

o
(1.00)

+
(1.00)

o
(4000)

+
(Stationary)

+
(20)

o
(30)

+
(7)

o
(None) 5

Industrial ESS
with renewable

firming purposes

++
(0.20)

++
(0.20)

-
(10000)

+
(Stationary)

+
(20)

o
(30)

+
(7)

o
(None) 7

* The list of the promising BM patterns for each application is shown in Appendix E.

The analysis of the legal framework yielded that there is no law prohibiting the
applications under investigation. Therefore, all applications are valid to be used with SLBs
in the same way. For more details concerning the legal framework, see Appendix D.

The last column of Table 2 summarises the scores of the eight applications under
investigation. Golf carts and on-grid buffer storage at charging stations were discarded
because one of the parameters was outside the limits imposed by the evaluation knock-out
criteria. All the remaining applications scored between three and seven. Due to their
overall score, AGVs for mobile applications and industrial ESSs with renewable firming
purposes for stationary applications are considered as most promising.

4. Discussion

The literature research combined with the expert interviews yielded a wide spectrum
of possible stationary, semi-stationary and mobile applications that can be powered with
SLBs. The fields of application vary extensively from transport to home applications,
from buffer storage to ancillary services on the public power grid. This demonstrates the
potential for SLBs to be versatile in a plethora of application areas, to serve existing markets
and open new markets using the associated application of a wide range of BMs.

The subsequent analysis indicated two applications with different degrees of mobility
as “most promising”, again suggesting that the complexities of the transition to second life
are many and involve multidisciplinary studies.
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4.1. Validation

AGVs and industrial ESS with renewable firming purposes are considered the two
most promising second-life applications. However, it is necessary to consider that different
types of energy storage technologies could be more advantageous than LIBs. It is there-
fore necessary to analyse the possible energy storage technologies for the two selected
applications and confirm that LIBs are a viable solution.

In the case of AGVs, the main alternative to LIBs is lead–acid batteries [126]. Currently,
the best solution depends on the type of application. Yet, as LIBs offer several advantages
over lead–acid batteries (e.g., lighter and more compact, suitable for fast charging, longer
runtimes and battery life) the AGV market is witnessing a gradual shift from lead–acid to
LIBs. This is also connected to the fact that in most scenarios where AGVs are involved,
high round-trip efficiency is required [127].

In the case of industrial ESS with renewable firming purposes, in addition to the
use of batteries (e.g., LIBs, lead–acid batteries, high-temperature batteries, flow batteries),
mechanical energy accumulators can also be utilised (e.g., pumped-storage hydroelectric,
compressed air energy storage, flywheels). An analysis conducted by the International
Renewable Energy Agency (IRENA), in which all these different technologies are compared,
shows that the use of LIBs is the best solution [128]. In addition, another comparative study
revealed that the cost-effectiveness of lithium-ion batteries is greater than that of lead–acid
and flow batteries [129].

As a result, it emerged that in the case of both AGVs and industrial ESS with renew-
able firming purposes, the use of LIBs is not only a viable solution but is currently the
best solution.

4.2. Limitations

More than 60 potential applications have been identified; however, the applicabil-
ity must be studied on a case-by-case basis as there are some parameters (e.g., extreme
geographical latitude and environmental conditions) that may result in an application
being unprofitable or even unfeasible. The analysis of the most promising applications was
conducted on eight specific second-life applications. However, the method used is suitable
for studying a larger number of applications that could also be promising. Furthermore, it
is important to consider that second-life applications belong to a rapidly evolving market
that may witness significant changes in the coming years.

5. Conclusions

A multidisciplinary study was conducted to identify potential and relevant second-
life applications of automotive lithium-ion batteries using a comprehensive study of the
scientific literature and consultation with experts in the relevant fields of application, and
to subsequently evaluate their basic feasibility/implementation potential (“most promising
applications”) according to a specific set of evaluation criteria, taking into account economic
and legal criteria as well as technical ones, ensuring that the study was not limited to a
purely technical analysis.

From the investigation, more than 60 potential second-life stationary, semi-stationary
and mobile applications were identified, with AGVs and industrial ESSs with renewable
firming purposes being the most promising considering economic, legal and technical
aspects.

The results show that SLBs can be used in a multitude of potential applications. In
addition, novel second-life applications, not addressed in the scientific literature, emerged
from the feedback obtained from the expert interview. The applications evaluated according
to the evaluation criteria received different scores which allowed them to be ranked, thus
demonstrating the importance of analysing each second-life application on a case-by-case
basis given the variety of each application.

The findings obtained are of interest as they provide a valuable and informative
summary of the potential and most promising second-life applications. The method used
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for the identification of the most promising applications can be adapted and used in similar
research. The identified applications can be further researched by the scientific community
or developed into novel products in the industry.

The authors are currently continuing research in the field of SLBs by analysing in more
depth the applications identified as most promising to understand the actual feasibility of
SLB use from an economic, legal, technical and safety perspective.
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Appendix A

The expert interview was used for collecting novel potential applications and assessing
which are most relevant. For the identification of novel potential second-life applications,
the list of the potential second-life applications obtained from the study of the literature
was provided and then the following question was asked:

• What other possible second-life applications, apart from the already mentioned ones,
could be interesting?

To determine the most relevant second-life applications, the experts were asked to
assess all the applications extracted from the literature by assigning a mark between 1 (not
promising) and 5 (extremely promising).

A total of 70 experts were involved in this interview; the experts were selected accord-
ing to their possible interest in SLBs mainly on the technical side but also on the economic
and legal side; see Figure A1. The experts come from both the SafeLIB consortium and the
major European clusters of mobility, automotive, electrification and batteries.
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Appendix B

The references listed in Table A1 were used to assess the absolute values of the
parameters attributed to the applications investigated. These are either real applications or
references to the scientific literature.

Table A1. List of references used to collect the absolute values of the parameters considered for the
applications under investigation.

Application Reference

Forklift Hyster E60XNL
Pallet truck Jungheinrich EJE M15

AGV KUKA KMP 1500
Golf cart ClubCar Onward® 2 Passenger

On-grid buffer storage at charging station HPC-Booster–StoraXe
Commercial ESS with peak shaving purposes [41,111]

Industrial ESS with peak shaving purposes [41,111]
Industrial ESS with renewable firming purposes [41,111]

Appendix C

The evaluation of the applications is conducted utilizing thresholds set for each evalu-
ation criterion. Applications are rated between “++”, “+”, “o”, “-” and “–”. “++” represents
an extremely positive evaluation, “–” represents an extremely negative evaluation and “o”
represents a neutral evaluation. Finally, if an application is rated “x” for a category, it is
outside the acceptable window of the project and is excluded from the analysis regardless
of the result obtained using the other evaluation criteria.

The conversion table in which the scoring decreases as the charging and discharging
rates increase is shown in Table A2. If the discharging rate is higher than 5 C or the charging
rate is higher than 8 C, then the application is immediately rejected, regardless of the scores
obtained with the other evaluation criteria, since using an excessively high discharging
rate leads to accelerated lithium plating, higher capacity fade and increased internal re-
sistance [62–64]. Similarly, when the charging rate is too high, the cell is characterised
by accelerated lithium plating, increased capacity and power fade, irreversible thickness
increase, faster ageing and, in the worst-case scenario, thermal runaway [63–68,130].

Table A2. Conversion table used for discharging and charging rates.

Evaluation Scoring Discharging [C-Rate] Charging [C-Rate]

++ 0 < x < 0.5 0 < x < 1
+ 0.5 < x < 1 1 < x < 2
o 1 < x < 2 2 < x < 3
- 2 < x < 3 3 < x < 5
– 3 < x < 5 5 < x < 8
x x > 5 x > 8

For the required capacity in kWh, the rating decreases with increasing size for two
main reasons. The first, purely practical, is the difficulty of finding a large number of SLBs
for a second-life application; the second is related to the safety concerns arising from a
high concentration of energy in a small space, as small incidents can lead to catastrophic
situations [41]. On the other hand, too low a capacity is also inefficient because of the
problems associated with dismantling the modules, especially in terms of safety. The
conversion table is shown in Table A3. Applications requiring a capacity of more than
100 MWh are automatically discarded.



Energies 2023, 16, 2830 13 of 21

Table A3. Conversion table used for the required capacity.

Evaluation Scoring Required Capacity

++ 2 kWh < capacity < 100 kWh
+ 100 kWh < capacity < 1 MWh
o 1 MWh < capacity < 10 MWh

- 10 MWh < capacity < 50 MWh
0.2 kWh < capacity < 2 kWh

– 50 MWh < capacity < 100 MWh
0 kWh < capacity < 0.2 kWh

x capacity > 100 MWh

Another monitored critical parameter is the operating and storage temperature range.
If the temperature is too high, then decomposition of the active material occurs and, in the
worst cases, exothermic reactions can be triggered, leading to thermal runaway [63,64,76,77].
If the temperature is too low, then there is a decrease in the reaction rate, an increase in
metallic Li depositing and, therefore, an irreversible capacity loss and an increased risk
of internal short-circuit [63,64,76,78]. The optimal temperature range is between 25 and
30 degrees Celsius and—the further it is away from this—the less favourable it is (as shown
in Table A4). If the temperature is above 80 ◦C or below −30 ◦C, then the application is
immediately discarded.

Table A4. Conversion table used for the operating and storage temperature range.

Evaluation Scoring Operating and Storage Temperature Range
[◦C]

++ 20 < temperature < 30
+ 15 < temperature < 35
o 0 < temperature < 50
- −10 < temperature < 60
– −30 < temperature < 80
x temperature ≤ −30 or temperature ≥ 80

The degree of mobility is assessed; mobile applications are more prone to mechanical
abuse than stationary ones. Thus, stationary applications, as shown in Table A5, scored
higher than mobile applications.

Table A5. Conversion table used for the degree of mobility.

Evaluation Scoring Operating and Storage Temperature Range [◦C]

++ Stationary
+ Mobile

The number of BM patterns applicable to the investigated second-life applications is
also considered. A greater number of viable BM patterns indicates greater versatility in
bringing the respective application to market and thus a more promising application in
general. The applied scoring is shown in Table A6.

Table A6. Conversion table used for the number of promising BM patterns.

Evaluation Scoring Number of Promising BM Patterns

++ BM patterns ≥ 10
+ 7 ≤ BM patterns <10
o 4 ≤ BM patterns < 7
- 2 ≤ BM patterns < 4
– BM patterns = 1
x BM patterns = 0
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Finally, for legal aspects, there is no such unambiguous assessment in advance because
here, too many different factors have an influence. Thereby, it always depends on the
individual use, the national legal system and the design of the specific application. For
example, failure to comply with a minor legal condition for a specific application may
prevent its use, meanwhile, the abidance makes a use unproblematic. However, if there is
any legal or economic knock-out criterion that causes the application to be unfeasible, then
the application is discarded immediately.

Appendix D

From a legal perspective, neither the national nor the European legislators have
enacted specific legal texts for second-life use at the national level. As a result, there
is currently no unified legal framework for battery law in Europe. Although there is a
directive from 2006 [131], which is intended to align the national legal texts with each other
and to at least harmonise their objectives. However, since a European directive must always
be transposed into national law to become legally valid, the national legal frameworks of
the member states must currently be analysed in detail to determine the legal framework
for batteries. Due to the importance of the issue, the European Commission has initiated
an amendment of the “battery law” within the framework of the “European Green Deal”
and has presented a draft for a European battery regulation in 2020 [53]. If the regulation
is implemented, then it will be directly applicable to every European member state. This
is intended to create at least an initial unified legal framework for batteries within the
European Union. However, certain details within the regulation will only be regulated
later by means of implementing acts. In addition to this urgently needed harmonization
of the European battery law, the individual national provisions remain valid in principle,
which means that these must also continue to be observed and makes a legal investigation
even more important.

Neither the Austrian nor the German legislators have enacted specific legal texts for
second-life use at the national level. The given national regulations can only provide
tangential regulations and do not prevent second-life use. Their primary focus is set on the
regulation of first-life use and recycling and less for a concrete second life. For example, the
Austrian and German legal texts for waste and recycling management can be cited as stan-
dards of this kind of regulation [132–136]. In addition, there are general safety regulations
(in Austria, for example, the Produktsicherheitsgesetz [136], the Elektrotechnikgesetz [137]
and the Elektrotechnikverordnung [138]) as well as product liability law [139], which must
also be observed in second-life use. Since legislation cannot always keep pace with tech-
nological developments and therefore the current “state of the art”, technical standards
(which reflect the current state of the art) can often specify safety and liability provisions,
without containing the direct legal character.

Although no law prohibits the secondary use of LIBs, there are various product
requirements for batteries and the potential second-life applications arising from national
legal texts. This applies to environmental and circular economy requirements [132–135]
as well as, e.g., the aforementioned Product Safety Act [136] and the Product Liability
Act [139], which set out general requirements for product safety and liability. Depending
on the specific second-life application and the second-life battery used, this may require
new product certification (CE marking) to meet all product law requirements of the second-
life system. Although technical standards have no direct legal value, they have an essential
influence on second-life use. In product safety law, for example, there is a presumption
of conformity if harmonised European technical standards are complied with [140,141].
Such harmonised EU standards, which are developed by experts, must be instructed by the
European Commission and published in the Official Journal of the EU. If such a technical
standard is complied with, it is presumed that the battery or second-life application meets
the safety requirements. In general, however, an evaluation is required on a case-by-case
basis in order to be able to classify the fulfilment of the legal claims of the respective
second-life product.
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Appendix E

Table A7 shows the promising BM patterns for the investigated second-life applications.
The identified BM patterns are in any case of interest for several of the listed applications.

Table A7. Summary of which BM patterns are associated with the investigated application.

Pa
y-

pe
r-

U
se

Pe
rf

or
m

an
ce

-B
as

ed
C

on
tr

ac
ti

ng

R
en

tI
ns

te
ad

of
B

uy

Fr
ac

ti
on

al
is

ed
O

w
ne

rs
hi

p

G
ua

ra
nt

ee
d

A
va

il
ab

il
it

y

Tw
o-

Si
de

d
M

ar
ke

t

E-
C

O
M

M
ER

C
E

D
ir

ec
tS

el
li

ng

M
as

s
C

us
to

m
is

at
io

n

To
ta

l

Forklift x x x x x x 6

Pallet truck x x x x x x 6

AGV x x x x x x 6

Golf cart x x x x x x 6

On-grid buffer storage at
charging station x x x x x x x 7

Commercial ESS with peak
shaving purposes x x x x x x x 7

Industrial ESS with peak
shaving purposes x x x x x x x 7

Industrial ESS with
renewable firming purposes x x x x x x x 7

The analysis of the investigated applications regarding potential BMs or BM patterns
showed a strong dependency on the degree of mobility. “Pay-per-use” and “Rent instead
of buy” were only taken into account for the mobile application golf cart as this, unlike
the others, is not an industrial application and therefore quite different priorities arise,
e.g., regarding operational reliability and consequences of downtimes. Forklifts and other
industrial applications are used on a daily basis and thus the pattern “Performance-based
contracting” is much more suitable than “Pay-per-use”. “Performance-based contracting”
is a possibility to use SLBs without the need to purchase them and thus minimises the risks
of new types of batteries disrupting the market and the uncertainties regarding durability or
the battery’s history in the first life. “Fractionalized ownership” deals with joint ownership
including its advantages and drawbacks in terms of acquisition, operation, maintenance
and further utilisation. “Guaranteed availability” is a BM pattern that suits all listed
applications except “golf carts” and gives the applying company the certainty of permanent
and unrestricted usage of the SLBs application as it very often also incorporates repair
and maintenance services. The highly promising “Two-sided market” pattern focuses on
platforms as a prerequisite, whereas the “Mass customization” pattern has individualisation
with simultaneous mass production at its core. “E-Commerce” and “Direct Selling” are
two BM patterns that are very likely to be combined with others to develop a suitable and
innovative BM in the field of SLBs.
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