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Abstract: In this study, across-participant and across-session transfer learning was investigated to
minimize the calibration time of the brain–computer interface (BCI) system in the context of continu-
ous hand trajectory decoding. We reanalyzed data from a study with 10 able-bodied participants
across three sessions. A leave-one-participant-out (LOPO) model was utilized as a starting model.
Recursive exponentially weighted partial least squares regression (REW-PLS) was employed to over-
come the memory limitation due to the large pool of training data. We considered four scenarios:
generalized with no update (Gen), generalized with cumulative update (GenC), and individual
models with cumulative (IndC) and non-cumulative (Ind) updates, with each one trained with
sensor-space features or source-space features. The decoding performance in generalized models
(Gen and GenC) was lower than the chance level. In individual models, the cumulative update (IndC)
showed no significant improvement over the non-cumulative model (Ind). The performance showed
the decoder’s incapability to generalize across participants and sessions in this task. The results
suggested that the best correlation could be achieved with the sensor-space individual model, despite
additional anatomical information in the source-space features. The decoding pattern showed a more
localized pattern around the precuneus over three sessions in Ind models.

Keywords: electroencephalography; brain–computer interface; source localization; trajectory decoding;
partial least-squares regression; unscented Kalman filter; transfer learning

1. Introduction

Since the discovery of the now well-known phenomenon called event-related desyn-
chronization/synchronization (ERDS) [1] of electroencephalography (EEG), the so-called
sensorimotor rhythm-based (SMR) brain–computer interface (BCI) [2] has been one of the
main interests within the BCI field. Despite its promising accuracy, the SMR-based BCI
is not very intuitive to control [3,4], as users need to map an execution (or imagery) of a
motor function to a certain command, for example, eliciting foot movement imagery to
send a command to move a cursor up, and this might not reflect how the brain functions.
A more intuitive control scheme was proven possible in [5], and this opened another field
of research focusing on inferring the target information (position/velocity of an on-screen
target or an end-effector of a robotic arm) directly from a low-frequency EEG. Since then,
there have been several studies that have tried to improve a decoder based on the so-called
pursuit tracking tasks (PTT) [6–13] or center-out reaching tasks [14–17]. Most of them fo-
cused on improving the decoding performance; however, other aspects, such as minimizing
the calibration time and mutual learning between the user and the machine [18], are usually
not the main interest.

A typical machine learning model relies on the ideal assumption that the training and
test datasets are sampled from the same distribution. However, this is not true in many
cases, for example, due to a covariate shift [19] or in a case in which features are derived
from EEG signals, due to their non-stationary properties [20,21]. The machine learning
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model must be trained again when this assumption is not fulfilled; otherwise, the model
might struggle to perform. This process involves acquiring training data and computing a
new model, which is expensive in terms of time and resources in some applications, such as
in BCIs. So, transfer learning has been one of the major challenges within machine learning
and data mining [22] as well as in BCIs because of the long time usually required to collect
the data. This is because the participant must repeat the task several times so that the
model can properly learn the intrinsic property of the EEG signal due to the characteristic
low signal-to-noise (SNR) ratio in EEG. Despite the complex characteristics of the brain,
transfer learning has been proven possible in several applications in BCI. However, most of
the transfer learning research in BCIs has focused on SMR-based, P300-based, or passive
BCIs [23,24], and to the best of our knowledge, no research has considered transfer learning
in the context of continuous hand trajectory decoding.

Therefore, we wanted to investigate the feasibility of minimizing the time needed to
collect training data via across-participant and across-session transfer learning and, as a
result, maximizing the time of the actual usage of the BCI system. In the typical setting
for BCI applications, brain signals corresponding to each participant performing a specific
task are utilized to calibrate or “individualize” the model. To investigate such transfer
learning, the model needs to learn general information for that task such that the model can
be trained once and then transferred to another participant. It is then natural to investigate
a larger dataset from several participants to find this task-specific common information.
However, the memory needed to allocate the data may limit the size of the whole dataset.
This depends on how the model is trained. For example, in an iterative approach such as
the stochastic gradient descent (SGD), the dataset is divided into smaller batches, so the
number of training samples is limited by the memory and not the size of the whole training
sample. In contrast, for an approach such as the SIMPLS [25] algorithm used to train a
partial least-squares (PLS) model, the whole dataset is represented in the memory during
the training. Therefore, in this case, the number of training samples is limited by the amount
of memory available in a computer or workstation. We applied recursive exponentially
weighted PLS (REW-PLS) [26], which is based on a modified kernel algorithm in [27,28], to
tackle the memory limitation. An extension of REW-PLS to a higher-dimensional tensor
has already been applied in the field of BCIs [29,30].

Additionally, we wanted to investigate how different features extracted from EEG
would generalize in these transfer learning scenarios. Two types of feature extraction were
performed based on sensor-space EEG signals and source-space EEG signals, respectively.
While the former involved processed EEG signals, the latter was performed via source
localization of the processed EEG signals. Since the individual anatomical information
from the head shape was utilized during the source localization process, we hypothesized
that the model based on source-space features would represent a more common space
across participants or sessions, leading to better generalization in the source-space model.

2. Materials and Methods
2.1. Dataset Description

The dataset considered in this study came from a study conducted across 3 sessions of
an attempted movement with a 2D PTT by Pulferer et al. [10]. There were 10 able-bodied
participants, each with 3 sessions of measurement. The mean age of the participants
was 24 ± 5 years old. Written informed consent was obtained from the participants, who
received monetary compensation for participating in the experiment. The experimental
procedure was approved by the local ethics committee from the Medical University of Graz.

2.2. Experimental Paradigm

EEG and electrooculogram (EOG) signals were simultaneously acquired during the
experiment. There were 60 channels of EEG and 4 channels of EOG acquired at 200 Hz.
The task of the participant was to attempt to move their hand to follow a white target
point on the screen (the snake) while their dominant hand movement was restricted. In
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the original study, there were 4 types of measurement blocks in each session: 0% EEG, 50%
EEG, 100% EEG, and 100% EEG freerun, where the percentage indicates the mixing ratio
of the decoded kinematics from EEG to the target snake (e.g., 0% EEG means 0% decoded
kinematics and 100% target snake). No decoded kinematics were available in the 0% EEG
block, so the delayed snake kinematics were shown instead. The feedback was given in
the remaining measurement blocks by combining the decoded kinematics with the snake
kinematics according to the specified percentages. There were two additional eye runs in
between 0% EEG blocks in which the participant had to produce eye artifacts (horizontal
and vertical eye saccades and blinking) according to a visual guide. The data from these eye
runs were used to train artifact correction models (elaborated in the next section). The last
block (100% EEG freerun) was excluded from this study. The experimental paradigm was
similar to the previous study on PTT studies [6–9,13]. However, the participant controlled
the cursor on the screen rather than a robotic arm.

2.3. Data Processing

The data processing pipeline was adapted from [12]. EEG and EOG were initially
acquired at 200 Hz before being high-pass filtered at 0.18 Hz and then downsampled to
100 Hz. An eye artifact correction model, SGEYESUB [31], trained with the signals obtained
during the eye runs, was applied to the EEG signals. The signals were re-referenced to
the common average reference. A HEAR model [32], trained with eye-artifact-corrected
signals from the eye runs, was applied to reduce the effects of pops and drifts from the
signals. The signals were low-pass filtered at 3 Hz and then downsampled again to 20 Hz.
The signals were expanded with their lags from −6 to 0 samples (corresponding to −300 to
0 ms). An additional step was applied only to the source-space decoding model: the
representative signals were produced via source-space projection for the source-space
model. The processing pipeline is summarized in Supplementary Figure S1. The script
to process the data was implemented in MATLAB R2019b (MathWorks Inc., Natick, MA,
USA) via the EEGLAB toolbox [33].

2.4. Source Localization and Dimensionality Reduction

The measured EEG signals are typically modeled as mixed signals resulting from the
underlying cortical sources or as the equation

X = GJ + n (1)

where X ∈ RP×T is a matrix of measured EEG signals, G ∈ RP×Q is a mixing or gain matrix,
J ∈ RQ×T is a matrix of underlying cortical sources, and n ∈ RP×T is a matrix of additive
noise. P, Q, and T represent the number of EEG channels, underlying sources, and time
samples, respectively.

The processed EEG signals were first projected onto the source space. The forward and
inverse problems were solved via Brainstorm [34]. The number of underlying sources was
assumed to be 5000 evenly distributed cortical sources. Forward modeling was performed
via a boundary element method (BEM) based on the ICBM152 template head model [35–37].
The relative conductivity of the three compartments (scalp, skull, and brain) was chosen
as 0.41, 0.02, and 0.47, respectively, according to [38]. Electrode positions measured at
the beginning of the experiment were utilized to co-register with the cortical surface from
the ICBM152 template head model. These electrode positions represented the individual
anatomical information of each participant in each session. There was no assumption
about the cortical source orientation of cortical sources such that each cortical source was
represented by 3 directional components (for x, y, and z directions in 3D), leading to
a total of 15,000 source-space signals. The inverse model was solved via standardized
Low-Resolution Electromagnetic Tomography (sLORETA) [39]. The noise covariance
was estimated from the processed data from the eye runs after it was corrected with the
SGEYESUB and HEAR artifact correction models.
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The signals were then reduced by two folds. First, the source-space signals were
restricted to only those within predefined regions of interest (ROIs). The ROIs were
chosen according to [12] based on the MindBoggle atlas [40] around the central medial
region of the brain, namely, the cuneus (CU), paracentral lobules (PCL), postcentral gyri
(PoCG), precentral gyri (PreCG), precuneus (PCU), superior frontal gyri (SFG), occipital
gyri (OG), and superior parietal lobules (SPL). The following ROIs were further divided
into 2 smaller ROIs: SFG, PreCG, PoCG, SPL, PCU, and OG; this resulted in 28 ROIs,
including both hemispheres. The location of ROIs is visualized in the results section.
Then, representative signals were computed for each directional component of each ROI.
The choice of a function to compute the representative signals was based on [12], which
achieved the best performance by applying the principal component analysis (PCA) with
8 components, followed by averaging over the ROI, referred to as the Mean in that study.
We chose to apply the Mean function, which exhibited slightly reduced performance but
with a smaller number of source-space features (8 times smaller). Hence, there were
3 representative signals per ROI for 3 directional source components.

The projection of the measured sensor-space EEG signals and the dimensionality
reduction can be summarized as

yt = UKxt (2)

where yt ∈ R3F×1 is a column vector representing the reduced source-space signals at time
step t, U ∈ R3F×Q is defined as the source-space scouting matrix, and K ∈ RQ×P is a kernel
matrix obtained by solving the inverse problem via sLORETA, which unmixes the assumed
cortical sources from the measured EEG signals xt ∈ RP×1 at a time step t. F is the number
of source-space features, where F = 28 (1 representative signal × 28 ROIs). The element of
the source-space scouting matrix, U, was defined as follows:

uij =

{
1
Ri

, j ∈ ROIi

0, otherwise
(3)

where Ri represents the total number of sources within the i-th ROI, and j represents the
index for the j-th source. This matrix summarizes the averaging over sources in each ROI.

2.5. Decoder

After obtaining the source-space signals, yt, they were subjected to lag expansion,
ỹt = [yt; yt−1; yt; · · · ; yt−6]. The total number of features became 588 (3 directional source
components × 28 ROIs × 1 representative signal × 7 time lags). This number was around
1.5 times higher than the number of features used in [10].

Simultaneously, the corresponding kinematics of the target snake, zt =
[phor,t; vhor,t; pver,t; vver,t], were extracted, where pi,t and vi,t represent the position and
velocity of dimension i (either horizontal, hor, or vertical, ver) at time t. The target snake
kinematics were then extended to include non-directional information, namely, distance

dt =
√

phor,t
2 + pver,t2 and speed st =

√
vhor,t

2 + vver,t2, and z̃t = ext(zt) = [zt; dt; st]. The
pair of the extended source-space signals and the corresponding snake kinematics were
utilized to train a cascaded model of recursive exponential weighted partial least-squares
regression (REWPLS) [26] and a square-root unscented Kalman filter (SR-UKF) [41,42].

2.5.1. Recursive Exponential Weighted PLS (REWPLS)

The training of a PLS model is typically performed via a built-in Matlab function
called “PLSREGRESS”, which utilizes the SIMPLS algorithm [25]. However, this function
does not work well in the case of large datasets due to memory constraints. One solution is
to utilize a variation of PLS known as recursive exponential weighted PLS (REW-PLS) [26].
It was implemented via an improved kernel algorithm for PLS training [26,27], making
use of a more compact representation of the data as covariance matrices rather than using
the whole dataset. However, the computation of these covariance matrices still requires
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large memory, but this can be overcome by utilizing the recursive update of the covariance
matrices. This recursive update scheme was intended to update the covariance matrices
and the PLS model when new data are available, but we applied it to overcome the memory
issue. The training dataset was divided into smaller batches. For each batch, the covariance
matrices were recursively updated via these formulas:

(ỸỸT)t = λ(ỸỸT)t−1 + ỹtỹt
T (4)

(ỸZ̃T)t = λ(ỸZ̃T)t−1 + ỹt z̃t
T (5)

where Ỹ and Z̃ represent the predictor (in our case, the extended features) and response (in
our case, extended snake kinematics) of time unit (samples or batches) t, and λ represents a
forgetting factor, ranging between 0 and 1, that assigns weights between the covariance
matrix of the previous time unit and the current time unit. In this case, we set λ = 1 to
set the weight equally for all time units. The term non-normalized covariance matrices
might be more appropriate due to the lack of a normalization term, but these matrices
will be referred to as covariance matrices for simplicity. Note that, as we set λ = 1, the
resulting (non-normalized) covariance matrices will be equivalent to computing the inner
products from the whole dataset. These covariance matrices were used to train a kernel PLS
model, which differs from the SIMPLS algorithm such that the inputs were the covariance
matrices (ỸỸT , ỸZ̃T) rather than the pair of source-space features and the intended snake
kinematics (Ỹ, Z̃), as briefly discussed previously. The implementation of kernel PLS was
from [43] based on modified kernel algorithm #2 [27]. One hyperparameter that needed
to be optimized was the number of PLS latent components. The optimal hyperparameter
was achieved by selecting the “knee” point on the curve in the plot of the mean Pearson’s
correlations over the PLS-predicted kinematics from the 4 linear kinematics, Zt, and the
number of PLS latent spaces via 10-fold cross-validation (see Supplementary Figure S2).
The optimal number of PLS latent components was determined separately for each model.

2.5.2. Square-Root Unscented Kalman Filter (SR-UKF)

The PLS latent space features, Ẽ = WỸ, were then employed as an input pair (Ẽ, Z̃)
for the square-root unscented Kalman filter (SR-UKF), where W represents the PLS latent
space projection matrix. The SR-UKF model was implemented according to [6,8]. The final
outputs of the SR-UKF model were the predicted kinematics, Ẑ, which were employed
together with the ground-truth snake kinematics to assess the model performance.

2.6. Simulated Inter-Session Transfer Learning Scenarios

The processed data were used to simulate an online experiment to assess the feasibility
of performing an experiment where actual feedback is given from the beginning of the
experiment. A leave-one-participant-out (LOPO) generalized model was trained on the
data pool from the 0% EEG block of the first session of every participant except the data
of the corresponding participant. This is illustrated in Figure 1, where the data of the
respective participant (represented by red blocks in Figure 1) are not included in the
training pool, and only the session 1 data for every participant (represented by green
blocks in Figure 1) are included. The LOPO model was used as a starting model for each
corresponding participant (see Figure 1; the Gen model was applied to 0% EEG of session
1 in all update strategies). The intensity of the red blocks indicates the corresponding
session of the 0% EEG data. At the end of the 0% EEG measurement block, the decoding
models were updated accordingly with the newly available data. The different update
strategies are visualized in Figure 1. Four different update strategies (each with variations
of sensor-space and source-space models) are described below.
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visualize the 0% EEG data from session 1 of every participant except the corresponding participant,
represented by the red blocks, where the intensity of the red block represents the corresponding
session. The text in parentheses represents the term used to refer to the model with different training
data. The suffix C stands for the cumulative model, while the suffix numbers indicate the session
where the 0% EEG data are included in the training dataset.

2.6.1. Generalized Model (Gen)

We examined how the generalized model performs in 3 sessions without introducing
any of the data of the corresponding participant. The LOPO generalized model was applied
throughout all the measurement blocks from the 3 sessions. The corresponding name of
the model is simply Gen.

2.6.2. Cumulative Generalized Model (GenC)

In this case, we examined how the generalized model performs given the cumulative
updating of the data. The Gen model was applied to the 0% EEG block. The decoding
model was cumulatively updated with the data from the 0% EEG block of session 1 from
each respective participant, leading to the GenC1 model, which was applied to all of the
measurement blocks until the 0% EEG block of session 2, where the model was cumulatively
updated again with the new data (leading to the GenC2 model), and the same applied
to session 3 as well (leading to the GenC3 model). This update strategy is visualized in
Figure 1 by the additional red blocks, which represent the data of each respective participant
from each session.

2.6.3. Individual Model (Ind)

The Gen model was entirely replaced by the new decoding model trained with the
newly available data, visualized as a single red block (Ind1 model in Figure 1). The decoding
model was transferred to the 0% EEG block of the next session. Then, the decoding model
was replaced by the decoding model trained with newly acquired data from the 0% EEG
block of the current session and so on (leading to the Ind2 and Ind3 models, respectively).
This is similar to how the model is typically utilized in a BCI study, where the data of the
corresponding session are used only within the same sessions. Due to this similarity, the
results could be roughly compared to those obtained in the original study [10].
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2.6.4. Cumulative Individual Model (IndC)

Similarly, the Gen model was used at the beginning of 0% EEG of session 1. Then,
the Gen model was substituted by IndC1 (equivalent to Ind1 according to our naming
convention). This model was trained with the data of all participants in session 1. This
model was applied to the data until the end of 0% EEG of session 2, where the model was
cumulatively updated again with the new data, leading to the IndC2 model. This also
applied to session 3, leading to the IndC3 model at the end.

2.7. Performance Evaluation
2.7.1. Decoding Performance

Two metrics were computed, Pearson’s correlation (r) and the signal-to-noise ratio
(SNR), representing the similarity and dissimilarity between the ground-truth and decoded
kinematic signals. The two metrics can be described mathematically as

corr(x, y) =
∑N

i=1(xi − x)(yi − y)√
∑N

i=1 (xi − x)2 ∑N
i=1 (yi − y)2

(6)

and

SNR(x, y) = 10log10

(
var(x)

MSE(x, y)

)
(7)

where var(x) represents the variance of vector x, and MSE(x, y) = 1
n ∑n

i=1(xi − yi)
2 rep-

resents the mean squared error between vectors x (ground-truth kinematics) and y (de-
coded kinematics). These two metrics were computed in each measurement block for
each participant, and then the group-level metrics were used to compare. Note that in
the case of the correlations, the absolute values of participant-level correlations were
used to construct the group-level distribution. Additionally, the group-level chance-level
performance was also determined. The kinematic signals were shuffled trial-wise to in-
terrupt the relationship between the features and the kinematic signals. This shuffled
pair of signals was then used to train chance-level PLS and UKF decoders. Shuffling
was repeated 100 times per model and participant, resulting in 9000 chance-level models
(10 participants × 100 repeats × 9 unique models; see Figure 1). These models were then
applied to the corresponding participant, adaptation, and measurement block to find the
corresponding chance-level correlations. The participant-level chance-level performance
was chosen from the 95th percentile of the chance-level distribution, determined from
100 models. Finally, the median value across participants was taken as the group-level
chance-level performance. The problem of overfitting the chance level is irrelevant in
this case because the corresponding data for each participant were never included in the
training data pool (see Figure 1).

2.7.2. Comparing REWPLS and PLSREGRESS

The first step in comparing the decoder would be to assess whether REWPLS, based
on the kernel PLS algorithm, and PLSREGRESS, based on the SIMPLS algorithm, would be
interchangeable or not. The data from the first session were considered in this comparison.
The calibration data from 0% EEG measurement blocks were used to train the decoder for
both PLS variations (PLSREGRESS + SR-UKF and REWPLS + SR-UKF) for all participants
with the number of PLS fixed at 50 components to guarantee that a similar amount of
information was used. The decoder was then applied to the data from all measurement
blocks. Additionally, we also varied the type of features utilized by the model: sensor-
space and source-space features. The correlations and SNRs were used to assess the
interchangeability of the two PLS algorithms. Ideally, we expected REWPLS to perform
similarly to PLSREGRESS for both sensor-space and source-space features.
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2.7.3. Comparing Simulated Online Experiments

The correlations and SNRs were used to compare results across different transfer
learning scenarios, as mentioned previously. The goals for these comparisons were to
see the feasibility of applying any of these transfer learning scenarios in a real online
experiment. Additionally, we wanted to test whether the sensor-space and sour-space
features affected the decoding performance. After simplifying the performance metrics
by grouping the measurement blocks and kinematics from 6 kinematics to 3 kinematics
(position, velocity, and non-linear kinematics), pairwise Wilcoxon signed-rank tests were
employed to compare whether the two distributions were different or not. The p-values
were adjusted to control the false discovery rate (FDR), according to [44].

2.7.4. Decoding Patterns

The PLS weight matrix can also give us crucial neurophysiological insights. The
weight matrix informs us how informative each feature (equivalently, each brain region)
is to predict the output kinematics. However, caution has to be taken when interpreting
the decoding weight, as it might lead to wrong conclusions regarding the original neural
source of interest [45]. To ensure the correct interpretation of the decoding patterns, the
PLS weight matrix was taken and transformed as follows:

A =
1
g

ΣỸWΣZ̃
− 1

2 (8)

The PLS weight matrix, W, was multiplied by the covariance matrix of the extended
features, ΣỸ, and the matrix square roots of the covariance matrix of the extended hand
kinematics, ΣZ̃ [9,46]. These matrix multiplications were divided by the model-specific
global field power (GFP), g, to reduce the variability across different participants [7]. Note
that the covariance matrices shown here are properly normalized covariance matrices, not
non-normalized covariance matrices used in the training of REW-PLS. The model-specific
GFP was computed by first projecting the corresponding training sensor-space EEG signal
data pool onto the source space, randomly selecting a single time point, taking the mean
over trials, and finding the standard deviation over voxels. Repeating these processes
for 10,000 permutations to determine the standard deviation distribution over voxels and
finally take the median of this distribution as the model-specific GFP.

Additionally, to visualize the distribution of all kinds of models in the whole feature
space, t-distributed stochastic neighborhood encoding (t-SNE) [47] was used to reduce the
dimensionality of the feature space from the decoding pattern from 588 (for source-space
feature) to 2 features. The t-SNE reduction was performed for each kinematic separately.
To account for different scaling across generalized and individual models, the decoding
patterns were further normalized by their maxima before applying t-SNE.

3. Results
3.1. Comparing REWPLS to PLSREGRESS

First, it is crucial to compare the performance between the PLS models trained with
REWPLS and PLSREGRESS. The decoding performance is summarized in Figure 2. The
scatter plots show linear trends in all cases, signifying the linear relationship between
the PLS models trained with REWPLS and PLSREGRESS. In most cases of correlation,
the linear trends of both metrics were consistent with the identity line, indicated by an
oblique black line. The exceptions were in the non-linear kinematics, where the linear
trend visibly deviated from the identity line and toward PLSREGRESS, suggesting that
PLSREGRESS performed better than REWPLS in the case of non-linear kinematics for
correlations. For SNRs, the linear trend lines were also consistent with the identity line.
However, the mismatch between the linear trend and identity lines in non-linear kinematics
was less visible than for correlations. Both sensor-space and source-space models performed
similarly in most cases.
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Figure 2. Scatter plots of the participant-level corresponding performance metrics (correlation
and SNR) between REWPLS and PLSREGRESS. The metrics from all measurement blocks (0–100%
EEG) are plotted in the same scatter plot, resulting in a total of 30 points (10 participants × 3
measurement blocks). The dashed line represents the linear trend of the corresponding points, while
the black identity (where x = y) line represents the ideal line, where the performance of REWPLS
and PLSREGRESS is the same. The orange and blue colors represent the performance metrics from 2
different feature types: sensor-space (Se) and source-space (SS) features. Note that the distance and
speed have different scaling from the other kinematics.

3.2. Decoding Performance

The overall decoding results from the correlation and SNR are summarized in Figure 3
and Figure 4, respectively. The median correlations, SNRs, and their standard deviations
are summarized in Supplementary Tables S1 and S2.
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Figure 3. Plots of the distribution of correlations from 4 different scenarios: Gen, GenC, Ind, and
IndC, indicated by different colors. The intensity of the color indicates the measurement block, either
0%, 50%, or 100% EEG from sessions 1, 2, and 3, indicated as S1, S2, and S3, respectively. The black
horizontal line shows the chance level, while the dot represents the median value of the corresponding
measurement block. The corresponding median correlations are summarized in Table S1.
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Figure 4. Plots of the distribution of SNRs from 4 different scenarios: Gen, GenC, Ind, and IndC,
indicated by different colors. The lightness of the color indicates the measurement block, either
0%, 50%, or 100% EEG from sessions 1, 2, and 3, indicated as S1, S2, and S3, respectively. The
corresponding median SNRs and their standard deviations are summarized in Table S2.

The chance level of the correlation was determined to be around 0.14 for the linear
kinematics (position and velocity) and 0.07 for the non-linear kinematics (distance and
speed) in all cases. We see that, in most cases of Gen, the median correlation was worse than
the chance level or borderline/close to the chance level. In GenC, the median correlation
was also worse than the chance level in most cases, except in the 50% EEG block of session 2.
In the case of Ind, the median correlation was better than chance in the 50% and 100% EEG
blocks. IndC also showed a similar performance to Ind. In all four adaptation strategies,
there was a tendency for an increase in the correlation from session 1 to session 2, but it
dropped from session 2 to session 3. Within the same session, the correlation increased from
0% EEG to 50% EEG due to the model’s update but then decreased in the 100% EEG blocks.

The decoding performance in terms of SNRs is also visualized in Figure 4. In most
cases, the median SNR was around −5 dB for the linear kinematics with generalized
strategies (Gen and GenC) and −7 dB for the non-linear kinematics. On the other hand, the
individualized strategies indicated median SNRs of around −3 dB for the linear kinematics
and −4 dB for the non-linear kinematics (excluding 0% EEG of the first session). The
general trends in the SNR were similar, as the SNR improved from session 1 to session
2 but degraded from session 2 to session 3. The generalized strategies indicated broader
distributions than the individualized strategies.

3.3. Comparing Update Strategies

To aid the comparison between the four update strategies, the performance metrics
were combined in two ways. First, the metrics from each measurement block were grouped
into the same distribution. Second, the kinematics were grouped into position, velocity,
and non-linear kinematics. The summary is shown in Figure 5. Additionally, the p-values
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from pairwise two-tailed Wilcoxon signed-rank tests are summarized in Supplementary
Tables S3–S8 for each metric and kinematic group.
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scaling in the non-linear kinematics.

Regarding correlations, Gen and GenC performed significantly worse than Ind and
IndC (p < 0.001 in most cases; see Supplementary Tables S1–S3). Both individual strate-
gies (Ind and IndC) showed a similar median performance, around 0.14 (in position and
velocity) and 0.05 (in non-linear kinematics). Despite the minor differences between me-
dian correlations, the p-values indicated that sensor-space Ind performed significantly
better than sensor-space IndC, source-space Ind, and source-space IndC in the case of
position and velocity (Supplementary Tables S1 and S2), but not in non-linear kinemat-
ics (Supplementary Table S3). Gen showed median correlations of 0.07 (in position and
velocity) and 0.03 (in non-linear kinematics). GenC had a performance between the gen-
eralized and individual models at around 0.10 (in position and velocity) and 0.05 (in
non-linear kinematics).

Regarding SNRs, Gen and GenC performed similarly at around −4.5 dB (in position
and velocity) and around −6.2 dB (in non-linear kinematics). Furthermore, Ind and IndC
also performed similarly at around −2.8 dB (in position and velocity) and −4 dB (in non-
linear kinematics). The statistical tests revealed that Gen and GenC performed significantly
worse than Ind and IndC in all cases (Supplementary Tables S4–S6). The p-values also
showed that sensor-space Ind performed significantly better than sensor-space IndC, source-
space Ind, and source-space IndC, despite small differences.

3.4. Decoding Patterns for Generalized Model

The group-level decoding patterns are visualized in Figure 6. Only the patterns from
Ind1, Ind2, and Ind3 are shown due to the similarity across the different models. The
decoding patterns of every model are additionally visualized in Supplementary Figure S4.

Despite having the same task in common in all three sessions, the group-level decoder
exhibited distinctly different patterns. There were some similarities across the three sessions,
for example, the dependency of the information in the paracentral (PCL), both regions of the
precuneus (aPCU and pPCU), and cuneus (CU) to explain the velocity. These dependencies
shifted from large areas in PCL, PCU, and CU in session 1 and concentrated primarily
around PCU in sessions 2 and 3. Overall, the linear kinematics were explained largely
by regions in the medial part of the brain, which were the medial pre- and postcentral
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gyri (mPrCG and mPoCG), both regions of the superior parietal lobes (SPL), and regions
between hemispheres (PCL, PCU, and CU). The dependencies of the non-linear kinematics
were mostly spread out without a noticeable common pattern between sessions.
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Figure 6. (a) Group-level decoding pattern at lag 0 from session 1 (Ind1), session 2 (Ind2), and session
3 (Ind3). Blue and red indicate the value at 0 and maximum. (b) The corresponding predefined
regions of interest (ROIs). There are 14 ROIs for each hemisphere. The definition of ROIs was based
on a Mindboggle atlas [40]. SFG, PCU, PreCG, PoCG, SPL, and OG are further divided into 2 smaller
regions with prefixes according to the location (medial/lateral, anterior/posterior, superior/inferior).

To further understand the relationship between the generalized and individual models,
the decoding patterns were reduced to 2D via t-SNE for visualization purposes. These
results are illustrated in Figure 7. All generalized models can be clustered around GenC1
(green stars; see Figure 7) without a clear distinction between the other different generalized
models. On the other hand, the individualized models were spread out and formed a
ring around the cluster of all generalized models. Furthermore, for some participants,
individualized models from the same participant can be roughly clustered into smaller
regions, forming a smaller cluster around the bigger cluster of the generalized models (e.g.,
see a plot of the distance pattern in Figure 7), which demonstrated the relationship between
the generalized and individualized models.
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Figure 7. Scatter plots of the reduced dimensionality (via t-SNE [47]) of the decoding patterns of all
possible models at different stages of adaptation. Each point represents participant-specific decoding
patterns. The different markers represent the different models. The models from generalized and
individual approaches are additionally labeled in green and red, respectively.

4. Discussion

In this study, we assessed the feasibility of utilizing transfer learning to reduce the
calibration time for inferring hand trajectories in a PTT study with attempted hand move-
ment. We simulated four online experimental scenarios with different update strategies
without acquiring calibration data such that the participant received real feedback in all
measurement blocks. All scenarios began with the same starting LOPO model, but the
model was adapted differently, either applying the LOPO model throughout the three ses-
sions available without any further updates (Gen), cumulatively updating the LOPO model
with individual data from calibration blocks (GenC), or entirely replacing the LOPO model
with an individualized model, either cumulatively across sessions (IndC) or discarding the
model entirely (Ind). Furthermore, we compared the performance between the features
obtained from the sensor space and source space (via source localization) to see which is
more suitable for these transfer learning aspects.

We started by comparing the results between models trained via REW-PLS, which
utilizes the modified kernel #2 algorithm [27], and PLSREGRESS, which utilizes the SIMPLS
algorithm [25], by fixing the number of PLS latent spaces to 50 components. The plot in
Figure 2 indicates quite a consistent correlation and SNR between the two variations of PLS
models, at least in the linear kinematics. However, the results suggest inferior distance and
speed correlations in REW-PLS compared to PLSREGRESS. The distribution of the results
from sensor-space and source-space features was mostly consistent, except in the non-linear
kinematics for correlations and SNRs. However, we would argue that the independence of
the size of the whole training dataset justifies the differences in performance. On top of
that, it was also shown that the modified kernel #2 algorithm required on average 6% less
CPU time than the SIMPLS algorithm [48].

After justifying the usage of REW-PLS over PLSREGRESS, we trained REW-PLS
while adhering to the principle of Occam’s razor. This was implemented by choosing
the optimal point (“knee point”) between the number of PLS latent components and the
PLS-predicted correlations (only from the linear kinematics, as PLS can only represent
the linear relationship). We relied on the correlation rather than the mean square error or,
in our case, the normalized mean square error, NMSE, due to the sensitive nature of the
MSE (see Supplementary Figure S2c). We expected an increase in the correlation and a
decrease in the NMSE as the number of PLS latent components increases (Supplementary
Figure S1a). However, there were some cases where the NMSE behaved non-ideally (see
Supplementary Figure S1b,c). In such cases, the NMSE increased instead. By choosing
the knee point from the correlation rather than the maximum or minimum point of the
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correlation of the NMSE, we accounted for these non-ideal cases while keeping the model
sufficiently simple. However, we could not find any explanations for the counterintuitive
cases where the NMSE increases together with the correlation.

We then illustrated the decoding performance in the correlation and SNR across
nine measurement blocks from three sessions (Figures 3 and 4). In most cases, it was
also apparent that the LOPO generalized model without any updates (Gen) performed
worse than the chance level. The additional individual information in GenC caused slight
increases, but they were still worse than the chance level in most cases. Alternatively, by
discarding the data from other participants and instead utilizing the individual information,
as in the individual approaches (Ind and IndC), the correlation and SNR improved but were
still lower than the chance level in the 0% EEG measurement blocks, where the decoder
was taken from the previous session and was not updated with the data from the new
session. There were no differences between the results obtained by updating the model by
discarding the data from the previous session (Ind) and cumulatively updating it (IndC).

The plots were simplified by fusing the nine measurement blocks and grouping
the kinematics (Figure 5) to aid pairwise comparisons between the four update strate-
gies. The Ind and IndC performance was significantly better than that of Gen and GenC
(Supplementary Tables S1–S3). This means that the task was too complicated for the model
to generalize across participants. The decoding performance of Ind was generally similar
to that of IndC within the same type of feature space, showing that there was no benefit of
the cumulative model over the non-cumulative one. The improved results from the GenC
model were only due to the inclusion of the training data from that respective participant.
The differences in terms of median values were similar between sensor-space and source-
space features. However, the range of the distribution was slightly broader for sensor-space
features, leading to the conclusion that the sensor-space model performed better than the
source-space model in position and velocity (see Supplementary Tables S3–S8). This was
counterintuitive, as the source-space models generally utilized a higher number of PLS
components than the sensor-space models (see Supplementary Figure S3). There were
observable drops in performance from 100% EEG of the previous session to the 0% EEG
measurement block of the next session in both sensor-space and source-space features. This
means that the model did not generalize well across participants or across the sessions of
the same participant.

Several studies have shown promising decoding correlations for the executed hand
movement trajectory [5,8,9,11,14–16,46,49,50]. In contrast, only a few studies have focused
on the attempted hand movement trajectory [10,11,14,51,52], which is more applicable to
the end user but more complicated to decode due to the missing ground truth and lower
decoding performance. The average decoding correlations were generally around 0.3–0.5 in
executed movement and around 0.2–0.3 in attempted movement. In this study, we obtained
an average correlation of around 0.18 in the sensor-space Ind model (see Figure 5), which
is similar to the results in [15] but well below the correlations reported in [10], despite
using the same dataset as well as decoders, which should be comparable to our sensor-
space Ind model. We speculate that this could be due to differences in how the results are
represented. For example, it might be that the participant-level correlation was computed
by averaging over the absolute trial-level correlations, thereby slightly overestimating
the participant-level correlation. Additionally, the lower correlation might be due to the
introduction of the LOPO model as a generalized starting model, slightly lowering the
overall average correlation.

Another aspect that we explored was how the sensor-space and source-space features
would perform given across-participant and across-session generalization problems. To
our best knowledge, this is the first study that explored this aspect. Studies that utilized
source-space features can be divided into discrete and continuous domains. In the first
domain, research has mainly focused on the SMR-based BCI to classify the user intention
and reported superior decoding performance compared to sensor-space features [51–55].
Only a handful of studies have focused on continuously inferring the trajectories from
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EEG from source-space features, which correspond to the continuous domain [11,12,56],
and they all reported worse performance or no improvement in source-space compared
to sensor-space features. Our feature extraction process was based on computing the
average signals from the predefined ROIs, which could be comparable to those used in [11]
and [12]. We also obtained no decoding improvements by utilizing source-space features
over sensor-space features in transfer learning. Our results disproved our hypothesis
that the source-space model would represent common space across measurement units
(participants or sessions) due to the additional individual anatomical information during
the source-space feature extraction.

To the best of our knowledge, no studies have assessed the learning effect within
the continuous decoding of attempted hand trajectories. The first attempt in this regard
was a recent study with three sessions from our group [10], showing non-significant
changes in participants’ performance over three sessions. We further extended the analysis
from [10] to cover the adaptation of the machine (or, more specifically, the algorithm). The
decoding performance showed upward trends between sessions 1 and 2. Still, it showed
downward trends between sessions 2 and 3, which were also reported in [10], whose
authors hypothesized that the reduced performance in session 3 was because of frustration,
as the participant’s improvement did not meet their expectation. The decoding patterns
in velocity from the source-space model (Figure 6) showed that changes in the pattern
became more focused around the PCU and CU from session 1 to session 3, similar to the
decoding patterns presented in [10], which might weakly support the learning aspect of
the participant, despite no observable improvement in terms of the decoding performance.

Our study contained some limitations that hindered the interpretation of the mutual
learning framework. First, three sessions per participant were inadequate to disentangle
the long-term learning effect from other short-term across-session effects (e.g., participant’s
mood, motivation, and engagement). Second, the end users were not considered in this
study, making it difficult to transfer the BCI to the end users. Several studies have as-
sessed the user’s learning effect with more than three training sessions and showed a
positive learning effect from mutual learning between the users and the machine [51,57–61].
However, all these studies focused on the SMR-based BCI, which is not comparable to
our case.

Despite the evidence so far showing little merit in employing source-space features
over sensor-space features to infer hand trajectory continuously, we think it is crucial to
investigate why it is the case that source-space features work better than sensor-space fea-
tures for the discrete classification problem but not for the continuous regression problem.
Moreover, we suggested exploring how to utilize the source-space information better, as
hand picking ROIs might not be the optimal way to reduce the number of source-space
signals. Source-space features might help bridge the gaps between non-invasive and inva-
sive brain signals. Further questions also remain on how to make hand trajectory decoding
from the brain more applicable to the end user, so more research must be performed to
pursue the answers to these questions.

5. Conclusions

One of the main concerns in BCIs is the time required to collect calibration data,
which involves acquiring data without real-time feedback. This usually takes considerable
time in an experiment. The results show that the task might be too complicated to be
generalized across participants and sessions, and sensor-space Ind performed the best
among them. Group-level decoding patterns observed over three sessions showed more
localized patterns around the precuneus (PCU), which could weakly support the learning
aspect of the participants. However, this was not reflected in the performance trends, which
increased from session 1 to session 2 but decreased from sessions 2 to 3. Even though
the results suggest no benefits of source-space feature decoding, we would like to further
investigate the reason why source-space decoding worked in the classification problem
but not in the regression problem and how to improve the performance in source-space
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decoding, as this might play an important role in bridging the non-invasive and invasive
domains in the BCI context.
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