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Abstract: Powerful and reliable estimation of transmission parameters is an indispensable task in
each receiver unit—not only for radio frequency, but also for optical wireless communication systems.
In this context, the signal-to-noise ratio (SNR) plays an eminent role, especially for adaptive scenarios.
Assuming a bandlimited optical intensity channel, which requires a unipolar waveform design,
an algorithm for SNR estimation is developed in this paper, which requires no knowledge of the
transmitted data. This non-data-aided approach benefits to a great extent from the fact that very long
observation windows of payload symbols might be used for the estimation process to increase the
accuracy of the result; this is in striking contrast to a data-aided approach based on pilot symbols
reducing the spectral efficiency of a communication link. Since maximum likelihood, moment-based
or decision-directed algorithms are not considered for complexity and performance reasons, an
expectation-maximization solution is introduced whose error performance is close to the Cramer-Rao
lower bound as the theoretical limit, which has been derived as well.

Keywords: SNR estimation; optical wireless communications; intensity modulation

1. Introduction

When comparing radio frequency (RF) to optical wireless communication (OWC)
techniques, the advantages of the latter are well known: there are no regulatory and license
issues, they are rather inexpensive and easy to deploy, have extremely high throughput
and cause no problems with data security, just to mention the most significant aspects in
this context [1–4].

However, not only for RF but also for OWC solutions, the relevant transmission
parameters have to be recovered by powerful algorithms, because otherwise subsequent re-
ceiver stages, e.g., detectors or error correction algorithms cannot be reliably operated [5,6].
Of course, in case that bandlimited optical intensity solutions are envisaged, a unipolar
waveform design is indispensable with respect to pulse shaping and symbol constellation.
Investigated in [7,8] for a PAM scheme and root-raised cosines as typical pulse shapes
used for RF solutions, this is simply achieved by a suitably selected bias or offset signal.
Unfortunately, such concepts are not very efficient in terms of power and energy if no
harvesting is implemented. Hence, squared raised cosine and double jump functions have
been suggested in [9] as viable alternatives.

Nevertheless, focusing on the pulse shapes proposed in [9] also means that recovery
methods developed in the RF context are not automatically applicable. Of course, syn-
chronization of carrier frequency and phase need not be considered in case of intensity
modulation, whereas the recovery of the symbol timing is still of paramount importance
since this is a pre-requisite for many other estimation and detection procedures. This
problem has been tackled in a couple of papers recently published by the author in [10–12].

Apart from symbol timing and clock recovery, some knowledge about the signal-to-
noise ratio (SNR) is equally important for the reliable transmission of data, e.g., for adaptive
communication systems to select modulation and coding schemes according to the given
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channel conditions so that the link might be operated close to the Shannon bound [13], but
also powerful error correction methods—like turbo or LDPC algorithms—need this sort of
information [14]. Scanning the open literature, numerous papers are available about SNR
estimation in RF channels, e.g., the frequently cited overview by Pauluzzi and Beaulieu [15],
but little or no information is published for OWC systems. One of the rare examples is
the paper in [16], but the authors discuss on-off keying (OOK), i.e., a binary concept with
rectangular pulse shapes and no bandwidth limitation.

This background was the incentive for the author to study in [17] data-aided SNR
estimation for a bandlimited optical intensity channel, i.e., data are known to the receiver
unit in form of pilot symbols. However, it could be shown that the accuracy of SNR
estimates depends on the length of the pilot sequence used for this purpose, although
this reduces the spectral efficiency of the communication link as such. Therefore, if SNR
estimation could be organized in a non-data-aided (NDA) way by employing payload or
user symbols, the error performance of the estimates might be increased by much longer
observation windows with no impact on the spectral efficiency. This is the main motivation
of the current paper, which is structured as follows:

The signal and channel models used for analytical and simulation work are introduced
in Section 2. In Section 3, the Cramer-Rao lower bound (CRLB) is derived as the theoretical
limit of the jitter variance for an SNR estimator developed in this respect. Based on the
expectation-maximization (EM) principle, an estimator algorithm is introduced in Section 4
and verified in Section 5 by numerical means. Finally, Section 6 concludes the paper.

2. Signal and Channel Model

Of course, for the NDA scenario to be investigated in this contribution, we are working
with the same signal and channel model used in the companion paper addressing a DA
situation [17]. For clarity and readability reasons, this model is briefly recapitulated in
the sequel.

Due to the unipolar waveform design mentioned previously, it is assumed that the
data symbols ak, k ∈ Z, are independent and identically distributed (i.i.d.) elements of an
M-ary PAM alphabet A. In this context, it makes sense to normalize them to unit energy,
i.e., E[a2

k ] = 1, where E[·] denotes the expectation operator. Therefore, by definition of
ηM = 1

6 (M− 1)(2M− 1), we obtain ak ∈ A = 1√
ηM
{0, 1, . . . , M− 1}. As a consequence,

the average value is given by

µa = E[ak] =
1
√

ηM

M− 1
2

=

√
3 (M− 1)

2 (2M− 1)
. (1)

If h(t) describes the pulse shape satisfying the non-negativity as well as the Nyquist
constraint, the signal at the output of the opto-electrical receiver unit can be expressed by

r(t) = A ∑
k

ak h(t− kT − τ) + w(t), (2)

where T is the symbol period and τ indicates the propagation delay between transmitter
and receiver. The channel gain A > 0 is assumed to be a constant, which is justified by the
fact that the coherence time of fading events is usually much larger than the observation
window needed for estimation purposes. In line with the previous publication about this
topic in [17], the noise component in (2) is assumed to be a zero-mean white Gaussian
process with variance σ2

w.
In addition, if we introduce the average optical power as P0 = µa h, where

h =
1√
T

∞∫
−∞

h(t) dt, (3)
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the average electrical SNR at the receiver can be defined as

γs =
A2P2

0
σ2

w
. (4)

Nevertheless, before r(t) is processed in further receiver stages, e.g., in the SNR
estimator to be developed in the sequel, it must be filtered appropriately. Assuming an
impulse response q(t), the filter output is determined by z(t) = q(t) ⊗ r(t), where ⊗
denotes the convolutional operator. For convenient reasons, the signal model used for SNR
estimation is illustrated in Figure 1.
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Figure 1. Signal model for SNR estimation.

It has been proved in [9] that there exists no simple solution for a matched receiver
filter in case of a bandlimited optical intensity link. Hence, it is suggested to focus on
a solution performing a rectangular shape over the complete spectrum occupied by
the user component in (2). By application of the Fourier-transform [18], we have that
Q( f ) = F [q(t)] =

√
T for | f | ≤ (1 + α)/T and Q( f ) = 0 elsewhere, with α as the roll-off

factor (excess bandwidth) of the selected pulse shape. In this case, the signal parts of r(t)
and z(t) are the same, whereas the noise component is determined by n(t) = w(t) ⊗ q(t)
representing a zero-mean non-white Gaussian process. Under the assumption that the
symbol timing has been reliably recovered and corrected, e.g., by one of the algorithms
proposed in [10–12], the T-spaced samples at the output of the receiver filter are obtained as

zk = z(kT) = A · ak + nk , (5)

where E[nk] = 0, E[ni nk] = 2(1 + α) σ2
w sinc[2(1 + α)(i− k)], and sinc(x) = sin(πx)/(πx).

3. Cramer-Rao Lower Bound
3.1. Log-Likelihood Function and Fisher Information Matrix

For parameter estimation, in general, the Cramer-Rao lower bound (CRLB) is a major
figure of merit [19]. It turns out to be most helpful for comparison purposes, since the
bound represents the theoretical limit of the error performance of any algorithm developed
in this context.

By detailed inspection of (4), it is obvious that the average electrical SNR is a function
of the channel gain and the standard deviation of the noise component in (2), A and σw,
respectively, whereas P0 might be considered as a constant factor depending on the PAM
scheme and the selected pulse shape. Therefore, it makes sense to focus on the SNR
normalized by P2

0 , henceforth denoted by ρs = γs/P2
0 , and to employ ρs and Pn = σ2

w,
instead of A and σw, as elements constituting the parameter vector u to be estimated in the
sequel, i.e., u = (u1, u2) = (ρs, Pn). On top of that, it is assumed that L observables given
by (5) are available for the estimation procedure, which might be elegantly expressed in
vector form:

z = A · a + n. (6)

It is to be recalled that the noise samples in n are not independent. The related
covariance matrix is given by E[n · nT ] = 2(1 + α) σ2

w Ω, where Ω describes a symmetric
Toeplitz matrix [20] with entries ωik = sinc[2(1 + α)(i− k)] for line i and column k.
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Conditioned on the knowledge of the data sequence a and the unknown but determin-
istic parameter vector u, the log-likelihood function (LLF) characterizing the estimation
problem has been derived in [17] as

Λ(z|a; u) = − L
2

log Pn −
zTΨ z− 2

√
ρsPn zTΨ a + ρsPn aTΨ a
4(1 + α)Pn

, (7)

where Ψ = Ω−1. However, the computation of the CRLB for NDA estimation requires
that the LLF does not depend on a, which is achieved by averaging the related likeli-
hood function, i.e., Pr(z|a; u) = eΛ(z|a;u), with respect to a ∈ AL, where AL denotes the
L-dimensional symbol space spanned by L i.i.d. elements of A. Therefore, we have that

Λ(z; u) = log Pr(z; u) = log

(
1

ML ∑
a∈AL

eΛ(z|a;u)

)
. (8)

As a consequence, the entries of the Fisher information matrix (FIM) are obtained as

Ji,k = Ez

[
∂Λ(z; u)

∂ui

∂Λ(z; u)
∂uk

]
, (9)

where Ez[·] denotes expectation with respect to z, i.e., an averaging procedure with respect
to a and n, which is only possible by numerical means.

According to theory, the CRLB for parameter ui is formally given by the i-th diagonal
entry of the inverted FIM. Since we are only interested in the estimation of ρs, represent-
ing the first element of u in our definition introduced before, the corresponding CRLB
develops as

CRLB(ρs) =
J22

J11 J22 − J12 J21
=

J22

J11 J22 − J2
12

. (10)

3.2. Low-Complexity Solution

From the complexity point of view, it is clear that the LLF in (8) is the most demanding
ingredient for the computation of the CRLB in (10). This is mainly due to the averaging
procedure, which is in the order of ML operations. Even smaller values of M and L are
challenging in this respect, but for values of L between 100 and 1000, which are typical for
an NDA scenario, the computational load would be intractable. Luckily, for some values of
the excess bandwidth, in particular for α ∈

{
0, 1

2 , 1
}

, it turns out that Ω boils down to an

L-dimensional identity matrix IL, which means that Ψ = Ω−1 = IL. In consequence, the
likelihood function in (8) can be re-organized as

Pr(z; u) =
P−L/2

n

ML ∑
a∈AL

exp

(
−

zTz− 2
√

ρsPn zTa + ρsPn aTa
4(1 + α)Pn

)
. (11)

Because of Ψ = IL the elements of z might be considered as statistically independent
entries. By taking into account that the symbols ai ∈ A are i.i.d., we just obtain

Pr(z; u) =
P−L/2

n

ML ∑
a∈AL

L−1

∏
k=0

eΛ(zk | ai ;u), (12)

where

Λ(zk|ai; u) = −
(zk −

√
ρsPn ai)

2

4(1 + α)Pn
. (13)
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Finally, the averaging of Pr(z|a; u) with respect to a ∈ AL is simply achieved, if we
exchange in (12) the order of sum and product, i.e.,

Pr(z; u) =
P−L/2

n

ML

L−1

∏
k=0

∑
ai∈A

eΛ(zk |ai ;u), (14)

resulting in a computational complexity in the order of M× L, which is much less compared
to ML.

In the next step, with Λ(z; u) = log Pr(z; u), the first-order derivatives in (9) are
expressed by

∂Λ(z; u)
∂ρs

=
L−1

∑
k=0

∑
ai∈A

Λs(zk|ai; u) eΛ(zk |ai ;u)

∑
ai∈A

eΛ(zk |ai ;u)
(15)

and

∂Λ(z; u)
∂Pn

= − L
2Pn

+
L−1

∑
k=0

∑
ai∈A

Λn(zk|ai; u) eΛ(zk |ai ;u)

∑
ai∈A

eΛ(zk |ai ;u)
, (16)

where

Λs(zk|ai; u) =
∂Λ(zk|ai; u)

∂ρs
=

1
4(1 + α)

(
ai zk√
ρs Pn

− a2
i

)
(17)

and

Λn(zk|ai; u) =
∂Λ(zk|ai; u)

∂Pn
=

1
4(1 + α)

(
z2

k
P2

n
−
√

ρs

P3
n

ai zk

)
. (18)

For the simplified scenario, the computation of FIM entries and CRLB does not differ
from the general case such that the relationships in (9) and (10) might be used in the
same way.

3.3. Asymptotic Scenario

For increasing values of M, the density of the PAM symbols ai will increase accordingly,
when we assume that their average energy is normalized to unity, i.e., E[a2

k ] = 1. Hence,
in case that M→ ∞, the symbol alphabet A turns out to be equally distributed between 0
and
√

3. Applying the framework developed previously to compute the CRLB for such a
scenario, it is clear that the sums over ai ∈ A in (15) and (16) have to be replaced by the
related integrals, i.e.,

∑
ai∈A

am
i eΛ(zk |ai ;u) → Im(zk; u) =

√
3∫

ai=0

am
i eΛ(zk |ai ;u)dai, (19)

where m ∈ {0, 1, 2}. By taking into account the solutions for (19) computed in Appendix A,
the first-order derivatives for the FIM entries in (9) are after some lengthy but straightfor-
ward manipulations given by

∂Λ(z; u)
∂ρs

=
1

4(1 + α)
√

ρs Pn

L−1

∑
k=0

zkI1(zk; u)−
√

ρs Pn I2(zk; u)
I0(zk; u)

(20)
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and
∂Λ(z; u)

∂Pn
= − L

2Pn
+

1
4(1 + α)P2

n

L−1

∑
k=0

z2
k −

1
4(1 + α)

√
ρs

P3
n

L−1

∑
k=0

zkI1(zk; u)
I0(zk; u)

. (21)

It is to be recalled that the simplified computation of the CRLB applies in the strict
sense only to values of α ∈

{
0, 1

2 , 1
}

, where Ψ = Ω−1 = IL. However, since the entries
of Ω are given by ωik = sinc[2(1 + α)(i− k)], it is clear that the off-diagonal elements of
the matrix are rapidly decaying for α /∈

{
0, 1

2 , 1
}

, which means that Ω and Ψ might be
approximated by an identity matrix of the same dimension such that the simplification
would be applicable. This results in a tight approximation of the true bound confirmed by
numerical results in Section 5.

4. Expectation-Maximization Estimator

Since the normalized SNR value is given by ρs = A2/Pn, it is clear that any estimator
algorithm must provide the estimates of channel gain as well as noise power, which means
that we are focusing in the sequel on a parameter vector u = (A, Pn). Formally, a maximum

likelihood solution for u is easily obtained by using the LLF in (8), i.e.,
^
u = argmax~

uΛ(z;
~
u).

However, this problem cannot be solved in closed form so that we must resort to numerical
methods, e.g., the iterative Newton-Raphson procedure [21]. Apart from troubles in
terms of initialization, convergence and stability, it is the computational complexity which
prohibits this approach, even if the simplified variant with Ψ = IL would be envisaged.

Alternatively, a rather simple solution based on first- and second-order moments given
by E[zk] and E[z2

k ], respectively, delivered reliable estimates only in the very low SNR range.
On the other hand, for an algorithm based on symbol decisions [15], useful results were
solely achievable for very large SNRs. As a consequence, an expectation-maximization
(EM) estimator [22–24] is proposed, whose error variance turned out to be close to the
CRLB over a wide SNR range as will be demonstrated in Section 5.

The EM algorithm is an iterative procedure using in step l the parameter estimates
calculated in step l – 1. The conditional LLF for this approach is for Ψ = IL expressed by

Λ(z|^u
(l−1)

;
~
u) = − L

2
log P̃n −

zTz− 2Ã zT .
a(l−1)

+ Ã2 ..
a(l−1)

4(1 + α)P̃n
. (22)

This is very similar to (7), but u is replaced by the trial value
~
u used for optimization

purposes; a as well as aT a are substituted by the corresponding soft decisions in step l – 1,

henceforth denoted by
.
a(l−1) and

..
a(l−1). The k-th element of vector

.
a(l−1) develops as

.
a(l−1)

k = ∑
ai∈A

aiP
(l−1)
i,k , (23)

whereas
..
a(l−1), representing a scalar, is a finite double sum given by

..
a(l−1)

=
L−1

∑
k=0

∑
ai∈A

a2
i P(l−1)

i,k . (24)

By inspection of (23) and (24), we observe that the soft decisions are characterized by
an averaging of the symbols ai ∈ A via the a posteriori probabilities [25]:

P(l−1)
i,k = Pr(ai ∈ A|zk,

^
u
(l−1)

) =
Pr[zk|ai ∈ A,

^
u
(l−1)

]Pr[ai ∈ A|
^
u
(l−1)

]

Pr[zk|
^
u
(l−1)

]

. (25)
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Because the symbols ai are i.i.d., we have that Pr[ai ∈ A|
^
u
(l−1)

] = Pr[ai ∈ A] = 1
M .

Furthermore, by considering the relationship in (13), the probability Pr[zk|ai ∈ A,
^
u
(l−1)

]
develops as

Pr[zk|ai ∈ A,
^
u
(l−1)

] =
1√

4π(1 + α)P̂(l−1)
n

exp

(
− (zk − Â(l−1)ai)

2

4(1 + α)P̂(l−1)
n

)
. (26)

Since the denominator in (25) does not depend on ai, it might be replaced by a constant

including also the a priori probability Pr[ai ∈ A|
^
u
(l−1)

] = 1
M , which is determined by the

fact that ∑M−1
i=0 P(l−1)

i,k = 1.

Finally, computing the first-order derivatives of (22) with respect to Ã as well as P̃n

and equating them to zero for Ã = Â(l) and P̃n = P̂(l)
n , the parameter estimates for step l

are achieved in closed form by

Â(l) =
zT .

a(l−1)

..
a(l−1)

(27)

and

P̂(l)
n =

zTz− 2Â(l) zT .
a(l−1)

+ (Â(l))
2 ..
a(l−1)

2L(1 + α)
. (28)

Nevertheless, the algorithm has to be initialized by appropriately selected values for
the probabilities in (25). Since the symbols ai are assumed to be i.i.d., it makes sense to
start the EM algorithm with P(0)

i,k = 1
M for all values of i and k. For convenient reasons, the

iterative procedure is summarized as follows:

1. Initialization

i = 0 . . . M− 1, k = 0 . . . L− 1 : P(0)
i,k = 1

M

2. Iteration: l = 1 . . . lmax

• Compute
.
a(l−1),

..
a(l−1)

• Compute Â(l), P̂(l)
n

• Compute P(l)
i,k

3. Final estimate

ρ̂s =
(Â(lmax))

2

P(lmax)
n

It is not difficult to see that the iterative step of the EM algorithm has a computational
complexity in the order of M × L additive and multiplicative operations, only relationship
(26) requires the evaluation of square root and exponential functions, which might be
elegantly handled via look-up tables. For the numerical results in Section 5, the iterative
procedure is organized such that it stops as soon as the relative error between two successive
estimates achieves a predefined value of 10−3 or when a maximum number of 103 iterations
is achieved; by extensive tests it turned out that this would be a good compromise between
complexity and accuracy. Furthermore, it is to be remembered that the algorithm applies
in the strict sense only to Ψ = IL, i.e., α ∈

{
0, 1

2 , 1
}

. However, since good results are
obtained for other values of α as well, it makes sense to employ the EM algorithm in these
cases as well.
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5. Numerical Results

In the following, the EM algorithm developed previously will be verified by numerical
means in terms of jitter (error) performance and bias. For comparison purposes, the CRLB is
included to the related diagrams, which show also the modified Cramer-Rao lower bound
(MCRLB). Derived in closed form in [17], the MCRLB is much simpler than the CRLB, but
it is in general less tight [26–29], i.e., MCRLB(ρs) ≤ CRLB(ρs), in particular at lower SNRs
as demonstrated subsequently.

For 2-PAM and 4-PAM signals operated with α = 0 and two different observation
lengths, L = 100 and 1000, Figure 3 illustrates the evolution of the error performance as a
function of the SNR value; for convenient reasons, error performance and theoretical limits
are normalized by ρ2

s . By detailed inspection, we observe that

• For larger SNRs, the CRLB (dashed line) approaches the corresponding MCRLB (solid
line) irrespective of the selected modulation scheme and the value of L.

• For very low SNRs, the ratio between CRLB and MCRLB seems to approach a small
but non-negligible constant, which decreases somewhat by increasing values of M.

• In the medium SNR range, we see a significant difference between MCRLB and CRLB
whose maximum grows with increasing values of M and which moves to larger
SNR values.

• For medium-to-low SNRs and L = 100, the error performance of the EM estimator,
indicated by markers in different style, is characterized by a considerable difference
to the CRLB, which shrinks more and more with increasing values of the SNR. This
degradation is basically explained by the fact that the algorithm performs a bias effect
evolving in the same way, which is depicted in Figure 2 (in this case, the dashed
lines do not correspond to an analytical relationship; they are due to an interpolation
procedure in order to achieve a better readability of these numerical results). This
drawback might be circumvented with larger observation windows, in Figures 2 and 3
exemplified by L = 1000.
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The observations made with M = 2 and 4 hold also true for higher orders of M, in
Figures 4 and 5 verified by a 16-PAM scheme operated with α = 0 and L = 100 or 1000.
However, Figure 4 includes also the evolution of the CRLB for M→∞ as it has been derived
in Section 4. One can see that the theoretical limit for M→ ∞ is close to that computed for
M = 16 as long as the latter does not start to approach the MCRLB, whereas for M→ ∞ it
continues to increase with increasing SNRs. This property suggests that NDA estimation of
the SNR becomes more and more problematic in case we increase the order of the selected
PAM scheme.
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The diagrams above visualize the error and bias performance for different PAM
constellations operated with α = 0.0, which is perhaps most interesting in practice, since it
represents the scenario with minimum bandwidth. Nevertheless, in order to complete the
portrait, Figure 6 shows the normalized error performance for a 4-PAM signal operated
with L = 1000 and α ∈ {0.0, 0.3, 1.0}. According to the exact relationship derived in [17], the
MCRLB is proportional to 2(1 + α)/L for very low SNRs, whereas for ρs→∞ it approaches
2/L regardless of the selected α, or in other words: with respect to α = 0, the MCRLB for
α > 0 appears as shifted to the right depending on the chosen value.

Exactly the same behavior is reflected by the CRLB, although the results are in the
very low SNR range somewhat higher than those achieved with the MCRLB, but for rather
large values, say ρs > 25 dB, the CRLB approaches more and more the horizontal floor
characterizing the MCRLB performance. Of course, in the medium SNR range, the CRLB
deviates significantly from the MCRLB, which applies also to the simplified computation
for α = 0.3.
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Figure 6 includes also the normalized jitter variance of the EM algorithm developed
in the previous section. By detailed inspection, we observe that the performance differs
for α = 0 in the lower SNR domain somewhat from the CRLB, which is mainly due to a
residual bias effect, whereas for medium-to-high SNR values the jitter variances are very
close to the corresponding CRLBs regardless of the selected excess bandwidth.

6. Concluding Remarks

The availability of reliable SNR estimates is most helpful in many communication
systems, particularly when adaptive solutions have to be considered in terms of modulation
and coding schemes. This is not only true for radio frequency, but also for optical wireless
links. Assuming a bandlimited optical intensity channel, an algorithm for SNR estimation
has been developed, which does not require any knowledge about the transmitted data
symbols. Such an NDA approach is very appreciated, because the larger observation
lengths do not adversely affect the spectral efficiency as it would happen with a DA
solution. Maximum likelihood, moment-based and decision-directed methods were out
of scope because of complexity and/or performance reasons, but it turned out that the
developed expectation-maximization algorithm exhibits an error performance close to the
CRLB as the theoretical limit, which is mainly true for longer observation windows where
bias effects are negligible.
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Appendix A

In the following, a closed form solution is provided for the integrals specified in (19).
Regarding that Λ(zk|ai; u) is expressed by (13), it is obvious that the integral for m = 0
is given by an instance of the error function [30] (3.321/2). Applying the basic rules of
integration, we simply obtain

I0(zk; u) =

√
3∫

ai=0
eΛ(zk |ai ;u)dai

=
√

π(1+α)
ρs

[
erf
(

zk
2
√

(1+α)Pn

)
− erf

(
zk−
√

3 ρsPn

2
√

(1+α)Pn

)]
.

(A1)

Doing the same for m = 1 by taking into account the result in (A1), the corresponding
integral is solved as

I1(zk; u) =

√
3∫

ai=0
ai eΛ(zk |ai ;u)dai

= zk I0(zk ;u)√
ρsPn

+ 2(1+α)
ρs

[
exp

(
− z2

k
4(1+α)Pn

)
− exp

(
− (zk−

√
3ρsPn)

2

4(1+α)Pn

)]
.

(A2)

Finally, for m = 2 and considering (A1) as well as (A2) together with [30] (3.361/1), we
get after some algebra
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I2(zk; u) =

√
3∫

ai=0
a2

i eΛ(zk |ai ;u)dai

=
[z2

k+2(1+α)Pn ] I0(zk ;u)
ρsPn

− 2(1+α)

ρ2
s Pn

[
(
√

3ρsPn +
√

ρsPnzk) exp
(
− (zk−

√
3ρsPn)

2

4(1+α)Pn

)
−
√

ρsPn zk exp
(
− z2

k
4(1+α)Pn

)]
.

(A3)
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