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1. INTRODUCTION

Differentiation in presence of measurement noise is an im-
portant task in many control applications, such as velocity
estimation or fault detection, for example. An important
class of differentiators are the robust exact differentia-
tors first introduced by Levant (1998) and generalized to
arbitrary differentiation order in (Levant, 2003). In the
absence of noise, these differentiators yield the exact value
of the input signal’s derivatives. At the same time, they
also exhibit robustness with respect to measurement noise
in the form of an optimal asymptotic differentiation error
bound as a function of the noise amplitude, cf. e.g. Levant
et al. (2017).

When it comes to rigorous stability conditions for the
robust exact differentiator, most existing works focus on
the first order differentiator, also known as the super-
twisting algorithm. Even for this algorithm, bounds on
the differentiation error in presence of measurement noise
are only scarcely studied, e.g., by Angulo et al. (2012).
In contrast, Polyakov and Poznyak (2009); Moreno and
Osorio (2012); Utkin (2013); Seeber and Horn (2017);
Brogliato et al. (2020), among others, propose different
Lyapunov functions and stability conditions for the super-
twisting algorithm, and a necessary and sufficient stabil-
ity condition is obtained in (Seeber and Horn, 2018). A
notable breakthrough for higher differentiation orders has
been achieved by Cruz-Zavala and Moreno (2019), who
propose a family of Lyapunov function for all differen-
tiation orders. Deriving stability conditions from these
Lyapunov functions requires the (numerical) computation
of maxima of homogeneous functions on the unit sphere,
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however. For faster and easier tuning, closed-form stabil-
ity conditions and differentiation error bounds are clearly
desirable. However, to the best of the author’s knowledge,
no such conditions or error bounds exist for the arbitrary
order robust exact differentiator.

The present paper proposes, for the first time, closed-
form stability conditions for arbitrary differentiation or-
ders along with differentiation error upper bounds in pres-
ence of measurement noise. The results are based on a
new Lyapunov function, which is constructed in the spirit
of the one by Cruz-Zavala and Moreno (2019) but yields
stability conditions and error bounds in closed form.

The paper is structured as follows: Section 2 intro-
duces the considered differentiation problem and recapit-
ulates the arbitrary order robust exact differentiator. The
main result—stability conditions and differentiation error
bounds for arbitrary differentiation orders—are stated in
Section 3, along with a parameter tuning rule. Section 4
proposes a new Lyapunov function that is then used to
formally prove the result. Finally, Section 5 applies the
conditions and tuning rule in numerical examples, com-
paring the proposed result with existing conditions, and
Section 6 draws conclusions and provides a brief outlook.
Appendix A contains the proofs of all lemmata.

Notation: Boldface lowercase letters denote vectors, and
R, R≥0, and R>0 denote the reals, nonnegative reals, and
positive reals. The abbreviation ⌊y⌉p = |y|p sign(y) is used
for y, p ∈ R, and ⌊y⌉0 = sign(y). The jth time derivative
of a function f : R≥0 → R is written as f (j), and f (0) = f .

2. PRELIMINARIES

In the following, the considered arbitrary order robust
exact differentiator is introduced along with the corre-
sponding differentiation problem.
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2.1 Arbitrary Order Differentiation

Consider a function f : R≥0 → R. For an integer n > 1,
the problem of obtaining derivatives of f up to order n−1
is considered. For this purpose, the class of signals to be
differentiated is restricted to functions f , for which these
derivatives exist and the (n − 1)th derivative is Lipschitz
continuous, i.e., for which

|f (n)(t)| ≤ L (1)

holds almost everywhere on R≥0 with some Lipschitz
constant L ∈ R>0. The signal is furthermore assumed to
be corrupted by a measurement noise η, such that the
input u to the differentiator is given by u = f + η, with
|η(t)| ≤ N for some noise amplitude N ∈ R≥0.

2.2 Robust Exact Differentiator

The (n− 1)th order robust exact differentiator is given by
the nth order system

ż1 = λ1L
1
n ⌊u− z1⌉

n−1
n + z2 (2a)

ż2 = λ2L
2
n ⌊u− z1⌉

n−2
n + z3 (2b)

...

żn−1 = λn−1L
n−1
n ⌊u− z1⌉

1
n + zn (2c)

żn = λnL ⌊u− z1⌉0 (2d)

with input u, positive parameters λ1, . . . , λn ∈ R>0, and
outputs yi = zi+1 (i = 1, . . . , n − 1) corresponding to
estimates for the respective derivatives f (1), . . . , f (n−1) of
the function f . Without any additional knowledge on the
derivatives of f , it is usually prudent to choose the initial
values as z1(0) = u(0) and z2(0) = . . . = zn(0) = 0.
Solutions of this system are understood in the sense of
Filippov (1988).

3. MAIN RESULT

In order to state the main result, an additional restriction
is imposed on the signal f and the measurement noise η
to guarantee a certain well-posedness of the differentiation
error trajectories. The following assumption states this
restriction, along with the previously stated requirements.

Assumption 1. Let L ∈ R>0 and N ∈ R≥0. The signal f
and the noise η satisfy the following three conditions:

(a) f is n− 1 times differentiable, and f (n−1) is Lipschitz
continuous, i.e., |f (n)(t)| ≤ L almost everyhwere;

(b) η is Lebesgue measureable and uniformly bounded
according to |η(t)| ≤ N ;

(c) f and η are such that, for all i = 1, . . . , n, the signal
zi − f (i−1) is equal to zero only on a set comprised of
countably many time intervals or time instants.

According to the item (c), signals such as the tracking

error z1 − f or the differentiation error z2 − ḟ can exhibit
an infinite sequence of isolated zeros due to oscillations
followed by being zero on the remaining time interval, but
may not have zeros that coincide with some fractal set
such as the Cantor set, for example. This restriction is a
technical requirement for dealing with the fact that the
Lyapunov function proposed in this paper, unlike the one

by Cruz-Zavala and Moreno (2019), is not smooth. While
this makes the formal results presented here somewhat less
general, this assumption is not an actual restriction for
practical applications.

The reason for this is that, in a practical implementation,
any continuous-time solution of the differentiator has to
be approximated by a discrete-time system using sampled
measurements of u, cf. e.g. Livne and Levant (2014). By a
slight modification of f and η in between the sampling time
instants, every continous-time solution with uncountably
many zero crossings can conceivably be approximated by
a modified solution with countably many zeros without
changing the sampled measurements. Hence, although the
discrete-time case is not formally considered here, it is
reasonable to conjecture that the presented analysis is
valid (in an asymptotic sense) also for a discrete-time
differentiator implementation without the restriction in
Assumption 1, item (c).

The following theorem states the main result: closed-form
stability conditions for the arbitrary order robust exact
differentiator and upper bounds for its differentiation error
in the presence of measurement noise. It is proven in
Section 4.3.

Theorem 2. Let a1, . . . , an−1 ∈ (1, 2) and recursively de-
fine β1, . . . , βn and γ0, γ1, . . . , γn via

βj+1 =

(
βj
j +

aj

γj
j

) 1
j

, γj+1 =

(
2

2− aj

) 1
j

γj (3)

with β1 = 1 and γ0 = γ1 = 2. Suppose that the parameters
λ1, . . . , λn ∈ R>0 satisfy λn > 1 and

λi

λi−1
>

λi+1

λi
µn−i+1 (4a)

for i = 1, . . . , n− 1 with the abbreviation λ0 = 1 and

µj =
j

j − 1
·
γj−1
j−1

γj−2
j−2

· βj

aj−1 − 1
(j = 2, . . . , n). (4b)

Consider the differentiator (2) with input u = f + η
satisfying Assumption 1. Then, for every given initial
condition z1(0), . . . , zn(0), there exists a finite convergence
time τ ∈ R≥0 such that the differentiation errors are
bounded from above according to

|yi(t)− f (i)(t)| ≤
(
βn−iγn

n
√
2

)n−i

λiN
n−i
n L

i
n (5)

for all t ≥ τ and i = 1, . . . , n− 1.

Remark 3. (Tuning Rule). To obtain a set of parame-
ters λ1, . . . , λn satisfying the stability condition (4), first
choose positive constants a1, . . . , an−1 ∈ (1, 2) and com-
pute µ2, . . . , µn by using (4b) and the recursions (3). Then,
select µ̄1 = 1 and µ̄2, . . . , µ̄n such that µ̄i > µi for i =
2, . . . , n. For any given λn > 1, computing the remaining
differentiator parameters λ1, . . . , λn−1 according to

λj = λ
j
n
n

∏n
k=n−j+1

∏k
i=1 µ̄i(∏n

k=1

∏k
i=1 µ̄i

) j
n

(j = 1, . . . , n− 1) (6)

then guarantees condition (4) to be satisfied.
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4. LYAPUNOV FUNCTION

Consider the error variables xi = zi − f (i−1), i = 1, . . . , n.
These are governed by

ẋ1 = −λ1L
1
n ⌊x1 − η⌉

n−1
n + x2 (7a)

ẋ2 = −λ2L
2
n ⌊x1 − η⌉

n−2
n + x3 (7b)

...

ẋn−1 = λn−1L
n−1
n ⌊x1 − η⌉

1
n + xn (7c)

ẋn = −λnL ⌊x1 − η⌉0 − f (n). (7d)

In the following, this error system is first transformed
to a recursive form which is also used to construct the
Lyapunov function in (Cruz-Zavala and Moreno, 2019),
and which is similar to the original recursive representa-
tion of the differentiator in (Levant, 2003). Then, a new
Lyapunov function is proposed which is used to formally
prove Theorem 2.

4.1 Transformed Error System

Using the abbreviations λ0 = λn+1 = 1, define trans-
formed parameters

κj =
λn−j+1

λn−j
(j = 0, . . . , n) (8)

and consider the state transform

ξj =
xn−j+1

λn−jL
(j = 1, . . . n) (9)

as in (Cruz-Zavala and Moreno, 2019), with an additional
renumbering of the states for greater convenience.

With the abbreviations ηn+1 = − η
L and ξ0 = −κ0

f(n)

L , the
scaled error variables ξi are then governed by

ξ̇1 = −κ1η1, η1 = ⌊ξ1 + η2⌉0 − ξ0 (10a)

ξ̇2 = −κ2η2, η2 = ⌊ξ2 + η3⌉
1
2 − ξ1 (10b)

ξ̇3 = −κ3η3, η3 = ⌊ξ3 + η4⌉
2
3 − ξ2 (10c)

...
...

ξ̇n = −κnηn, ηn = ⌊ξn + ηn+1⌉
n−1
n − ξn−1. (10d)

Note that, due to Assumption 1, |ηn+1| ≤ N
L and |ξ0| ≤ κ0

holds almost everywhere.

4.2 Lyapunov Function

Introduce the state vector ξ = [ξ1 . . . ξn]
T and con-

sider functions Vi : Rn → R≥0 recursively defined as

V1(ξ) = |ξ1| , (11a)

Vj(ξ) = max

{
Vj−1(ξ), α

− 1
j−1

j Wj(ξ)

}
. (11b)

for j = 2, . . . , n with

Wj(ξ) =
∣∣∣⌊ξj⌉ j−1

j − ξj−1

∣∣∣ 1
j−1

(11c)

and positive constants α2, . . . , αn.

The following lemma provides a guideline for the choice
of the parameters αj and states an upper bound on the
states ξj using the functions Vj thus defined. Its proof is
performed by induction over j and is given in the appendix.

Lemma 4. Suppose that αj , βj , γj ∈ R>0 (j = 1, . . . , n)

satisfy α1 = 0, β1 = 1, γ1 = 2, and αj+1γ
j
j ∈ (1, 2) as well

as

βj+1 = (βj
j + αj+1)

1
j , γj+1 =

(
2γj

j

2− αj+1γ
j
j

) 1
j

(12)

for j = 1, . . . , n − 1. Then, the functions Vj : Rn → R≥0

(j = 1, . . . , n) defined in (11) satisfy

|ξj | ≤ βj
jVj(ξ)

j (13)

for all ξ ∈ Rn.

As a Lyapunov function candidate, the function Vn is
now considered, which is positive definite and radially
unbounded. It will be shown that, for each j, the larger one
of the two functions in (11b) is always strictly decreasing
provided that Vj is larger than some function of a bound
on ηj+1. By induction, this ensures ultimate boundedness
of Vn in terms of the bound N on η = −Lηn+1. Since
V1, . . . , Vn are not everywhere differentiable, some further
technical arguments are required to complete the formal
proof later on. For the cases (i.e., time instants) when they
are differentiable, the following lemma allows to bound
their time derivative by a negative constant. The proof is
performed by induction over j and is given in the appendix.

Lemma 5. Let αj , βj , γj ∈ R>0 (j = 1, . . . , n) satisfy the
conditions of Lemma 4. Suppose that κ1, . . . , κn ∈ R>0

satisfy κ0 ∈ (0, 1), κ1 > 0, and

κm

m

αmγm−1
m − 2

βm
>

κm−1

m− 1

(
αm−1γ

m−1
m

+2
1

m−1 γm
(
αmγm−1

m + 2
)m−2

m−1

) (14)

for m = 2, . . . , n. Consider system (10) and the functions
Vj : Rn → R≥0 defined in (11). Then, there exist
ε1, . . . , εn ∈ R>0 such that for all N ∈ R>0 and all integers

j = 1, . . . , n, the three inequalities Vj(ξ(t)) > γj
(
N
2L

) 1
j ,

|ηj+1(t)| ≤ N
L , and |ξ0(t)| ≤ κ0 imply d

dtVj(ξ(t)) ≤ −εj
for all trajectories ξ : R≥0 → Rn of (10) and all t ∈ R≥0

where the derivative exists.

Since Vn is not everywhere differentiable, it is not yet
possible to conclude from the previous lemma that Vn

is non-increasing with respect to time. To deal with this
issue, the following technical lemma is used. It relies on the
technical assumption introduced in Assumption 1, item (c)
to show, essentially, that Vn(ξ(t)) is generalized absolutely
continuous in the restricted sense (ACG∗), as defined in
(Gordon, 1994, Definition 6.1), to conclude differentiability
almost everywhere and, when Vn is furthermore non-
increasing with respect to time, to conclude also absolute
continuity. The formal proof is provided in the appendix.

Lemma 6. Suppose that the function ξ : R≥0 → Rn is
absolutely continuous and that the set

Zj = {t ∈ R≥0
: ξj(t) = 0} (j = 1, . . . , n) (15)

is comprised of countably many time intervals or time
instants. Consider the function V : R≥0 → R≥0 defined
as V (t) = Vn(ξ(t)) with Vn : Rn → R≥0 as defined in (11).
Let I ⊆ R≥0 be an interval, and suppose that V (t) > 0
for all t ∈ I. Then, V is differentiable almost everywhere
on I. Moreover, if V̇ (t) ≤ 0 holds almost everyhwere on I,
then V is absolutely continuous on I.
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Using the introduced lemmata, the following proposition
will now be proven. It shows that all trajectories of the
transformed error system (10) enter a sublevel set of Vn in
finite time, whose size depends on the noise amplitude N .

Proposition 7. Let Assumption 1 hold with L ∈ R>0,
N ∈ R≥0. Suppose that the conditions of Lemma 5 are
fulfilled, and let εn ∈ R>0 and Vn : Rn → R≥0 be as
in that lemma. Then, every trajectory ξ : R≥0 → Rn of
system (10) satisfies

Vn(ξ(t)) ≤ γn

(
N

2L

) 1
n

(16)

for all t ≥ τ = Vn(ξ(0))/εn.

Proof. Define V : R≥0 → R≥0 as V (t) = Vn(ξ(t)).
Denote by Zj = {t ∈ R≥0 : ξj(t) = 0} the set of zeros
of ξj . Due to Assumption 1, item (c), each Zj is the union
of countably many time intervals or time instants. Hence,
V̇ (t) exists almost everyhwere on time intervals where V
is positive due to Lemma 6.

To prove the claim, assume that V (t) > γn
(
N
2L

) 1
n on some

interval I = (τ1, τ2) with either τ1 = 0, τ2 > V (0)/ε,

or τ2 > τ1 ≥ V (0)/ε and V (τ1) = γn
(
N
2L

) 1
n . Since

V̇ (t) exists almost everyhwere on I due to Lemma 6,

V̇ (t) ≤ −εn < 0 holds almost everywhere on I due to
Lemma 5, and hence V is absolutely continuous on I
again due to Lemma 6. Hence, the comparison lemma, cf.
(Khalil, 2002), may be applied, yielding the contradiction
V (τ2) ≤ V (0) − εnτ2 < 0 in the case τ1 = 0 or the

contradiction V (τ) < V (τ1) = γn
(
N
2L

) 1
n for all τ ∈ (τ1, τ2)

in the case τ1 > 0. This concludes the proof. 2

With this proposition, the main theorem is now proven.

4.3 Proof of Theorem 2

In order to prove Theorem 2, first note that with

αj =
aj−1

γj−1
j−1

(j = 2, . . . , n) (17)

the constants αj , βj , γj satisfy the conditions of Lem-
mata 4 and 5. Moreover, (4) is equivalent to condition (14)
of Lemma 5; to see this, note that (14) may be written as

κm > mβm

m−1 µ̃mκm−1 with

µ̃m =
αm−1γ

m−1
m + 2

1
m−1 γm(αmγm−1

m + 2)
m−2
m−1

αmγm−1
m − 2

(18)

Using the recursion (12), the numerator may be rewritten
as

µ̃m =
γm−1
m (αm−1 + 2

1
m−1 (αm + 2γ

−(m−1)
m )

m−2
m )

αmγm−1
m − 2

=
γm−1
m (αm−1 + 2γ

−(m−2)
m−1 )

αmγm−1
m − 2

=
αm−1 + 2γ

−(m−2)
m−1

αm − 2γ
−(m−1)
m

.

(19)

Substituting the recursion again (verifying separately that
equality holds also for m = 2), and using (17) yields

µ̃m =
αm−1 +

2−αm−1γ
m−2
m−2

γm−2
m−2

αm − 2−αmγm−1
m−1

γm−1
m−1

=
γm−1
m−1

γm−2
m−2

1

αmγm−1
m−1 − 1

(20)
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Fig. 1. Numerically obtained time evolution of V1(x(t))
and Lyapunov function V2(x(t)) in (25) with param-
eters L = 1, N = 1

32 , λ1 = 6, λ2 = 1.1, a1 = 3
2 ; the

corresponding ultimate bound for V2 from Lemma 5
is γ2

√
N/(2L) = 1.

from which equivalence to (4) is obtained using (17),

noting that µm = mβm

m−1 µ̃m, and substituting m = n− i+1.
For N > 0, Proposition 7 and Lemma 4 may thus be used
to conclude that

|ξj(t)| ≤ βj
jVj(ξ(t))

j ≤ βj
jVn(ξ(t))

j ≤ βj
jγ

j
n

(
N

2L

) j
n

(21)

and hence

|yi(t)− f (i)(t)| = |xi+1(t)| = λiL|ξn−i(t)|

≤
(
βn−iγn

n
√
2

)n−i

λiN
n−i
n L

i
n (22)

holds after a finite time depending on the initial condition.
For N = 0, finally, validity of the claim follows from the
case N > 0 and the homogeneity of system (7). 2

5. NUMERICAL EXAMPLES

To assess the conservativeness of the proposed stability
condition, it is first evaluated for the super-twisting algo-
rithm, i.e., for the first-order robust exact differentiator
with n = 2. In this case, the only free parameter in
Theorem 2 is a1 ∈ (1, 2), from which

β1 = 1, β2 = 1 +
a1
2
, γ1 = 2, γ2 =

4

2− a1
(23)

are obtained. The stability condition (4) is then given by

λ2
1 > µ2λ2, λ2 > 1 (24a)

with

µ2 = 2γ1
β2

a1 − 1
= 4

1 + a1

2

a1 − 1
> 8. (24b)

The least conservative condition is obtained in the limit
a1 → 2, yielding µ2 → 8.

With α2 = a1

γ1
= a1

2 , ξ1 = x2

λ1L
, ξ2 = x1

L , relation (11)

yields functions V1, V2 in original coordinates, i.e., in x, as

V1(x) =
|x2|
λ1L

, V2(x) =
max{|x2|, 2

a1
|λ1 ⌊x1⌉

1
2 − x2|}

λ1L
.

(25)
Consider differentiation of the signal f(t) = Lt2/2 + 10t
with noise η(t) = N sin 10t and parameters chosen as
N = 1

32 , L = 1, a1 = 3
2 , λ1 = 6, λ2 = 1.1 to satisfy

(24). Fig. 1 depicts the time evolution of the Lyapunov
function V2 as well as V1 obtained using a numerical
forward Euler simulation with step size 10−5 and initial
values z1(0) = z2(0) = 0. One can see that V2 complies
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with the ultimate bound γ2
√
N/(2L) = 1 from Lemma 5.

Note that obtaining a bound for V1 from the same lemma

requires computing a bound on η2 =
⌊
x1−η
L

⌉ 1
2 − x2

λ1L
first.

In contrast to (24), the Lyapunov functions proposed by
Cruz-Zavala and Moreno (2019) allow to conclude stabil-
ity already for λ2

1 > 4λ2 with λ2 > 1. Thus, the Lya-
punov function presented in this paper yields somewhat
more conservative conditions than the one proposed by
Cruz-Zavala and Moreno (2019). This increased conser-
vativeness is balanced by the simpler construction of the
Lyapunov function, which here allows to obtain stability
conditions and differentiation error bounds in closed form.

To demonstrate the tuning rule from Remark 3, consider
now the case n = 3 and select a1 = a2 = 3

2 . This yields

β1 = 1, β2 =
7

4
, β3 =

1

8

√
395

2
, (26a)

γ1 = 2, γ2 = 8, γ3 = 16 (26b)

and

µ2 = 14, µ3 = 12
√
395/2. (27)

Selecting µ̄2 = 22 > µ2 and µ̄3 = 176 > µ3 the parameters

λ1 = λ
1
3
3

µ̄1µ̄2µ̄3

(µ̄3
1µ̄

2
2µ̄3)

1
3

= 88λ
1
3
3 (28a)

λ2 = λ
2
3
3

µ̄2
1µ̄

2
2µ̄3

(µ̄3
1µ̄

2
2µ̄3)

2
3

= 44λ
2
3
3 (28b)

are then obtained for any λ3 > 1.

6. CONCLUSIONS AND OUTLOOK

Closed-form stability conditions and differentiation error
bounds for the arbitrary order robust exact differentiator
were presented for the first time. The conditions and
bounds are obtained from a novel Lyapunov function
that is constructed in a recursive fashion for arbitrary
differentiation orders. A disadvantage of the proposed
approach is its increased conservativeness compared to an
already existing family of Lyapunov functions. The latter
yield stability conditions only numerically, however, by
solving optimization problems. Hence, future work may
focus on reducing the conservativeness of the proposed
approach while still maintaining sufficient simplicity in the
construction of the Lyapunov function, in order to possibly
obtain less conservative closed-form stability conditions.
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Appendix A. PROOFS

In order to prove the lemmata in this paper, the following
auxiliary lemma from (Cruz-Zavala et al., 2018) is used.

Lemma 8. The inequality∣∣∣⌊x− η⌉
m−1
m − ⌊x⌉

m−1
m

∣∣∣ ≤ 2
1
m |η|

m−1
m . (A.1)

holds for all x, η ∈ R and all positive integers m.

Proof. According to (Cruz-Zavala et al., 2018, Lemma

7), | ⌊x1⌉p+ ⌊x2⌉p |1/p ≤ 2
1
p−

1
q | ⌊x1⌉q + ⌊x2⌉q |1/q holds for

all x1, x2 ∈ R and all q ≥ p > 0. Set p = m−1
m , q = 1,

x1 = x− η, x2 = −x to obtain the claimed inequality. 2

A.1 Proof of Lemma 4

For j = 1, the statement is obvious from V1(ξ) = |ξ1| and
β1 = 1. Suppose that the statement is true for j = m− 1
for some 2 ≤ m ≤ n. Then,

|ξm| ≤
(
|ξm−1|+ | ⌊ξm⌉

m−1
m − ξm−1|

) m
m−1

≤
(
βm−1
m−1Vm−1(ξ)

m−1 + αmVm(ξ)m−1
) m

m−1

≤ (βm−1
m−1 + αm)

m
m−1Vm(ξ)m = βm

mVm(ξ)m, (A.2)

showing that the statement holds also for j = m. 2
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A.2 Proof of Lemma 5

Consider a time instant t ∈ R≥0. For simplicity, the time
argument is suppressed in the following, writing ξj , ηj , Vj ,

and V̇j instead of ξj(t), ηj(t), Vj(ξ(t), and
d
dtVj(ξ(t)), re-

spectively. The proof is performed by induction over j.
For j = 1, V1 = |ξ1| > N/L implies ⌊ξ1 + η2⌉0 = ⌊ξ1⌉0;
hence, V̇1 ≤ −κ1(1 − κ0) =: −ε1. Suppose now that the
statement is true for j = m − 1 for some 2 ≤ m ≤ n,
define Ñm+1 = N/L, and note that |ηm+1| ≤ Ñm+1 by
assumption. Then, according to Lemma 8,

|ηm| ≤
∣∣∣⌊ξm⌉

m−1
m − ξm−1

∣∣∣+ 2
1
m |ηm+1|

m−1
m

≤ αmV m−1
m + 2(Ñm+1/2)

m−1
m =: Ñm, (A.3)

wherein Ñm is introduced as an abbreviation, and

|ηm−1| ≤ αm−1V
m−2
m−1 + 2

1
m−1 |ηm|

m−2
m−1

≤ αm−1V
m−2
m + 2

(αm

2
V m−1
m + (Ñm+1/2)

m−1
m

)m−2
m−1

= αm−1V
m−2
m + 2

(
Ñm/2

)m−2
m−1

= Ñm−1. (A.4)

Note that this is true even for m = 2, because then

|η1| =
∣∣∣⌊ξ1 − η2⌉0 − δk

∣∣∣ ≤ 1 + κ0 ≤ 2. (A.5)

It will be shown that there exists a constant εm > 0
independent of t such that Vm = Vm−1 (at some time in-

stant) implies V̇m−1 ≤ −εm and Vm = α
− 1

m−1
m Wm implies

Ẇm ≤ −α
1

m−1
m εm. Distinguishing these two cases, consider

first the case Vm = Vm−1. Then, Vm > γm(Ñ/2)
1
m implies

(2− γm−1
m−1αm)V m−1

m > 2γm−1
m−1(Ñ/2)

m−1
m (A.6)

which is equivalent to

V m−1
m >

γm−1
m−1

2
(αmV m−1

m + 2(Ñ/2)
m−1
m ) = γm−1

m−1

Ñm

2
(A.7)

and yields Vm−1 = Vm > γm−1(Ñm/2)
1

m−1 . Hence, using

the induction assumption for N = LÑm, obtain the
inequality V̇m−1 ≤ −εm−1 ≤ −εm for εm ∈ (0, εm−1].

In the second case, define wm := ⌊ξm⌉
m−1
m − ξm−1 with

Wm = |wm|
1

m−1 to obtain

Ẇm =
W 2−m

m

m− 1

(
− m− 1

m |ξm|
1
m

κmηm + κm−1ηm−1

)
⌊wm⌉0 .

(A.8)

Since |ηm −wm| ≤ 2(Ñm+1/2)
m−1
m according to Lemma 8

and |ηm−1| ≤ Ñm−1,

Ẇm ≤ W 2−m
m

m− 1

(
− m− 1

m |ξm|
1
m

κm(Wm−1
m − 2(Ñm+1/2)

m−1
m )

+κm−1Ñm−1

)
.

(A.9)

Further utilizing |ξm| 1
m ≤ βmVm = βmα

− 1
m−1

m Wm yields

Ẇm ≤ −κm
1− 2W 1−m

m (Ñm+1/2)
m−1
m

mβmα
− 1

m−1
m

+κm−1
W 2−m

m Ñm−1

m− 1
,

(A.10)

provided that the right-hand side of (A.10) is negative,
which will be verified in the end. In (A.10), substitute

Ñm−1 = αm−1α
−m−2

m−1
m Wm−2

m

+ 2
(αm

2
α−1
m Wm−1

m + (Ñm+1/2)
m−1
m

)m−2
m−1

(A.11)

and introduce the abbreviationRm = W 1−m
m (Ñm+1/2)

m−1
m

to obtain

Ẇm ≤ −κm
1− 2Rm

mβmα
− 1

m−1
m

+ κm−1
αm−1α

−m−2
m−1

m + 2
1

m−1 (1 + 2Rm)
m−2
m−1

m− 1
.

(A.12)

Since (Ñm+1/2)
m−1
m < γ1−m

m V m−1
m = γ1−m

m α−1
m Wm−1

m , the
abbreviation Rm satisfies Rm < α−1

m γ1−m
m , which finally

yields

α
m−2
m−1
m γm−1

m Ẇm ≤ −κm
αmγm−1

m − 2

mβm

+κm−1
αm−1γ

m−1
m + 2

1
m−1 γm(αmγm−1

m + 2)
m−2
m−1

m− 1

(A.13)

whose right-hand side can be bounded by some negative
constant −εm due to condition (14). 2

A.3 Proof of Lemma 6

By assumption, the boundary ∂Zj of Zj consists of count-

ably many points. Hence, ⌊ξj(t)⌉
j−1
j is differentiable with

respect to t on the set J = R≥0\∪n
j=1∂Zj , because for each

t ∈ J there exists a compact interval containing t on which
ξj(t) is either constant or strictly positive. For each com-
pact interval Ī ⊆ I, define µ = mint∈Ī V (t) > 0, where the
minimum exists due to continuity of V and compactness of
Ī, and choose for each j an absolutely continuous function
gj : Ī → [µ/2, µ] such that the functions hj : Ī → R≥0

defined as h1(t) = |ξ1(t)| and

hj(t) = max{gj(t), α
− 1

j−1

j

∣∣∣⌊ξj(t)⌉ j−1
j − ξj−1(t)

∣∣∣ 1
j−1 }
(A.14)

for j = 2, . . . , n are differentiable on J ∩ Ī. Then, since
V (t) ≥ µ and gj(t) ≤ µ, the function V may equivalently
be written as

V (t) = max
1≤j≤n

hj(t) (A.15)

on Ī. Since each hj is differentiable nearly everywhere
on Ī (i.e., everwhere except at countably many time
instants), it is generalized absolutely continuous in the
restricted sense (ACG∗) on Ī as defined in (Gordon, 1994,
Definition 6.1) due to (Gordon, 1994, Corollary 6.23).
Their pointwise maximum, i.e., V is then also ACG∗ on
Ī. Finally, since I may be written as a countable union of
compact intervals Ī, the function V is ACG∗ also on I,
and differentiability almost everywhere on I follows from
(Gordon, 1994, Corollary 6.19). Finally, if V̇ (t) ≤ 0, then
it is nonincreasing due to (Gordon, 1994, Theorem 6.25),
and hence has bounded variation on I, implying absolute
continuity, cf. (Gordon, 1994, Exercise 6.8). 2
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