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Abstract
In situ IR detection of photoreactions induced by the light of LEDs at appropriate wavelengths provides a simple, cost-
effective, and versatile method to get insight into mechanistic details. In particular, conversions of functional groups can be 
selectively followed. Overlapping UV–Vis bands or fluorescence from the reactants and products and the incident light do 
not obstruct IR detection. Compared with in situ photo-NMR, our setup does not require tedious sample preparation (optical 
fibers) and offers a selective detection of reactions, even at positions where 1H-NMR lines overlap or 1H resonances are not 
clear-cut. We illustrate the applicability of our setup following the photo-Brook rearrangement of (adamant-1-yl-carbonyl)-
tris(trimethylsilyl)silane, address photo-induced α-bond cleavage (1-hydroxycyclohexyl phenyl ketone), study photoreduction 
using tris(bipyridine)ruthenium(II), investigate photo-oxygenation of double bonds with molecular oxygen and the fluorescent 
2,4,6-triphenylpyrylium photocatalyst, and address photo-polymerization. With the LED/FT-IR combination, reactions can 
be qualitatively followed in fluid solution, (highly) viscous environments, and in the solid state. Viscosity changes during 
the reaction (e.g., during a polymerization) do not obstruct the method.

Graphical abstract

1 Introduction

Over the past decade, the interest in organic photochemis-
try experienced a renaissance, and more and more scientists 
have opted to develop a large amount of novel photo-induced 
reactions [1–9]. This leads to an increasing need for tools 
and methods to monitor the molecular nature and kinetics of 
intrinsically complex photochemical transformations.
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A large arsenal of advanced methods [10, 11] has 
become available to achieve a mechanistic understanding 
of photochemistry such as time-resolved X-ray methods 
[12], ultrafast electronic spectroscopy [13–16], and (multi-
dimensional) vibrational spectroscopy even at very fast 
time scales [17–21]. In terms of an easy and convenient 
reaction monitoring, nuclear magnetic resonance (NMR) 
is often the method of choice, but although several meth-
odologies have been developed to combine sample irradia-
tion inside the NMR magnet [22–24], they can hardly be 
run on a routine basis. IR spectroscopy, on the other hand, 
provides an extensive amount of information on molec-
ular structure particularly to identify certain functional 
groups [25–27]; furthermore, standard Fourier transform 
infrared (FT-IR) spectrometers are not exceedingly costly 
and are simple to operate. The benefits of IR spectroscopy 
for studying the dynamics of photochemical systems are 
evident from the development of time-resolved infrared 
spectroscopy (TR-IR) [28–31].The TR-IR systems offer a 
temporal window ranging from fs to ms. To perform the 
TR-IR measurements, depending on the desired timescale, 
pump-probe [32–36], stop-scan [37, 38], or rapid-scan 
[39–43] setups are employed. The progress and the selec-
tivity of photo-induced reactions have been also promoted 
by the development of LEDs. They provide a narrow emis-
sion spectrum (line width of 10–30 nm) and cover a range 
between ca. 350 and 750 nm. The light intensity can be 
easily controlled and the output stability is much higher 
than that of other light sources, e.g., high-pressure lamps. 
Additional features such as fast turn-on–off times, long 
lifetime, low prices, and wide availability have made LEDs 
extensively utilized in the field of photo-catalysis [44–46].

Here, we report in situ monitoring of diverse photo 
reactions. By implementing LED irradiation into a read-
ily available FT-IR spectrometer, we are able to analyze 
the migration of a TMS (trimethylsilyl) group from a Si 
atom to adjacent carbonyl oxygen in a Brook rearrange-
ment. Moreover, we detected follow-up reactions with 
atmospheric oxygen and hydrolysis. IR detection allows 
an essentially background-free analysis of the reaction 
sequence at a sub-minute resolution. The experimental 
effort is low. We have added examples on the α-bond 
cleavage in the radical photoinitiator 1-hydroxycyclohexyl 
phenyl ketone, photo-catalysis utilizing 2,4,6-triph-
enylpyrylium tetrafluoroborate, photoreduction with 
tris(bipyridine)ruthenium(II) chloride, and photo-polym-
erization of styrene using phenyl-bis(2,4,6-trimethylben-
zoyl)phosphine oxide photoinitiator in a viscous reaction 
mixture. The common feature of the above reactions is 
that they can hardly be followed by standard optical or 
NMR detection owing to overlapping bands and signals, 
fluorescence, and high viscosity.

2  Experimental

2.1  Design of the IR cell with LED irradiation

The 3D model of the IR cell was designed with the Auto-
CAD 2022 software, the file is sliced using Chitubox64 soft-
ware, and the designed cell is 3D printed using black Elegoo 
water washable photopolymer resin on an Anycubic Photon 
DLP printer equipped with 405 nm high power LED as the 
irradiation source (files available upon request). Two IR cells 
are designed, one for the irradiation of solid samples pre-
pared as a thin film and the second for the irradiation of liq-
uid samples consisting of a commercially available  Specac® 
Omni IR cell with a 3D printed LED adapter (Fig. S1).

2.2  FT‑IR spectroscopy with in situ LED irradiation

The FT-IR spectra were recorded on a Bruker Alpha spec-
trometer running OPUS 7.5 software in transmission mode. 
The custom-made IR cell was placed inside the spectrometer 
and the IR spectra were averaged over 22 scans (25 s each) 
in the range from 500 to 4000  cm−1 at a resolution of 4  cm−1. 
If necessary, the Savitzky Golay smoothing (filtering) and 
baseline correction were applied to the spectra. The decon-
volution of IR spectra was performed using OriginPro 2021, 
9.8.0.200 (Academic) OriginLab Corporation software. 
Tool: peak and baseline → multiple peak fit (nonlinear curve 
fit) using Levenberg Marquardt iteration algorithm with Lor-
entz model, adj. R2 > 0.98. The optical path thickness (b) for 
the liquid samples was calculated to be (0.02 cm, Fig. S2) 
based on the following equation: b =

m

2
×

1

�1−�2

, where m is 
the number of interference maximums between wavenum-
bers �1 and �2 . The low-power LEDs (> 50 mW) were pur-
chased from Roithner Laser Tehnik Gmbh, and the emission 
spectra of the used LEDs are presented in Fig. S3. The LED 
is driven in a constant current mode using Keithley 224 pro-
grammable current source, allowing for precise control and 
high stability of the light output.

Background scans with an empty IR cell equipped with 
desired LED eliminated distortions based on light scattering 
(Fig. S4). The low reflectivity for wavelengths < 800 nm of 
the IR system caused no measurable influence of the LED 
irradiation on the operation of the FT-IR spectrometer or the 
resulting IR spectrum.

2.3  Advantages and limitations

2.3.1  Advantages

Owning to the specific vibrational bands of functional 
groups, it is possible to extract qualitative information 



1685Photochemical & Photobiological Sciences (2023) 22:1683–1693 

1 3

about their reactions. Basically, any types of sample (gas-
ses, liquids, and solids) are attainable. Quantitative analysis 
of several components in the mixture is possible when there 
is at least one isolated and well-defined band found in the IR 
spectra for each of the components being analyzed [47, 48].

2.4  Limitations

When performing quantitative analysis using IR spectros-
copy, it is important to have an appropriate standard to per-
form calibration. Often the band shape in the IR spectra 
changes with concentration, thus simple peak height vs con-
centration plot is not always a straight line. For that reason, 
an integrated peak area should be used while performing cal-
ibration for quantitative analysis. Even then, overlap between 
the bands might permit accurate analysis. Deviations from 
Lambert–Beer law are occasionally encountered as a result 
of intermolecular interactions, of the sample molecules, 
affecting the absorption coefficient of the band [47].

Quantum yields of photochemical reactions are a funda-
mental quantity describing the photochemical process and 
they are mostly determined by actinometry [49]. It is cru-
cial that the molar photon flux through the sample and the 
actinometer is identical. For that reason, a monochromatic 
light source should be collimated and the beam should enter 
the wall of the cuvette at 90° (thus minimizing reflections 
caused by the air wall and wall solution interfaces) [50]. In 
our system, the light source (LED) is not collimated (the 
light path is diverging from the point source) and the LED 
is positioned at ≈ 45° vs. the window of the cell, causing 
reflections and decreasing the light intensity hitting the sam-
ple. The refractive properties of the solutions (actinometer 
and the sample) additionally lead to scattering. This leads to 
a large difference in the molar photon flux between a sample 
and the actinometer (Figure S5). Accordingly, photochemi-
cal quantum yields are not accessible by our method.

2.5  Chemicals

(Adamant-1-yl-carbonyl)-tris(trimethylsilyl)silane was pre-
pared according to [51]. All other chemicals were commer-
cially available and were used as received unless otherwise 
noted. Detailed experimental details are given in the Sup-
porting Information.

3  Results and discussion

3.1  Photo‑Brook rearrangement in solution 
and in the solid state

In 1982, Brook had shown a photo-induced shift of the 
trimethylsilyl (TMS) group from silicon to oxygen in a 

tris(trimethylsilyl)acylsilane. Such a photo-rearrangement 
also holds for (adamant-1-yl-carbonyl)-tris(trimethylsilyl)
silane (1), which was reported to rearrange to 1a, the first 
isolable (solid) and room temperature stable, silaethene 
(Fig. 1) [51]. The widespread interest in photo-Brook rear-
rangement is evident from its recent application in photo-
affinity labeling as a method to investigate noncovalent 
protein-small molecule interactions [52].

Herein, we show that we can follow the Brook photo-
rearrangement of 1 in solution and in the solid state by 
IR. To that end, the solution of 1 in  CCl4 was irradiated 
at 360  nm while simultaneously recording IR spectra 
(low-power LED, λmax = 360 nm, for UV–vis spectra see 
Fig. S6). The tris(trimethyl silan)-carbonyl group band at 
1618  cm−1 of 1 decreases during the photolysis (Fig. 1a). 
The exponential decrease in the concentration of 1 and its 
conversion during the irradiation was modeled (Fig. 1b) 
with the help of the calibration of the C=O stretching 
band of 1 (at 1618  cm–1, Fig. S7). The emerging band at 
1051  cm−1 is attributed to the Si=C stretching in 1a (Fig. 
S8) indicating the 1 → 1a photo-rearrangement.

The 1 → 1a photo-rearrangement was monitored up to ≈ 
50% conversion (to avoid by-products) in dry and degassed 
 CCl4, in a well-sealed IR cell, thus the decomposition of 
highly reactive 1b is not expected. Nevertheless, a band at 
1810  cm−1 appears indicating the formation of a decompo-
sition product pointing to the formation of a new carbonyl 
group (possibly 1-adamantanecarbonyl chloride presum-
ably by the reaction with  Cl· radical from  CCl4).

For the reaction in the solid phase, we prepared a film 
of 1 by dissolving it in a small amount of  CCl4, placing 
a drop on the KBr window, and evaporating the solvent 
under an argon atmosphere. The KBr window was inserted 
into the IR-photolysis cell under argon. Analogous to the 
experiment in solution, the C=O band (at 1620  cm−1 in 
a solid state, Fig. 1c) decreases and the band attributed 
to Si=C stretching vibration is observed (1041  cm−1 in a 
solid state, Fig. S9). The small amount of ambient oxy-
gen, which gradually diffuses into the IR cell, converts the 
highly reactive 1a into trimethylsilyl ester of adamantane-
1-carboxylic acid (1b) indicated by the band at 1710  cm−1. 
Traces of water, rapidly convert 1b further to adamantane 
carboxylic acid 1c, as indicated by the formation of the 
C=O stretching band at 1692  cm−1 (Fig. 1c). A closer look 
at the kinetic curves (Fig. 1d) supports the 1b to 1c con-
version (1710 and 1692  cm−1 curves), but it also indicates 
that there is a process, from 1 to the products, that cannot 
be observed. This can be seen as the advantage of the 
method as it simplifies the data processing and analysis. 
Owing to the unknown concentrations of  H2O and  O2 dif-
fusing into the sample a kinetic analysis is not straight 
forward.
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3.2  Photochemical α‑cleavage 
of 1‑hydroxycyclohexyl phenyl ketone

1-Hydroxycyclohexyl phenyl ketone (2, Irgacure  184®) is 
a widely used non-yellowing UV curing type I photoinitia-
tor for photo-polymerization of acrylates. It is used in the 
production of coatings, adhesives, and electronic products. 
The photo-polymerization process is initiated by α-carbonyl 
cleavage of 1 upon excitation producing primary benzoyl and 
cyclohexanoyl radicals [53]. In the absence of monomers, 
photolysis of 2 produces benzaldehyde (3) and cyclohex-
anone (4). The UV–vis absorption spectrum of 2 is charac-
terized by a strong π → π* absorption at 250 nm and weak n 
→ π*absorption at 290 nm with a shoulder at 330 nm extend-
ing to ca. 380 nm (Fig. S10). Irradiation of 1 at 360 nm in 
dry and degassed  CCl4 yields the IR spectra shown in Fig. 2. 

The band at 1668  cm−1 corresponding to the α-hydroxy car-
bonyl group in parent 2 decreased with the appearance of 
two new vibrations at 1717  cm−1 and 1776  cm−1 attributable 
to 3 and 4, respectively (for deconvolution of the C=O and 
changes in the OH stretching vibration bands, see Fig. S11). 
The kinetic curves (Fig. 2 inset) of 3 and 4 display similar 
slopes confirming that their origin is 2 and no side reactions 
occur (Fig. S12).

3.3  E‑Stilbene photo‑oxygenation using molecular 
oxygen and 2,4,6‑triphenylpyrylium (TPP) 
as the photocatalyst

TPP has been extensively used as an electron transfer pho-
tosensitizer [54, 55]. The first excited singlet and triplet 
states of TPP are strong oxidants [56]. TPP absorbs in the 
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visible range (λmax = 417 nm in dichloromethane), exhibits 
high molar absorptivity (εM = 29 500  M−1  cm−1 @ 417 nm 
in dichloromethane), a fluorescence quantum yield of 0.52, 
emission at 465 nm) [57, 58]. Herein, we demonstrate that 
IR monitoring is not obstructed by the high absorptivity 
(intense color) and fluorescence of TPP [59].

Photooxidation of E-stilbene (5) with TPP (as  BF4
− salt) 

in dry DCM under oxygen using a low-power LED emitting 
at 420 nm (for UV–vis spectrum of 5, and TPP see Fig. S13) 
leads to the IR spectra shown in Fig. 3a. The C=C stretch-
ing band of the central ethene double bond at 1599  cm−1 
decreases during the irradiation coinciding with the appear-
ance of a new band at 1700  cm−1 assigned to benzaldehyde 
carbonyl stretching vibration reaching a steady state after 
ca. 120 s at identical rates (Fig. 3b, for the deconvolution 
of bands see Fig. S14). This is in line with the experimen-
tal setup: at the beginning of the reaction, the solution was 
saturated once with oxygen just before irradiation without 
further  O2 being supplied. The use of an appropriately con-
structed flow system would be beneficial in this example as 
it would provide a continuous oxygen supply to the reaction 
mixture. This oxygen-saturated reaction mixture can then be 
circulated through the IR cell equipped with LED providing 
a setup for monitoring photo-induced gas–liquid reactions 
(Fig. S15).

Another noteworthy band is at 1622  cm−1. It is assigned 
to the pyrylium-ring C=C stretching vibration [60]. Its 
decrease suggests that the TPP pyrylium ring is decom-
posed. It is established that the first excited state of TPP 
does not produce singlet oxygen or the superoxide radical 
anion, thus both are excluded to cause the destruction of 
the pyrylium ring. However, it was demonstrated that the 
2,4,6-triphenylpyranyl radical (TP·) reacts with ground-state 
oxygen on the time scale of seconds producing 2,4,6-triph-
enylpyranyl-peroxyl radical (TPOO·) [59, 61] annihilating 
the aromatic character of the pyrylium ring (Fig. 3c). This 
side reaction explains why oxygen consumption has a higher 
rate than the formation of benzaldehyde (Fig. 3b).

1650 1700 1750 1800 1850 1900
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500

0.0

0.1

0.4

0.5

A

ν (cm-1)

A

t (s)

 1668  cm-1

 1717  cm-1

 1776  cm-1

Fig. 2  Experimental IR spectra during the photolysis of 2. Changes 
in the absorbances at 1668   cm−1, 1717   cm−1, and 1776   cm−1 cor-
responding to 2, 3, and 4 C=O stretching bands are presented as an 
insert

Fig. 3  Photo-oxygenation of 
5 using molecular oxygen and 
TPP photocatalyst a experi-
mental IR spectra, b changes in 
the absorbances at 1700  cm−1, 
1622  cm−1, and 1599  cm−1, c 
proposed general mechanism 
for photo-oxidations using TPP 
as a photocatalyst, producing 
donor (D) radical cation D·+ 
and TP· radical, later of which 
reacts further with ground-state 
molecular oxygen forming 
TPOO· radical [54]

1600 1650 1700 1750
0.00

0.04

0.08

0.12

0.16

0 100 200 300
0.00

0.14

0.16

0.18

A

ν (cm-1)

a

b

c

A

t (s)

 1700  cm-1

 1622  cm-1

 1599  cm-1



1688 Photochemical & Photobiological Sciences (2023) 22:1683–1693

1 3

3.4  Photoreduction of benzil to benzoin 
with [Ru(bpy)3]2

Visible-light-induced transition-metal photo-catalysis has 
been frequently used over the past decade [4, 8]. Amongst 
the wide variety of available transition-metal photocata-
lysts, tris(bipyridine)ruthenium(II) has been one of the most 
extensively investigated and widely applied [62–64]. Exci-
tation of [Ru(bpy)3]2+ leads to the first excited triplet metal 
to ligand charge transfer state (3MLCT) characterized by 
�
max

 450 nm in acetonitrile (Fig. S16). The excited 3MLCT 
displays phosphorescence ( �

max
 = 620 nm, �

P
 = 0.75 µs in 

ethanol at room temperature, Φ
P
 = 0.045) with slight solvent 

and temperature dependence [65]. The excited 3MLCT state 
is a good energy donor, electron donor, and electron accep-
tor and is the reason for the versatile use of [Ru(bpy)3]2+in 
photo-catalysis.

Photoreduction of benzil (6) with triethylamine (TEA) 
as an electron donor and methanol  (CH3OD) as a proton 

source was performed in the presence of [Ru(bpy)3]2+in 
acetonitrile (ACN) [66]. Upon irradiation of this multi-
component reaction mixture with a 450 nm LED we have 
recorded the IR spectra displayed in Fig. 4 (together with 
reference spectra of 6 and the product benzoin). The C=O 
stretching bands of 6 are at 1683   cm−1, and 1673   cm−1 
whereas the product, benzoin (7), has a C=O stretching band 
at 1686  cm−1. Despite the substantial overlap between the 
C=O bands, their individual time profiles can be extracted 
owing to the different relative intensities and widths of the 
respective bands. The decrease of the 1673  cm−1 band has 
a larger slope compared to the 1683  cm−1 since the latter is 
the sum of two C=O bands, the decreasing C=O in 6 and 
the increasing C=O band in 7. Here, deconvolution of the 
C=O region (Fig. S17), reveals two overlapping bands at 
1673 and 1683  cm−1. A plot of the area of these deconvo-
luted bands vs time (Fig. 4d) shows that the band of starting 
compound 6 (1673  cm−1) decreases. On the other hand, the 
band at 1683  cm−1 increases revealing the formation of 7. 
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Further insight is provided by two-dimensional correlation 
spectroscopy [67]. The observed correlation patterns in syn-
chronous and asynchronous spectra show that the decrease 
in the overall band has two components of which one of the 
components causes the band width decrease coupled with 
overall intensity decrease, whereas the other component 
increases in intensity [68] (Fig. S18).

The use of  CH3OD should in principle yield the 7 with 
two deuteriums, which would be possible to conveniently 
monitor using IR spectroscopy. Unfortunately, the benzoin 
C–D vibration falls within the range of solvent (ACN) C–H 
stretching vibrations, and as such is difficult to observe in 
this example. The  CH3OD and water from the ACN and 
photocatalyst  (Ru[bpy]3Cl2 × 6  H2O) undergo virtually 
instantaneous proton–deuterium exchange equilibrium 
 CH3OD +  H2O ↔  CH3OH + DOH, with all of the present OH 
stretching vibrations from the initial equilibrium observable 
as a broad and low-intensity band in the 3300–3600  cm−1 
region in reference IR spectra of 6 (the OH(D) groups pre-
sent in the solvent are forming C=O–H(D)O bonds, from 
which only H-bonds are observable in a depicted region of 
IR spectra). Upon the photoreduction, all four of the equi-
librium components are used as the proton source producing 
7 with a statistically controlled distribution of proton and 
deuterium in both CH(D) and OH(D) positions. This mani-
fests as an increase of the 3532  cm−1 band present in 7 (OH 
stretching, Fig. 4b) during the irradiation and the decrease of 
the OD stretching vibration at 2617  cm−1 (Fig. S19).

3.5  Radical photopolymerizations of styrene 
using bis(mesitoyl)phenylphosphine oxide 
as the photoinitiator

Radical photo-polymerization is a well-established but still 
growing technique enabling the fast and simple production of 
polymeric materials, e.g., for 3D printing. BAPO (Bis(Acyl)
Phosphine Oxide, phenyl-bis-(2,4,6-trimethylbenzoyl)phos-
phine oxide) is widely investigated and employed photoini-
tiator [69, 70]. We have used BAPO to photo-polymerize 
styrene (8) while monitoring the reaction by IR. To that end, 
a mixture of BAPO and 8 (bulk polymerization conditions) 
was placed in the IR cell and irradiated at 405 nm (Fig. 5a, 
for UV–vis spectra of BAPO, see Fig. S20). The first step 
is the α-cleavage of the phosphorus-carbon bond resulting 
in the phosphanoyl (9a) and mesitoyl radicals (9b) [71, 72]. 
Both radicals add to 8, resulting in products of type 9d (or 
the analogous product carrying two 9b end groups). Besides 
the mesitoyl and phosphinoyl end groups, it carries a poly-
styrene chain of variable length [73]. The IR spectra identify 
a C=C stretching band (vinyl C=C) of 8 at 1629  cm−1, which 
decreases during the irradiation, the observation is in line 
with consumption of 8 during the irradiation (for the kinetics 
curve see Fig. 5b). The appearance of two new bands in the 

carbonyl region at 1729  cm−1 and 1700  cm−1 is observed. 
The first band is assigned to the C=O stretching of the 9a 
radical fragment whereas the second one is attributed to the 
C=O stretching present in the 9b radical fragment of 9d. The 
kinetic curve of 9a radical fragment C=O band (1729  cm−1) 
is observed to increase in intensity (concentration) until the 
maximum value followed by a slight decrease. This is in 
contrast to the 9b radical fragment C=O band (1700  cm−1) 
which continues to increase with irradiation time (Fig. 5b). 
The cleavage of the 9a fragment from 9d during the irradia-
tion providing another 9b radical for further polymerization 
explains both C=O stretching bands. Performing deconvo-
lution of the bands in the 1550–1785  cm−1 region helps 
to better visualize the dynamics of decreasing vinyl C=C 
band (1629  cm−1) and the formation of new bands at 1700 
and 1729  cm−1 (C=O bands in 9d and follow-up products) 
overlapping with phenyl ring C=C vibration bands (Fig. 
S21). A characteristic band for the (Ph)C–C(O) stretching 
was found at 1167  cm−1 and the (Ph)C–C(O)–C deforma-
tion in mixed aryl–alkyl ketone was observed at 1260  cm−1. 
The kinetic curves of these bands overall coincide well with 
the formation of C=O stretching bands (Fig. 5b/c). In addi-
tion, we have detected changes in the P=O stretching bands 
upon polymerization. The P=O band (often split in two 
overlapping bands) [74, 75] of parent BAPO at 1200  cm−1 
decreases in intensity whereas the 1218  cm−1 band decreases 
as well as shifts to higher wavenumbers (up to 1223  cm−1) 
during the irradiation. The observation is in line with the 
formation of 9d (carrying only one 9b fragment, Fig. 5a/c). 
The P=O band kinetic curve shows steady decrease of the 
band (formation of 9b) until the ca. 160 s, after which the 
slope increases, indicating the 9d consumption in the follow-
up reactions (Fig. 5c, even though P = O bond stays intact, 
cleavage of another acyl group causes the further shift of the 
band to the higher wavenumbers manifested as the decrease 
in intensity at 1200  cm−1). The deconvolution of bands in 
the 1120–1350  cm−1 region helps to better visualize the for-
mation of (Ph)C–C(O) stretching band at (1167  cm−1) and 
(Ph)C–C(O)–C deformation band (1260  cm−1) overlapped 
with the complex dynamics of P=O band (Fig. S22). The 
proposed mechanism for forming product 9b and follow-
up products is supported by comparing the kinetic curves 
of C=O and P=O bands (absorbance vs time and area of 
deconvoluted peak vs time, Fig. S23).

4  Conclusion

Our results illustrate that we can follow the photo-Brook 
rearrangement and additional photo-induced reactions at 
high detail at a molecular level using a simple LED/FT-IR 
setup. A variety of reaction types and even multi-compo-
nent mixtures and nonuniform products are distinguishable 
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by this approach. The method works for reactions in fluid 
solutions, viscous environments, and the solid state. 
Moreover, optical absorption phenomena like overlapping 
bands of the reactants or highly dominating absorbances 
of photocatalysts do not obstruct the clear-cut informa-
tion of the IR spectra. The conversion efficiencies and 
observable time scales can be shifted by adjusting LED 
intensities. This allows observing the reactions at time 
scales suitable for the detection of the spectrometer sys-
tem. Moreover, following the kinetic curves may disclose 
yet underestimated side reactions (e.g., conversions of the 
pyrylium cation in Sect. 3.3). Methods for deconvolution, 
2D plots, and machine learning procedures should enhance 
the analysis of even more complex IR spectra extending 
the attainable information to the fingerprint range [76–83]. 
In summary, this simple and cost-effective setup has the 
potential to be applied in a wide variety of photo-induced 
reactions providing evidence at the molecular scale.
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