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Petronijević, M.; Dietzel, M.;

Baldermann, A. Substantial Copper

(Cu2+) Uptake by Metakaolin-Based

Geopolymer and Its Resistance to

Acid Leaching and Ion Exchange.

Polymers 2023, 15, 1971. https://

doi.org/10.3390/polym15081971

Academic Editors: Simona Popa,

Gheorghe Ilia and Sorina Boran

Received: 16 March 2023

Revised: 19 April 2023

Accepted: 20 April 2023

Published: 21 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Substantial Copper (Cu2+) Uptake by Metakaolin-Based
Geopolymer and Its Resistance to Acid Leaching and
Ion Exchange
Nenad Grba 1 , Cyrill Grengg 2, Mirjana Petronijević 3, Martin Dietzel 2 and Andre Baldermann 2,*
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Abstract: Geopolymers are inorganic, chemically resistant aluminosilicate-based binding agents,
which remove hazardous metal ions from exposed aqueous media. However, the removal efficiency of
a given metal ion and the potential ion remobilization have to be assessed for individual geopolymers.
Therefore, copper ions (Cu2+) were removed by a granulated, metakaolin-based geopolymer (GP) in
water matrices. Subsequent ion exchange and leaching tests were used to determine the mineralogical
and chemical properties as well as the resistance of the Cu2+-bearing GPs to corrosive aquatic
environments. Experimental results indicate the pH of the reacted solutions to have a significant
impact on the Cu2+ uptake systematics: the removal efficiency ranged from 34–91% at pH 4.1–5.7
up to ~100% at pH 11.1–12.4. This is equivalent to Cu2+ uptake capacities of up to 193 mg/g and
560 mg/g in acidic versus alkaline media. The uptake mechanism was governed by Cu2+-substitution
for alkalis in exchangeable GP sites and by co-precipitation of gerhardtite (Cu2(NO3)(OH)3) or
tenorite (CuO) and spertiniite (Cu(OH)2). All Cu-GPs showed excellent resistance to ion exchange
(Cu2+ release: 0–2.4%) and acid leaching (Cu2+ release: 0.2–0.7%), suggesting that tailored GPs have
a high potential to immobilize Cu2+ ions from aquatic media.

Keywords: metakaolin-based geopolymer; heavy metals; environmental protection; copper; water
treatment; green technology

1. Introduction

Heavy metals, such as lead (Pb), copper (Cu), cadmium (Cd) and mercury (Hg), are
hazardous environmental pollutants in Earth’s surface settings, considering their negative
impact on human health and ecosystems [1–5]. Most heavy metals are persistent, non-
biodegradable and tend to cumulate in, e.g., soils, sediments, surface water, groundwater
and living organisms, causing disorders and diseases [6–9]. Although being an essential
microelement and dietary element to plants, animals and humans, Cu compounds are
often used as antimicrobial agents to prevent microbial growth on materials’ surfaces, e.g.,
as coatings in roofing, sheathing and plumbing. However, at higher concentrations, i.e.,
>5–10 mg Cu2+/day in food [10] or >1.3 mg/L Cu2+ in drinking water [11], Cu2+ possesses
strong biostatic properties and a high toxicity, leading to Cu2+ poisoning in severe cases [12].
Consequently, in several studies, Cu is proposed to be added to the European Watch List of
emerging substances due both to its toxicity potential and increasing abundance in aqueous
media, soils and sediments [13,14]. Thus, there is a high demand for the development
of efficient, low-cost and eco-friendly (‘green’) cleaning agents in order to minimize the
harmful effects of Cu2+ in aquatic media [15].
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A large number of techniques can be used for the removal of Cu2+ from aqueous me-
dia, such as adsorption [16], chemical precipitation [17], bioremediation [18], electrokinetic
processes [19] and ion exchange [20], etc. These water treatment technologies greatly differ
in, e.g., efficiency, operational costs, material and resource uses, waste production and sus-
tainability aspects. So far, only a few attempts have been made to sequester dissolved Cu2+

directly in secondary minerals that possess a high affinity towards Cu2+ uptake, such as Cu-
chelates [21], Fe-(hydr)oxides [22], Cu-(oxy)hydrate chlorides and Cu-carbonates [23,24],
Cu-sulfate hydrates [25], calcium-aluminum-silicate-hydrates (C-A-S-H) [26] and geopoly-
mers [27,28]. In particular, the latter bear a high potential for heavy metal immobiliza-
tion [29–32] through chemical immobilization.

Geopolymers, when formed using low-calcium (low-Ca) aluminosilicates, are inor-
ganic binders that form three-dimensional, non-crystalline aluminosilicate structures with
exchangeable sodium (Na+) or potassium (K+) ions balancing the negative charges arising
from the tetrahedral substitutions of aluminum (Al3+) for silicon (Si4+) [33]. They are typi-
cally formed by reacting metakaolin and/or other inorganic materials having pozzolanic
properties, such as fly ash and calcinated clay, with water glass and alkali hydroxide
solutions [15]. Their interconnected, micro- to nano-porous structure is advantageous
for (ad)sorption processes and metal ion incorporation [31]. Further, geopolymers pos-
sess an excellent resistance to temperature [34,35] and chemical corrosion [36,37], rending
their application in environmental remediation possible. For example, geopolymers have
been successfully utilized for Cu2+ [31], Pb2+, zinc (Zn2+), Cd2+ [38,39], manganese (Mn2+)
and cobalt (Co2+) [29] removal from aquatic media, both by chemical precipitation and
structural incorporation.

In this study, the immobilization of Cu2+ ions by granulated, metakaolin-based
geopolymer, as well as their mineralogical and chemical properties and subsequent re-
sistance to ion exchange and leaching, were investigated using a set of equilibrium-
approaching batch experiments run under variable pH conditions at ambient temperature.
The efficiency and the main reaction mechanisms underlying Cu2+ uptake are assessed us-
ing a multi-methodological approach. Implications for water treatment and environmental
remediation are discussed. Our results provide novel insights into the Cu2+ immobilization
mechanisms in acidic vs. alkaline aqueous media, which may open the door for future
applications of tailored geopolymers for water treatment applications.

2. Materials, Experimental Procedures and Methods
2.1. Materials

A granulated, metakaolin-based geopolymer (GP) was produced by reacting a liquid
alkaline activator (water glass; solid content: 45%; SiO2/K2O molar ratio = 1.5; pH 13.5,
Wöllner Austria GmbH, Gratwein, Austria) with metakaolin powder (SiO2/Al2O3 mass
ratio = 1.3 ± 0.1; dry density: 2.6 g/cm3, NEWCHEM GmbH, Vienna, Austria) at a
liquid/solid mass ratio of 1.7. The fresh paste was homogenized quickly at 250 rpm for
60 s and then slowly at 100 rpm for 30 s using a mixer (N50, HOBART GmbH, Offenburg,
Germany). The paste was transferred into standard cubes (size: 10 × 10 × 10 cm) and
hardened for 4 days at 20 ◦C and 50–60% relative humidity. Subsequently, GP was crushed
using a jaw crusher. The grain size fractions < 0.125 mm and 0.125–1 mm were separated
by sieving, dried at 40 ◦C and merged in equivalent weights to ensure a homogenous
GP product.

The Cu2+ solutions were prepared from the dissolution of adequate amounts of cop-
per(II) nitrate trihydrate (Cu(NO3)2·3H2O, p.a., Merck KGaA, Darmstadt, Germany) in
ultrapure water (Milli-Q Plus UV, 18.2 MΩ at 25 ◦C).

All experiments described below were run in duplicate and the collected liquid sam-
ples were analyzed in triplicate. Data reproducibility and accuracy were verified by
standard mathematical procedures, yielding < 3% deviation among all experimental sets.
Thus, in the following, only the average values are reported.
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2.2. Experimental Procedures
2.2.1. Cu Immobilization Experiments

The GP was reacted with Cu2+-bearing solutions at a fluid/solid ratio of 20:1 in 250 mL
polyethylene (PE) reactors at 23 ± 2 ◦C. The Cu/GP mass ratio was set to 1:2, 1:4, 1:8, 1:13
and 1:25, so that these experiments are labeled as Cu:GP-1:2 to Cu:GP-1:25 (henceforth
called Cu:GP series). No pH drift corrections were made. All suspensions were stirred
at 200 rpm for 24 h. Fluid samples were taken regularly to follow the temporal uptake of
Cu2+ by GP. Reference solutions containing Cu2+ in the above concentration range (but
without GP) were prepared to demonstrate that other mechanisms causing Cu2+ removal
from solution are negligible. Further, a reference experiment with GP but without dissolved
Cu2+ was made to determine the pH development of pure GP in ultrapure water, which
equilibrated at pH ~11.8. Following up, the effect of pH treatment on Cu2+ immobilization
by GP was studied. The experimental set-up was identical to those described above,
except for the adjustment of the solution pH to ~11–12 by adding droplets of 1 M sodium
hydroxide solution (NaOH, p.a., Roth). This treatment caused less than ~2% volume
change to the solutions, so that no corrections to the dissolved Cu2+ concentrations were
made. These experiments are labeled as Cu:GPpH-1:2 to Cu:GPpH-1:25 (henceforth called
Cu:GPpH series).

All experiments were terminated after 24 h. The solids were separated by 0.45 µm
cellulose acetate membrane filters (Sartorius, Göttingen, Germany) using a suction filtration
unit, rinsed with ultrapure water to remove electrolytes and dried at 40 ◦C in preparation
for solid-phase analyses. Aliquots were stored under an argon (Ar) atmosphere for sub-
sequent use in ion exchange and leaching experiments. All liquids were acidified using
suprapure nitric acid (HNO3, ROTIPURANR, Roth, Karlsruhe, Germany) in preparation
for elemental analyses.

2.2.2. Ion Exchange Experiments

Ion exchange experiments were carried out to determine the portion of exchangeable
Cu2+ in GP. Therefore, 2 g Cu-GPs obtained from the Cu:GP and Cu:GPpH series were
treated with 200 mL of a 100 mM sodium chloride (NaCl) solution (fluid/solid ratio = 100:1)
for 24 h in 250 mL PE reactors at 23 ± 2 ◦C. The experiments were stirred continuously at
250 rpm. Fluid samples were taken regularly to determine the Cu2+ exchange dynamics of
GP until chemical steady-state conditions were reached.

2.2.3. Leaching Experiments

Leaching tests were conducted to quantify the fraction of weakly bonded Cu2+ in GP
using a modified Toxicity Characteristic Leaching Procedure (TCLP) [40]. For this purpose,
2 g Cu-GP obtained from the Cu:GP and Cu:GPpH series were reacted with 200 mL ultrapure
water (fluid/solid ratio = 100:1) set to pH ~4.5 with the use of 0.5 M hydrogen chloride
solution (HCl, p.a., Merck KGaA) in 250 mL PE reactors at 23 ± 2 ◦C. Experiments were
stirred at 250 rpm and lasted for 72 h to ensure chemical steady state. Fluid samples were
taken regularly to determine the Cu2+ release from GP upon acid leaching.

2.3. Analytical Methods
2.3.1. Fluid-Phase Characterization

Temperature, electric conductivity (EC) and pH were determined with WTW LF/pH
330 m multi-meters connected to TetraCon 325 and SenTix41 probes. The pH electrodes
were calibrated against NIST buffer standard solutions at pH 4.01, 7.00 and 10.01 at 25 ◦C
at an analytical precision of ±0.05 pH units [41].

Copper, K+ and Na+ concentration analyses were made on a PerkinElmer Optima
(PerkinElmer, Waltham, MA, USA) 8300 DV inductively coupled plasma optical emission
spectrometer (ICP-OES) on acidified samples. NIST 1640a, in-house and SPS-SW2 Batch 130
standards were analyzed within repeated sample sequences, yielding an analytical error
of ±3% and a detection limit of <0.01 mg/L for each element of interest [42]. From these
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chemical data, the removal efficiency (%removal) and the amount of Cu2+ immobilized by
GP (qe in mg/g) were calculated following Equations (1) and (2):

%removal = ((c0−ce)·c0
−1)·100 (1)

qe = ((c0−ce)·m−1)·V (2)

where c0 and ce denote the initial and equilibrium Cu2+ concentrations in solution (in mg/L),
m is the dry mass of GP (in g) and V is the volume of the solution (in L).

2.3.2. Solid-Phase Characterization

The mineralogy of GP and all Cu-GP samples was determined by X-ray diffraction
(XRD) using a PANalytical X’Pert Pro operated at 40 kV and 40 mA (Co-Kα) and outfitted
with a Scientific X’Celerator detector. The powdered specimens were prepared using the
top loading technique and examined in the 4–85◦ 2θ range using a step size of 0.008◦ 2θ
and 40 s count time per step. Further, the crystallinity of the Cu-bearing co-precipitates
(see below) was determined by means of the full width at half-maximum (FWHM in ◦ 2θ)
values obtained from the respective peak of each phase with the highest diffracted intensity.
The PANanalytical X’Pert Highscore Plus software and a pdf-4 database were used for the
interpretation of the XRD patterns [43].

Fourier transform infrared (FTIR) spectroscopy of GP was carried out in Attenuated
Total Reflectance (ATR) mode using a PerkinElmer Frontier FTIR. Mid-infrared (MIR)
spectra were collected in the 650–4000 cm−1 range at a resolution of 2 cm−1 [44]. Data
processing was made via the Spekwin32 software (version 1.71.6.1).

The major elemental composition of GP and of some Cu-GPs was analyzed with a
PANalytical PW2404 wavelength dispersive X-ray fluorescence (XRF) spectrometer. Glass
tablets were prepared in a PANalytical Perl’X 3 bead preparation system by the fusion of
0.5 g material (pre-dried at 110 ◦C) with 6.0 g lithium tetraborate (Li2B4O7, Malvern Pana-
lytical, Malvern, UK) at 1200 ◦C. The loss on ignition (LOI) was determined by gravimetric
analysis of material residues glowed at 1050 ◦C for 1 h. The analytical error is <0.5 wt.% for
the major elements, as determined by replicate analyses of USGS standards [43]. Compari-
son of Cu contents of Cu-GPs determined by ICP-OES and XRF analyses yielded a positive
linear correlation with a slope of 0.98, an intercept of 0.1 and a R2 value of 0.95 (n = 9), so
that only the ICP-OES data are presented in the following.

Secondary electron (SE) images were acquired on a ZEISS DSM 982 Gemini scanning
electron microscope (SEM) (ZEISS, Jena, Germany) operated at an accelerating voltage of
3–5 kV for microstructural characterization of the GP and Cu-GP samples. Representa-
tive material was prepared on SEM stubs, fixed with double-sided carbon (C) tape and
subsequently C-coated to reduce charging [45]. Energy-dispersive X-ray spectroscopy
(SEM-EDX) data were acquired on selected single spots using 15 kV accelerating voltage
and subsequently used for mineral identification and quantification of the Cu content of the
GP matrices. Chemical data (n = 5/sample; average values and two standard deviations
(2 SD) are reported) were obtained from element k-factors determined on mineral standards
at an analytical precision of <1 at.% for K, Na, Al, Si and Cu analyses [26].

The specific surface area (SSA) of the GP was measured before and after the batch
experiments by the multi-point adsorption Brunauer, Emmett and Teller (BET) method
using a Micromeritics FlowSorb II2300 (Micromeritics, Norcross, GA, USA) and a He(69.8)-
N2(30.2) mixture as the carrier gas (analytical error: ±10%).

3. Results and Discussion
3.1. Geopolymer Characterization

The granulated GP (Figure 1a) had a Si:Al molar ratio (SAR) of 1.79 and comprised
mainly of 45.5 wt.% SiO2, 22.4 wt.% Al2O3, 15.6 wt.% K2O, 13.6 wt.% LOI, 1.1 wt.% Fe2O3,
1.0 wt.% Na2O and 0.8 wt.% TiO2, which is typical for conventional geopolymers made
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of metakaolin [46]. The CuO content of GP was determined to be 55 ppm only. The
mineralogy (Figure 1b) was dominated by an amorphous phase (95 wt.%) due to the
non-crystalline aluminosilicate structure of conventional geopolymers [33], in addition to
quartz (4 wt.%) and anatase (1 wt.%) that are inherited from the metakaolin raw material.
The FTIR spectrum of GP (Figure 1c) revealed a broad absorption at 3385 cm−1 and a
more intense IR band at 1641 cm−1, which are attributed to OH stretching vibrations and
H-O-H bending vibrations of interlayer adsorbed water and structurally bound water
molecules in geopolymers [47]. The weak adsorption at 1381 cm−1 indicates the presence
of minor amounts of potassium carbonate (K2CO3) in GP, which probably formed by the
interaction of potassium hydroxide (KOH), water and atmospheric carbon dioxide (CO2)
during geopolymer preparation [48]. Additional IR bands at 972 cm−1, 881 cm−1 and
684 cm−1, respectively, can be assigned to asymmetric stretching vibrations of Si-O-Al and
stretching vibrations of Si-O in Si-OH groups [48,49].
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Figure 1. Optical appearance, mineralogical composition and microstructural features of granulated
pristine GP used for the Cu2+ immobilization studies. (a) Photograph; (b) XRD pattern; (c) FTIR
spectrum; (d,e) SE images of GP.

The GP grains had an average size between 100–200 µm, an external SSA value
of 2.18 m2/g and appeared as particle agglomerates (Figure 1d), which is typical for
metakaolin-based geopolymer granulates [50]. The GP microstructure was largely ho-
mogeneous, as indicated by the uniform distribution of a porous aluminosilicate matrix
(Figure 1e), which barely contained unreacted quartz grains and anatase crystals. SEM-EDX
analyses confirmed the potassium-aluminum-silicate-hydrate (K-A-S-H) composition of
the geopolymer matrix, as evident from SiO2/Al2O3 ratios of ~2.0 and Al2O3/K2O ratios
of ~1.4. According to Kim and Lee [51], geopolymers with high Si/Al ratios have a more
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uniform, finer and more smoothly connected microstructure than those with low Si/Al
ratios, rendering the GP product studied here suitable for water treatment applications.

3.2. Cu2+ Immobilization by Geopolymers

The temporal evolution of the dissolved Cu2+ concentrations for the experiments
of the Cu:GP (without pH adjustment) and Cu:GPpH (with alkaline treatment) series is
illustrated in Figure 2. A fast decrease of the Cu2+ concentration was seen in all experiments
within <60 min, which was followed by a slowly decreasing trend thereafter (Figure 2a,b)
until chemical equilibrium conditions were attained after ~15 h, judged from the establish-
ment of constant EC values until the experiments were terminated after 24 h. The Cu2+

removal was generally higher in the Cu:GPpH series yielding final Cu2+ concentrations
below the recommended value for Cu2+ in drinking water (<1.3 mg/L) [11]. Thus, the
alkaline treatment resulted in high removal efficiencies for Cu2+ in the case of the Cu:GPpH

series (about 100%), whereas the Cu:GP series exhibited moderate to high Cu2+ removal
efficiencies, ranging from 34 to 91% (Figure 2c,d). The fate of Cu2+ in the experiments of
the Cu:GP series depended on the initial Cu:GP ratio used, i.e., the Cu2+ stock solutions
had pH values between 3 and 5 before the reaction with GP and thus on the final solution
pH, which varied between 4.1 and 5.7. This suggests that the reactivity of Cu2+ was largely
pH dependent. This observation supports the conclusions drawn by Potysz et al. [52], who
showed that strongly acidic conditions (pH 2) favor leaching and dissolution of Cu-bearing
materials, such as Cu slags, whereas close to neutral (pH 7–8) and alkaline (pH 12–13)
conditions enhance the stability of Cu-bearing minerals.
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Figure 2. Compilation of results from the Cu2+ immobilization experiments. (a,b) Evolution of the
dissolved Cu2+ concentration for experiments of the Cu:GP series (left panel) and Cu:GPpH (right
panel) series; (c,d) Fraction of Cu2+ immobilized by GP with(out) alkaline treatment; (e,f) Cu2+

removal capacity of the Cu:GP series (left panel) and Cu:GPpH series (right panel).
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The amount of Cu2+ immobilized in the Cu:GP and Cu:GPpH series ranged from about
40 to 193 mg/g and 44 to 560 mg/g, respectively (Figure 2e,f). Higher Cu2+ concentrations
did not result in elevated Cu2+ removal capacities, which indicates that the highest qe
values present approximately the maximum removal capacity (‘qm’) of the GP mixture
considered in this study. However, we note that co-precipitation of Cu minerals occurred in
all experimental series, so that we cannot apply ‘classical’ adsorption isotherm models and
pseudo-first-order or pseudo-second-order kinetic models to further fit our experimental
data. The ‘qm’ value obtained for experiment Cu:GP-1:2 is 27% higher than Cu2+ removal
by an amorphous geopolymer synthesized from fly ash (152 mg/g at 45 ◦C) [27] and
79% higher than the amount of Cu2+ removed from solution by an organically modified,
metakaolin-based mesoporous geopolymer (108 mg/g at 30 ◦C) [53]. Moreover, Cu2+

uptake by GPs with(out) alkaline conditioning was much higher than prior reported for
other geopolymeric substances [54]. Experiment Cu:GPpH-1:2 yielded a qe value for Cu2+

uptake in the same order of magnitude than previously reported for Pb2+ uptake by porous
geopolymer-based microspheres (629 mg/g at 25 ◦C) [55]. This comparison underlines the
efficiency of GP for Cu2+ uptake from solution.

3.3. Mineralogy and Microstructure of Cu2+-Bearing Geopolymers

XRD and SEM analyses of the precipitates from the Cu:GP and Cu:GPpH series, ob-
tained after the Cu2+ immobilization experiments, identified Cu2+-substituted GP, in ad-
dition to unreacted quartz and anatase and three types of newly formed Cu2+-bearing
minerals (Figure 3). All Cu-GP materials collected after ion exchange and leaching tests
were also studied by XRD, but they did not reveal mineralogical changes and are therefore
not shown. The external SSA values of all reacted GPs varied between 1.98 and 2.35 m2/g,
which is within the analytical uncertainty of the BET measurements.
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Figure 3. Mineralogy and microstructure of Cu-GPs obtained from the Cu2+ immobilization experiments
of the Cu:GP series (left panel) and Cu:GPpH series (right panel). (a,c) XRD patterns of all precipitates;
(b,d) SE images of precipitates from experiments Cu:GP-1:2 and Cu:GPpH-1:2, respectively.

The copper nitrate hydroxide gerhardtite (Cu2(NO3)(OH)3) precipitated in varying
proportions under the acidic conditions (pH 4.1 to 5.7) of the Cu:GP series (Figure 3a),
confirming that this mineral is the most stable polymorph at ambient temperature of
the copper hydroxyl nitrate family, which include gerhardtite, rouaite and likasite [56].
The formation of well-crystallized gerhardtite (FWHM: 0.13–0.18◦ 2θ) particles with an
average size of 0.5 to 1.0 µm and a plate-like morphology on the GP grains and within the
pore space (Figure 3b) can be explained by its lower solubility compared to the copper(II)
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nitrate trihydrate salt, used for the preparation of the Cu2+ solutions and a related high
supersaturation of gerhardtite with respect to the acidic solutions of the Cu:GP series [57].
However, a considerable amount of Cu2+ was also incorporated in the GP matrix, as evident
from the CuO/Al2O3 ratio of 0.3 ± 0.1 in experiment Cu:GP-1:25, where no gerhardtite
formed. All other GP matrices had a CuO/Al2O3 ratio of 0.2 ± 0.1. The amount of Cu2+,
which was bound to gerhardtite, increased at elevated initial Cu:GP ratio (Figure 3a). Thus,
the low solubility of gerhardtite most likely reduced the uptake capacity of Cu2+ by GP.

The copper(II) (hydr)oxide minerals spertiniite (Cu(OH)2) and tenorite (CuO) formed
under the highly alkaline conditions (pH 11.1 to 12.4) of the Cu:GPpH series (Figure 3c).
This finding is supported by experimental evidence of copper(II) (hydr)oxides formation
controlling the Cu2+ concentrations in aqueous solutions containing hydroxide (OH-)
and nitrate (NO3

−) or sulphate (SO4
2−) as sole anions [58,59]. Geochemical equilibrium

modeling further indicated that CuO and Cu(OH)2 phases can limit the metal ion mobility
in cement and geopolymer matrices under alkaline conditions [60]. The formation of plate-
like sper-tiniite (~0.1–0.2 µm in largest dimension) and of blocky tenorite (~0.2–0.5 µm in
size) was controlled mainly by the pH treatment applied to this experimental set (Figure 3d).
Thus, a large fraction of Cu2+ added to the Cu:GPpH series was immobilized by barely
soluble copper(II) (hydr)oxides. However, a portion of Cu2+ was chemically bound to GP,
as evidenced by the CuO/Al2O3 ratio of 0.20 ± 0.1 in experiment Cu:GPpH-1:25, where
the amount of semi-crystallized tenorite (FWHM: 0.77–0.89◦ 2θ) and poorly crystallized
spertiniite (FWHM: 1.2–1.6◦ 2θ) formed is negligible (Figure 3c). All other GPs had a
CuO/Al2O3 ratio of 0.15 ± 0.5, signifying profound Cu2+ incorporation in the GP structure.

3.4. Chemical Resistance of Cu2+-Bearing Geopolymer
3.4.1. Ion Exchange

The ion exchange behavior of the Cu-GP materials is illustrated in Figure 4. We note
that a small amount of K+ (<0.2 mmol/L) was liberated to the experimental solutions
from all Cu-GPs. This could represent either a mobile fraction of K+ that occupied surface-
accessible sites in Cu-GPs or dissolution of K2CO3 impurities present in the raw GP [48].
However, no changes in BET-SSA of all ion-exchanged GPs were recognized within the
analytical uncertainty of the BET measurements.

As for the Cu:GP series, a minor proportion of Cu2+ (0.03–0.74 mmol/L) was ex-
changed for Na+ (0.17–1.39 mmol/L) upon reaction with a 100 mM NaCl solution for
24 h (Figure 4a). This indicates that some Cu2+ ions occupied easily exchangeable (sur-
face) sites in the Cu-GPs prepared under acidic conditions (Figure 2c). The Cu2+/Na+

molar ratio was close to 0.5, which is needed to account for a charge compensation in
the Na+-substituted Cu-GPs (Figure 4a). Such stoichiometric exchange of Cu2+ for Na+

suggests that the dissolution of gerhardtite was negligible and that a fraction of the initial
Cu2+ concentration added to the Cu:GP series was incorporated in the GP structure [57],
corroborating the SEM-EDX results. The proportion of Cu2+ dissolved from Cu-GPs and
subsequently returned back to the solutions varied only between 0.4 and 2.4% (Figure 4b),
which in turn demonstrates the low reactivity of the Cu-GPs during ion exchange reactions.
Accordingly, SE images collected on ion-exchanged Cu-GPs show platy, well-crystallized
gerhardtite (FWHM: 0.14–0.19◦ 2θ) particles that co-occur with the Na+-substituted Cu-GPs
having a CuO/Al2O3 ratio of 0.3 ± 0.2 (Figure 4c).

As for the Cu:GPpH series, a small fraction of K+ was exchanged for Na+ (<0.2 mmol/L)
to balance the charge in the Cu-GPs, similar to the materials of the Cu:GP series. In
contrast, the Cu2+/Na+ molar ratio was determined to be only ~0.1, so that no correlation
between exchanged Na+ and Cu2+ ions was recognized (Figure 4d), which underlines
the low reactivity of Cu2+ bound to geopolymers under highly alkaline conditions [52,60].
Consequently, the fraction of Cu2+ mobilized from the materials of the Cu:GppH series
upon Na+ exchange was very low (<0.04%; Figure 4e), which again demonstrates the
immobility of Cu2+ in the Cu:GppH series. The SE images collected show no microstructural
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modifications compared to the untreated Cu-GPs (Figure 4f) and the K-A-S-H matrices had
a CuO/Al2O3 ratio of 0.2 ± 0.1.
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Figure 4. Compilation of results obtained from the ion exchange experiments. (a,d) Cross-plots of
the Cu2+ and Na+ concentrations showing stoichiometric ion exchange in the Cu:GP series and no
ion exchange in the Cu:GPpH series. Note the different scale in (a,d); (b,e) Fraction of Cu2+ liberated
into the solutions upon ion exchange in the Cu:GP and Cu:GPpH series. Note the small amounts of
‘mobile’ K+ released back to the solutions and the different scale in (b,e); (c,f) The SE images of the
Na+-exchanged samples Cu:GP-1:2 and Cu:GPpH-1:2 reveal no microstructural changes after the ion
exchange reaction. Ghd—gerhardtite; Spt—spertiniite; Tnr—tenorite.

3.4.2. Acid Leaching

The resistance of the Cu-GPs to acid leaching (pH 4.5) is shown in Figure 5. The Al3+,
Fe3+, Na+, Si(OH)4 and Cu2+ concentrations remained always ≤100 mg/L and ≤8 mg/L
in the leachate solutions of the Cu:GP and Cu:GPpH series, which proves the high acid
resistance of all the Cu-GPs. The K+ concentration ranged between 30 and 145 mg/L, equiv-
alent to a dissolution quota of ~1–2 wt.%, if all K+ is assigned to K2CO3 impurities present
in the GP (Figure 1b). This K2CO3 dissolution caused a slight increase in solution pH,
from 5.1 to 5.6, in all experiments. Nevertheless, the BET-SSA and the crystallinity degree
(FWHMgerhardtite: 0.13–0.18◦ 2θ; FWHMtenorite: 0.75–0.91◦ 2θ; FWHMspertiniite: 1.1–1.5◦ 2θ)
of all leached GPs remained unchanged within the analytical uncertainty of the BET and
XRD measurements.
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The fraction of Cu2+ released back to the leachate solutions varied between 0.24 and
0.68% for the materials of the Cu:GP series (Figure 5a), which indicates that the Cu-GPs,
including the co-precipitated gerhardtite, have a high resistance to leaching. This finding is
consistent with the experimentally determined solubility minimum of gerhardtite under
slightly acidic to near-neutral conditions (pH ~5.5 to 7.5) and a low solubility product
(Kgerhardtite = ~10−16; 25 ◦C) of this barely soluble mineral [61]. Accordingly, SE images
taken from the leached Cu-GPs show only minor microstructural changes, such as a
small increase of fine pores that were formerly filled by gerhardtite (Figure 5b). SEM-
EDX analyses revealed no chemical alteration of the K-A-S-H matrices (i.e., CuO/Al2O3
ratio = 0.3 ± 0.2) upon leaching.

The amount of Cu2+ measured in the leachate solutions ranged from 0.23 to 0.65% for
the materials of the Cu:GPpH series and increased slightly with increasing initial Cu:GPpH
ratio (Figure 5c), which suggests that a partial dissolution of CuO and Cu(OH)2 phases
accounted for the Cu2+ release. This assertion is supported by the lower stability of these
minerals under acidic conditions and their higher solubility in pure water (Ktenorite = 10−8.6;
Kspertiniite = 10−11.3; 25 ◦C) compared to gerhardtite [58,62–64]. No visible microstructural
modifications were recognized for the leached Cu-GPs of the Cu:GPpH series (Figure 5d).
The K-A-S-H matrices had a CuO/Al2O3 ratio of 0.2 ± 0.1.

3.5. Implications for Water Treatment and Environmental Remediation

Ion exchange and leaching reactions had only a minimal impact on the mineralogical,
chemical and microstructural composition of the Cu-GPs obtained from the immobilization
experiments with(out) alkaline treatment (Figures 4 and 5). This indicates that the vast
majority of the Cu2+ ions was bound to ‘unreactive’, barely soluble mineral phases, such as
gerhardtite under acidic conditions versus tenorite and spertiniite under alkaline conditions
(Figure 3a,c), in addition to the Cu2+-substituted in the GP matrix. The low reactivity
of all Cu2+-containing phases under the herein tested conditions suggests that a high
immobilization degree of Cu2+ was achieved, i.e., only ≤2.4% of the Cu2+ bound within
the Cu-GPs was remobilized (Figure 4b,e and Figure 5a,c). This highlights the potential of
granulated GP for water treatment applications, especially in acidic aqueous media where
sorbent materials must withstand corrosive conditions [15,16,20]. Moreover, GP can be
easily removed by filtration or sedimentation from treated wastewater, ensuring economic
use of this novel sorbent material (Figure 6a–c).
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Figure 6. Photo documentation of the efficiency of Cu2+ removal from solution by GP. (a) Dark blue
Cu2+-containing solution at the beginning of experiment Cu:GPpH-1:2; (b,c) Precipitates obtained at
the end of experiments Cu:GP-1:2 and Cu:GPpH-1:2; (d) Transparent solution at the end of experiment
Cu:GPpH-1:2 with a Cu2+ concentration below international guideline values.

Baldermann et al. [65] argue that metal ion (Me2+)-bearing C-A-S-H, a common con-
stituent of Ordinary Portland cement, will rapidly decompose even under mildly acidic
conditions, thereby providing Ca2+ and Me2+ ions to the aqueous phase and leaving least
soluble solid residues, such as amorphous silica and poorly crystalline aluminosilicates, at
the leaching front. This dissolution reaction could thus release harmful Cu2+ ions to the
aquatic environments if no other immobilization mechanisms are active. Alike, the leaching
behavior of geopolymers is known to increase with acidity and especially at pH < 4.5, the
structural integrity of the K-A-S-H network becomes increasingly weakened [52]. Never-
theless, our results suggest a low leachability of Cu2+ from the Cu-GPs under mildly acidic
conditions (Figure 5), which indicates that chemical bonds are responsible for the binding
of Cu2+ to the molecular structure of the GPs [66]. However, their long-term resistance
to corrosion in highly acidic environments (pH < 4) has to be demonstrated, but this is
beyond the scope of this study.

The type of binding of Cu2+ ions in the three-dimensional molecular network of
geopolymers is key for predicting their stability in corrosive systems. The behavior of
Cu2+-containing low-Ca geopolymers is often viewed analogously to zeolite minerals [67],
because of their apparent crystal-chemical similarities. Zeolites are scaffold silicates, con-
sisting of cross-linked (Si,Al)O4 tetrahedrons with Na+ or K+ ions occupying exchangeable
sites to keep electrostatic neutrality. Natural and synthetic zeolites can immobilize various
pollutants (e.g., radioactive components and heavy metal ions) through ion exchange [15].
Our results indicate that the Cu-GPs had a high resistance against Na+ exchange (Figure 4),
suggesting that the exchange processes with other Me ions are also limited. On the other
hand, the porous geopolymer network may allow the sorption and/or incorporation of po-
tentially other hazardous Me cations from solution given that these dissolved components
have an identical ionic charge and a Me ionic radius similar to Cu2+, such as Co2+, Mn2+,
nickel (Ni2+), palladium (Pd2+) and Zn2+ [67]. However, the immobilization potential of
such Me ions by GP has to be evaluated in future studies, with particular focus on near-
neutral and acidic aqueous media where Me ion immobilization by GP is crucial. Further
studies should also consider the impact of temperature, (ad)sorption kinetics, presence of
competing ions in solution and renewability/stability of GP under certain conditions in
order to make progress in yet untested geopolymer applications in diverse water treatment
scenarios at full-industrial scale.

The use of Cu2+-substituted geopolymers is increasingly considered as a novel, ef-
ficient technology to enhance the antimicrobial properties of building and construction
materials [68]. These chemically resistant aluminosilicate structures may even withstand
the aggressive conditions frequently met in wastewater systems [33]. They exhibit good
antimicrobial effects on Cu2+-treated geopolymer surfaces and a sufficient in vitro stability
in the long term [69,70]. Hashimoto et al. [70] have demonstrated that the antimicrobial
activity of metakaolin-based geopolymers against fungi hyphae can be increased by the
incorporation of Cu2+ into the geopolymer structure. Our results proved that this chemical
substitution can reach CuO/Al2O3 ratios of 0.3 ± 0.1 in the GP matrix under the experi-
mental conditions used in this study. The presence of additional CuO/Cu(OH)2 phases
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on geopolymer surfaces and within fine pores could further increase their bactericidal
activity (Figure 3), as indicated by a biological study using S. aureus and E. coli bacterial
strands treated with Cu(OH)2 nanoparticles and mixed Cu1−xMgx(OH)2 nanorods, i.e., a
bacterial cell reduction of >99.99% was observed after 180 min at room temperature [64].
Thus, GP has a high potential to be used for advanced and large-scale water treatment
and purification studies after successful testing and calibration against latest wastewater
purification technologies [71–75].

4. Conclusions and Perspectives

A granulated geopolymer (GP) was prepared from an alkali-activated metakaolin
powder and subsequently exposed to copper (Cu2+)-containing solutions to determine the
immobilization potential of the GP with(out) pH adjustment. The Cu2+ removal efficiency
depended mainly on the initial Cu:GP ratio and on the pH and reached >99.9% under
alkaline conditions and up to 91% under acidic conditions, which is equivalent to Cu2+

removal capacities of 193 mg/g and 560 mg/g, respectively. A substantial fraction of
Cu2+ immobilization was due to chemical incorporation into the GP matrix, but a large
amount of Cu2+ was also precipitated in the form of gerhardtite (low pH) or tenorite and
spertiniite (high pH). The resistance of the Cu2+-bearing GPs to leaching and ion exchange
was experimentally verified, yielding a small Cu2+ release of less than 2.4%. Accordingly,
geopolymers bear a high potential to consistently immobilize aqueous Cu2+. Further work
should (i) make use of the herein described novel Cu-GPs and explore their performance
and durability in corrosive settings at field scale and (ii) explore the links between crys-
tal structure and Cu-binding environments in Cu2+-substituted geopolymers using e.g.,
solid-state nuclear magnetic resonance (29Si and 27Al MAS-NMR) or chemical-state X-ray
photoelectron spectroscopic analysis (XPS), both to gain insights into the resistance of
Cu-bearing geopolymers to natural and man-made corrosion settings.
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