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a b s t r a c t 

Performance monitoring and feedback processing – especially in the wake of erroneous outcomes – represent a 
crucial aspect of everyday life, allowing us to deal with imminent threats in the short term but also promoting 
necessary behavioral adjustments in the long term to avoid future conflicts. Over the last thirty years, research 
extensively analyzed the neural correlates of processing discrete error stimuli, unveiling the error-related nega- 
tivity (ERN) and error positivity (Pe) as two main components of the cognitive response. However, the connection 
between the ERN/Pe and distinct stages of error processing, ranging from action monitoring to subsequent cor- 
rective behavior, remains ambiguous. Furthermore, mundane actions such as steering a vehicle already transgress 
the scope of discrete erroneous events and demand fine-tuned feedback control, and thus, the processing of con- 
tinuous error signals – a topic scarcely researched at present. We analyzed two electroencephalography datasets 
to investigate the processing of continuous erroneous signals during a target tracking task, employing feedback 
in various levels and modalities. We observed significant differences between correct (slightly delayed) and er- 
roneous feedback conditions in the larger one of the two datasets that we analyzed, both in sensor and source 
space. Furthermore, we found strong error-induced modulations that appeared consistent across datasets and 
error conditions, indicating a clear order of engagement of specific brain regions that correspond to individual 
components of error processing. 
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. Introduction 

From a young age, our abilities to monitor our surroundings and
istinguish intended from actual decision outcomes define our success
n everyday life. Certainly, challenging situations may require an ade-
uate on-the-fly change of plan to reconcile previous expectations with
bserved results and to subsequently ensure success in the short term
 Rabbitt, 1966 ). Yet, apart from the immediate benefits of flexibly adapt-
ng our modus operandi, the capability of closely monitoring our ac-
ions, and more importantly, of recognizing possibly problematic con-
equences of our approach, entails crucial advantages in the long run as
ell ( Ullsperger et al., 2014 ). As our actions force specific results, we
cquire often highly versatile mappings between specific actions and
heir outcomes ( Lourenco and Casey, 2013 ). In order to optimize these
ction-outcome mappings towards optimal behavior for a specific situa-
ion, an intuition about when to adapt our behavior and when to remain
rm in our approach - in short, an awareness of erroneous versus cor-
ect responses - is essential ( van der Helden et al., 2009 ). As a result,
n in-depth understanding of feedback processing, especially regarding
rroneous feedback, is vital to gain insights on how the brain adapts to
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 dynamic environment and thus enables behavioral adjustments and
earning. 

.1. Cognitive processing of discrete error stimuli and behavioral 

djustments 

Previous research extensively investigated how the human brain re-
cts to discrete erroneous stimuli by means of noninvasive recordings
uch as the electroencephalogram (EEG). Usually elicited within Stroop
 Olvet and Hajcak, 2008 ), Flanker ( Ullsperger and Szymanowski, 2004 ),
r simple Go/No-Go tasks ( Falkenstein et al., 2000 ), the error-related
egativity (ERN) quickly emerged as one of the most prominent neu-
al correlates to error processing. Argued to arise in the dorsal ante-
ior cingulate cortex (ACC) ( Dehaene et al., 1994 ; Mathewson et al.,
005 ), the ERN (often referred to as response ERN) is mainly charac-
erized by its fronto-central negativity in the topography of the EEG
pproximately 100 ms after the onset of an erroneous stimulus, and
roved to be robust to both differing error modalities ( Holroyd et al.,
998 ; Van ’t Ent and Apkarian, 1999 ) and stimulus types ( Miltner et al.,
997 ). A special instance of the ERN, the feedback ERN, shares the
il 2023 
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ame physiology, but arises with a latency of around 250 ms after a
eedback stimulus signaling a transpired error ( Miltner et al., 1997 ;
adgaiyan and Posner, 1998 ; Nieuwenhuis et al., 2004 ); as such, this
pecific correlate gained special attention in relation to action monitor-
ng and feedback processing ( Ullsperger et al., 2014 ). While competing
heories suggest a functional significance in connection to either error
etection ( Falkenstein et al. ), conflict monitoring ( Carter et al., 1998 ;
otvinick et al., 2001 ; Yeung et al., 2004 ), or reinforcement learning
 Holroyd and Coles, 2002 ), all leading views relate the ERN to a compar-
son process between intended and observed outcomes at a fundamen-
al level. However, of these theories, reinforcement learning in particu-
ar suggests a clear connection between the classical response ERN, the
eedback ERN, and learning. Specifically, in an early phase of training
and hence in the absence of proficient internal judgment of the cur-

ent performance – learning relies exclusively on external feedback and
hus leads to initially large feedback ERNs and an absence of internally-
nformed response ERNs. With learning, a mapping between input and
orrect output subsequently forms, and the feedback ERN diminishes as
he response ERN increases ( Holroyd and Coles, 2002 ). In short, there
ill be no need to rely on feedback once we now right from wrong by
urselves; a hypothesis that has been both confirmed ( van der Helden
t al., 2009 ) and questioned ( Nieuwenhuis et al., 2002 ), leaving mixed
vidence on a clear relation between the ERN, feedback processing and
emedial behavior in response to errors. However, ERN durations and
mplitudes covarying with the duration until an error correction takes
lace nonetheless imply an important role in corrective behavior follow-
ng error detection ( Burle et al., 2008 ; Gehring et al., 2012 ). 

In contrast to the automated nature of the ERN, yet another well-
esearched correlate in the context of error processing – the error pos-
tivity (Pe) – reportedly traces conscious error perception and reme-
ial action following faulty performance ( Nieuwenhuis et al., 2001 ;
ndrass et al., 2007 ). While the ERN exhibits a stationary course for
oth aware and unaware errors, the Pe, characterized by a centro-
arietal positive deflection in the EEG around 300–500 ms after an er-
or onset, clearly modulates with error awareness ( Nieuwenhuis et al.,
001 ). Previous work for instance linked Pe amplitudes to an accumu-
ation of evidence in error detection ( Steinhauser and Yeung, 2010 ), as
ell as confidence in decision-making ( Boldt and Yeung, 2015 ), which
as in turn suggested as a vital part of performance monitoring and
emonstrated considerable impact on behavioral adaptations and learn-
ng ( Frömer et al., 2021 ). Additional studies suggested a further rela-
ion between the Pe and strategic behavioral adjustments such as post-
rror improvements in accuracy ( Carp and Compton, 2009 ) and post-
rror slowing ( Chang et al., 2014 ), further stressing its vital role in the
onscious processing of errors and the long-term adaptations related to
earning. 

Overall, the characteristics of the mentioned correlates have been
nvestigated in depth within previous research; however, a clear picture
n the interplay between these correlates, and crucially, how they re-
ate to and enforce behavioral adjustments and thus learning, remains
nclear ( Gehring et al., 2018 ). 

.2. Continuous feedback processing and corrective behavior 

Many open questions in relation to error processing have been re-
olved since initial reports on the ERN ( Falkenstein, 1989 ); however,
esearch almost exclusively focused on the processing of discrete er-
or stimuli in this context. Due to the nature of the observed corre-
ates, it stands to reason that a binary approach in paradigm design
a clear ‘error’ or ‘no error’ trial structure - is the appropriate course

f action. This has been further promoted by findings on the influence
f error rates on the ERN; specifically, that large amounts of error tri-
ls within a paradigm attenuate the amplitudes of the recorded ERNs.
rror-likelihood theory – yet another account based on the reinforce-
ent learning view of error processing – incorporated this observation

nd proposed that neurons in the ACC learn to predict the likelihood of
2 
n occurring error in relation to a given task ( Brown and Braver, 2005 ),
hich further restricted paradigm design in error processing research.

ndeed, a focus on how the brain might process continuous instead of
iscrete deviations from an intended goal would imply an extended ex-
osure to erroneous input signals, which, according to error-likelihood
heory, would inherently lead to diminishing ACC activity and thus ERN
mplitudes. However, moving on from laboratory conditions, a range of
veryday-situations demands fine-tuned feedback-control rather than a
oarse distinction between correct or wrong, which further encourages
etailed research on the processing of continuous erroneous feedback
ignals in addition to the well-known discrete error stimuli. Frömer and
olleagues recently raised the question of how the brain regulates re-
edial action and learning from new feedback-related information us-

ng the example of throwing darts and attempting to hit the bullseye;
he corrections taking place after narrowly missing, in theory, should
ettle on a different scale than those after missing the board entirely
 Frömer et al., 2021 ). While playing darts might not be of immediate
mportance to our daily routine, this line of thought can easily translate
nto the continuous adjustments necessary to, e.g., steer a car, which
ay similarly range from minute changes to considerable corrections in

rder to stay on course. How does the brain process continuous feedback
egarding ongoing deviations from an intended target? How does this
rocessing relate to an identification of erroneous outcomes and vari-
ble levels of corrections? And lastly, how do we selectively learn from
rocessing continuous inputs? 

In contrast to the error-likelihood theory, the before-mentioned the-
ries promoting conflict monitoring and reinforcement-learning could
n principle accommodate the continuous exposure to an erroneous sig-
al. However, to the best of our knowledge, an explicit extension of
he framework comprising the processing of discrete error stimuli to-
ards continuous error signals has not been attempted for either of the

heories surrounding the ERN and Pe. As a result, we argue that the
nvestigation of erroneous feedback processing evoked by continuous
rror signals may enable an in-depth understanding not only of error
rocessing, but corrective behavior and learning as well. 

.3. Rationale for the present study 

Within this study, we addressed three major questions. First, is it
ven possible to measure the correlates of error processing from con-
inuously varying erroneous feedback signals instead of discrete error
timuli? Separate groups tackled variations of this question already;
owever, their approaches largely based on the continuity of the task
tself rather than the continuity of the erroneous input ( Spüler and Ni-
thammer, 2015 ; Lopes-Dias et al., 2018 ; Völker et al., 2018 ). Second,
ow do such continuously varying error signals affect different brain re-
ions? Phase-locked cortical responses demonstrably arise, e.g., during
eriodic movement ( Seeber et al., 2015 ); however, to our knowledge,
odulations in error perception have not yet been investigated. Fur-

hermore, reports suggest a large number of contributors to both the
RN and the Pe, ranging from the dorsal and rostral ACC to the Pre-
upplementary motor area (Pre-SMA) and orbitofrontal cortex (OFC)
 Herrmann et al., 2004 ; Turken and Swick, 2008 ); nonetheless, a conclu-
ive theory on the individual role or the interplay between these regions
s still missing. And third, is there a clear connection between the ERN,
he Pe, and corrective behavior? If we define ‘error processing’ as a com-
ination of subprocesses, various cortical networks direct each distinct
art. However, owing to unintuitive ‘button-pressing tasks’ described by
ehring and colleagues, a unifying theory explaining naturalistic error-
nd-correction behavior remains desirable ( Gehring et al., 2018 ). 

To answer these questions, we investigated two pre-recorded
atasets employing motor attempt and motor execution that shared the
ame paradigm. These datasets comprise forty sessions of electroen-
ephalographic (EEG) recordings in twenty able-bodied participants
preliminary analysis published in ( Pulferer and Müller-Putz, 2022 )). To
btain further insight into the elicited cortical processes independent of
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Fig. 1. Data preprocessing pipeline and analysis scheme for all discussed datasets. A Dataset 1/participant with SCI . An encasing around the dominant arm 

prevented overt movement, target (white snake) and feedback (blue dot) were presented strictly on-screen. Delayed feedback (correct) was delivered during the 
calibration part ( A1 ), which was then gradually replaced by first 50% ( A2 ) and finally 100% ( A3 ) EEG-decoded positional information. B Dataset 2 . The participants’ 
unrestrained dominant arm movement was recorded via LeapMotion, and direct feedback was delivered via an assistive robotic arm. During calibration, hand 
movement was directly fed to the robot ( B1 ). This direct control was gradually replaced by first 33% ( B2 ), then 66% ( B3 ), and finally 100% ( B4 ) EEG-decoded 
positional information. For all datasets, processed data were band-pass filtered in 12 bands of interest and epoched within [ − 1,3]s of local maxima of the Euclidean 
error signal between the positions of target (snake) and feedback (Dataset 1/participant with SCI: feedback dot, Dataset 2: robotic arm). 
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ny afferent input related to the specific movement task, we addition-
lly analyzed one session in a participant with cervical spinal cord in-
ury (SCI). During each session, the participants underwent a continuous
arget tracking task in two dimensions (2D), employing various levels
f correct and increasingly erroneous feedback. For lack of pre-defined
rror stimuli within this continuous setup, we chose to time-lock the
ata to local maxima of the Euclidean error signal between target and
eedback. We hypothesized that with an increasing mismatch between
arget and feedback, increasing activation of brain regions involved in
rror processing should arise. 

. Materials and methods 

We performed offline analyses on two different pre-recorded EEG
atasets, comprising data of 20 able-bodied participants, as well as one
erson with SCI, in a total of 41 sessions of recordings. Both studies
nitially investigated continuous 2D movement decoding and constitute
onsecutive parts of the “Feel Your Reach ” project ( Müller-Putz et al.,
022 ). As such, they broadly share a common target tracking task with
ifferent feedback conditions, respectively (see Fig. 1 ). The paradigm
as implemented using MATLAB (MATLAB 2015b, MathWorks Inc.
SA) and Psychtoolbox ( Brainard, 1997 ; Pelli, 1997 ; Kleiner et al.,
007 ). We recorded and synchronized all data via lab streaming layer
 https://github.com/sccn/labstreaminglayer ). Both studies took place
t the Graz University of Technology following approval by the ethics
ommittee of the Medical University of Graz (votum number 32–583 ex
9/20). Participants gave their written informed consent and received
3 
onetary compensation for their time. The raw EEG datasets as well as
elated Matlab scripts are available upon request to the corresponding
uthor and require a formal data sharing agreement. 

.1. Dataset description 

.1.1. Dataset 1 

Dataset 1 corresponds to EEG signals of ten right-handed
 Oldfield, 1971 ) participants (24 (mean) ± 5 (SD) years, five male) in
hree sessions each recorded within a prior study ( Pulferer et al., 2022 ),
mounting to a total of 30 recorded sessions. The setup consisted of 64
ctive electrodes (actiCAP, Brain Products GmbH, Gilching, Germany),
omprising a 60-channel EEG and 4-channel electrooculogram (EOG) at
 sampling rate of 200 Hz. The mounting of the EEG channels obeyed
he international 10–10 system (see Fig.S1, supplementary material),
ith slight modifications to allocate four electrodes to the EOG and fa-

ilitate increased signal density in the parieto-occipital area, a region
f particular importance in visuomotor tasks ( Wenderoth et al., 2005 ;
ulliken et al., 2008 ). To monitor saccades and blinks, we placed EOG

lectrodes at the outer canthi of both eyes, and above and below the left
ye. The study initially served to investigate the effects of user training
cross identical sessions of a 2D target tracking task utilizing attempted

ovement ( Müller-Putz et al., 2016 ; Chen et al., 2021 ). We chose this
ataset due to the limited performance of the decoder, which led to peri-
dically varying levels of feedback-target-deviation and thus facilitated
he analysis of continuously varying feedback processing. 

https://github.com/sccn/labstreaminglayer
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.1.2. Dataset 2 

Dataset 2 comprises 64-channel EEG and 6-channel EOG record-
ngs of ten participants (27 (mean) ± 4 (SD) years, five male, one left-
anded), one session each (an therefore a total of 10 sessions), sampled
t 500 Hz ( Mondini et al., 2020 ). In addition to the EOG setup of Dataset
, two more EOG electrodes were placed at the inner canthi of both eyes.
s we recorded Dataset 2 before Dataset 1, wherein we optimized the
lectrode setup regarding visuomotor tasks as previously described, sig-
als acquired in Dataset 2 corresponded to the standard 10–10 system
ithout further modifications. Dataset 2 initially served to investigate

he feasibility of continuous online decoding of executed arm move-

ents in 2D, and was chosen as a complementary dataset to Dataset 1
s they shared the same paradigm, providing largely the same structure
ithin and between single runs, and thus allowing an identical analysis

cheme. However, the different control modes of attempted movement
Dataset 1) and executed movement (Dataset 2) provided the possibility
f strengthening our hypothesis that the observed effects pertain primar-
ly to error and feedback processing, disregarding the mode of control. 

.1.3. Participant with SCI 

Following a similar line of thought and benefitting from the shared
aradigm once more, we additionally analyzed data previously recorded
rom a participant with SCI ( Pulferer et al., 2022 ) to further investigate
oth the characteristics of feedback processing, and the arising correc-
ive mechanisms, in persons with limited motor output. The participant
male, 36) experienced a traumatic complete spinal cord injury (SCI) at
he neurological level of injury (NLI) C2 in 2003 as a result of a mo-
orbike accident (AIS A, ( Maynard et al., 1997 )), leading to a complete
oss of motor output and sensory impression from the neck downwards,
nd necessitating artificial ventilation. In terms of paradigm, the partic-
pant with SCI completed the same task as all able-bodied participants
ecorded within Dataset 1. This entailed the same target tracking task
tilizing attempted movement of his previously dominant (right) arm,
ith feedback presented strictly on-screen via feedback dot. The record-

ngs corresponded to the 60-channel EEG and 4-channel EOG setup de-
cribed in 2.1.1. Dataset 1, sampled at 200 Hz. For data processing and
nalysis, both in sensor as well as in source space, the same procedures
s described for able-bodied participants were employed here as well.
owever, due to sporadic muscle contractions in the neck area, we chose

o bandpass filter the data exclusively in the delta band (0.2–4 Hz) to
void excessive contamination due to muscle artifacts. 

.2. Experimental design and setup 

For both datasets, each session of recordings included an offline cal-
bration part, implemented for data acquisition to train a movement
ecoder ( Kobler et al., 2020 ; Martinez-Cagigal et al., 2020 ), and a sub-
equent online part, during which the trained decoder delivered real-
ime-decoded positional feedback. 

.2.1. Dataset 1 

For sessions of Dataset 1, participants sat in front of a TV screen (46
nches) and had to track the target (white snake) via attempted move-

ent of their dominant arm as if wielding a computer mouse ( Fig. 1 A).
e chose this task type since participants reported a more intuitive per-

eption of attempted movement than in motor imagery ( Ofner et al.,
017 ; Chen et al., 2021 ). An encasing around the limb prevented overt
ovement, mimicking the restrictions experienced by persons with lim-

tations in motor control. For Dataset 1, one session consisted of 10 runs
ontaining 12 trials each, with a tracking sequence of 23 s duration per
rial. During calibration ( Fig. 1 A1, four runs), a blue feedback dot on the
creen depicted largely correct feedback (a slightly delayed snake) to get
he participants accustomed to the additional visual information before
ctual online feedback was delivered during the online part. Aside from
he delay of the feedback dot, feedback and target coincided during the
alibration runs, leading to our hypothesis that no error processing arose
4 
uring calibration runs. We henceforth term epochs of calibration data
 Delayed Feedback ’. Within the online part, we first displayed feedback
orresponding to only 50% of the EEG-decoded information by depict-
ng the arithmetic mean between actual and decoded target positions.
his incremental increase of EEG-decoded positional information was
tilized to slowly prepare the participants for the potentially erroneous
nline decoding ( Fig. 1 A2, three runs). As the decoding performance
orsened compared to the calibration runs (offering the slightly delayed

orrect feedback), we hypothesized that erroneous feedback processing
ad to arise within the 50% EEG-decoded feedback runs, and thus hence-
orth label epochs of 50% EEG-decoded feedback as ‘ Slight Error ’. Finally,
e disregarded the actual target positions completely and exclusively
isplayed 100% of the EEG-decoded positional information ( Fig. 1 A3,
hree runs). Again, the decoding performance worsened with respect
o the previously depicted 50% EEG-decoded feedback runs, and we hy-
othesized that within the 100% EEG-decoded feedback runs, erroneous
eedback processing had to reach a maximum for our paradigm. Thus,
e henceforth label epochs of 100% EEG-decoded feedback ‘ Severe Er-

or ’. For all conditions, including the fake feedback condition during
alibration, the participants were explicitly instructed about the nature
f the specific feedback. 

.2.2. Dataset 2 

During each recording session of Dataset 2, participants had to track
 moving target (white snake) on a reclined screen (46 inches) by exe-

uting movement with their dominant arm as we recorded EEG signals
 Fig. 1 B). In contrast to measurements of Dataset 1, a LeapMotion con-
roller (LeapMotion Inc., USA) collected the kinematics of this tracking
ovement while an assistive robotic arm (JACO, Kinova Robotics Inc,
anada) delivered real-time feedback in front of the screen, as opposed
o the strictly on-screen feedback employed for Dataset 1. For Dataset 2,
ne session consisted of 11 runs containing 12 trials each, with a track-
ng sequence of 23 s duration per trial. During calibration ( Fig. 1 B1,
ve runs), we directly reproduced the movement information recorded
y the LeapMotion with the robotic arm, leading to feedback that corre-
ponded exactly to the self-controlled arm movement of the participants
ith a slight time delay. Since the participants thus had full control over

he robot during calibration, feedback and target coincided, implying
hat no error processing arose. As in Dataset 1, we term epochs of cal-
bration data ‘Delayed Feedback ’ henceforth. Within the online part, we
gain slowly accustomed the participants to the increasingly erroneous
EG-decoded positional information; however, as opposed to Dataset
, we displayed two transitional feedback conditions instead of only
ne before presenting the fully EEG-decoded feedback. First, we dis-
layed a mixture of 33% EEG-decoded positional information and 66%
eapMotion-recorded actual hand positions ( Fig. 1 B2, two runs). The
ncremental transition from arm-controlled to EEG-decoded positional
nformation induced an increasing perceived deviation of the feedback
rom the target, again leading to our hypothesis that erroneous feedback
rocessing increased steadily during the online part of the measurement.
e thus term epochs featuring 33% EEG-decoded positional information

Minimal Error’ henceforth. Subsequently, we increased the EEG-decoded
ositional information to 66% (see Fig. 1 B3, two runs), thus reducing the
eapMotion-recorded positional information to only 33%. In the follow-
ng, epochs corresponding to 66% EEG-decoded positional information
re termed ‘Moderate Error’ . And finally, we exclusively displayed 100%
EG-decoded positional information (see Fig. 1 B4, two runs). Hypoth-
sizing that during this last online condition a maximum in feedback
rocessing had to arise, we henceforth label epochs featuring 100% EEG-
ecoded positional information ‘Severe Error’ , matching with Dataset 1.
ue to the different incremental increases of EEG-decoded positional

nformation in Datasets 1 and 2, only the Delayed Feedback and Severe
rror conditions directly match across datasets; however, we neverthe-
ess included the transition runs in our analysis (50% EEG-decoded for
ataset 1, 33% and 66% EEG-decoded for Dataset 2) to gain an under-

tanding of feedback processing across various levels of performance.
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Table 1 

Overview of the specifics of all analyzed datasets. 

Dataset 1 Dataset 2 Spinal cord injured participant 

Participants / Age 10 / (24 ± 5) ys 10 / (27 ± 4) ys 36 ys (NLI C2, AIS A) 
Sessions in Total 30 (i.e., 3 sessions per participant) 10 (i.e., 1 session per participant) 1 
Trials in Total 3600 (at 23 s) 1320 (at 23 s) 96 (at 23 s) 
Mean Epochs/Trial 6.3 8.0 6.1 
Gender 5 male 5 male male 
Handedness all right-handed one left-handed previously right-handed 
Sampling Rate 200 Hz 500 Hz 200 Hz 
EEG Recordings 60-channel 

(modified 10–10 system) 
64-channel 
(standard 10–10 system) 

60-channel 
(modified 10–10 system) 

EOG Recordings 4-channel 6-channel 4-channel 
Task Type attempted movement executed movement attempted movement 
Feedback (Calibration part) - delayed feedback 

(delayed snake) 
(4 runs) 

- user hand kinematics 
(recorded via LeapMotion) 
(5 runs) 

- delayed feedback 
(delayed snake) 
(4 runs) 

Feedback (Online part) - 50% EEG-decoded 
- 100% EEG-decoded 
(3 runs each) 

- 33% EEG-decoded 
- 66% EEG-decoded 
- 100% EEG-decoded 
(2 runs each) 

- 50% EEG-decoded 
- 100% EEG-decoded 
(2 runs each) 

Feedback Modality strictly on-screen feedback assistive robotic arm (JACO) strictly on-screen feedback 

Table 2 

Frequency bands of interest. 

Frequency band Delta Theta Alpha Beta Gamma 1 Gamma 2 Gamma 3 Gamma 4 Gamma 5 Low High Broad 

Range (Hz) 0.2–4 4–8 8–13 13–30 30–40 40–50 50–60 60–70 70–80 0.2–30 30–80 0.2–80 
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imilarly to Dataset 1, the participants included in Dataset 2 were ex-
licitly instructed about the respective feedback conditions. 

.2.3. Participant with SCI 

The measurement with the participant with SCI employed the same
aradigm discussed for Dataset 1, i.e., an attempted movement task pro-
iding feedback in the form of a feedback dot on the TV screen. As in
ataset 1, four calibration runs (henceforth ‘Delayed Feedback’) depict-

ng correct but slightly delayed feedback were recorded; however, due
o the participant’s long journey to join us at the laboratory, we only
ecorded two runs each for the 50% (henceforth ‘Slight Error’) and 100%
henceforth ‘Severe Error’) EEG-decoded feedback conditions. 

Table 1 briefly summarizes the specifics of all investigated datasets.

.3. Data preprocessing 

The preprocessing pipeline illustrated in Fig. 1 depicts our data pre-
rocessing approach. Both EEG and EOG data were first bandpass fil-
ered between 0.2–80 Hz, and 50 Hz power line noise interference was
emoved using a notch filter. 

Next, bad channels, as identified by visual inspection, were inter-
olated from their neighboring channels using spherical splines. As de-
cribed in the original publications ( Mondini et al., 2020 ; Pulferer et al.,
022 ), we trained an eye artifact subtraction model ( Kobler et al.,
020a ) to remove EEG components corresponding to saccadic eye move-
ents and blinks. To minimize the further influence of eye movements

n the EEG, EOG and anterior frontal (AF) row electrodes (i.e., the chan-
els closest to the corneoretinal dipole) were subsequently removed.
e further re-referenced all remaining channels to their common av-

rage and used the HEAR algorithm ( Kobler et al., 2019 ) to attenu-
te pops and drifts in the data. Additionally, trials affected by other
hysiological artifacts (e.g., muscle artifacts) were identified by visual
nspection and rejected from further analysis. After visual inspection,
one of the epochs exceeded ± 100 μV. Finally, Dataset 2 was down-
ampled to 200 Hz to match the sampling rate of Dataset 1. As the
ast step, data were zero-phase bandpass filtered into 12 bands of in-
erest (see Table 2 ) using a 10th-order Butterworth filter. We chose
hese bands of interest on the basis of previous literature describing
5 
elta to beta bands ( Yordanova et al., 2004 ; Koelewijn et al., 2008 ;
arp and Compton, 2009 ) as informative for error processing. In addi-
ion, a more recent work analyzed high-gamma activity during error pro-
essing ( Völker et al., 2018 ), promoting the investigation of sub-bands
f the gamma for our purposes. To finally scout for information relating
o error and feedback processing in wider frequency ranges, we addi-
ionally considered frequency bands corresponding to the merged low
delta to beta bands) and high (sub-bands of the gamma band) frequency
anges, as well as the full EEG bandwidth (broadband). 

.4. Decoder models 

In Dataset 1, amplitudes in all EEG channels at the current time point,
s well as six lags prior, were utilized to infer the participants’ current
irectional movement parameters (positions and velocities in both carte-
ian axes). The decoder consisted of Partial Least Squares (PLS) regres-
ion, followed by the subsequent application of an Unscented Kalman
ilter ( Martinez-Cagigal et al., 2020 ). In contrast, the initial version of
ur movement decoder used for Dataset 2 (recorded prior to Dataset 1)
tilized a combination of PLS regression and a regular Kalman Filter,
hich proved to underestimate the amplitudes of the decoded kinemat-

cs ( Mondini et al., 2020 ). Participants reported having to increase the
ange of motion of their dominant arm to compensate for the decrease
n amplitude introduced by the decoder. This led to a large mismatch
n the kinesthetic perception of movement and visual feedback during
he fully EEG-controlled runs, even though the decreasing decoded am-
litudes visually led to a decrease in the Euclidean error between target
nd feedback overall due to decreased peak-to-peak differences during
nstances of phase-shifts between target and decoded positions. In subse-
uent studies, Kobler and Martínez-Cagigal and colleagues ( Kobler et al.,
020 ; Martinez-Cagigal et al., 2020 ) succeeded in eliminating this am-
litude mismatch by including nonlinear non-directional movement pa-
ameters (distance, speed) in the PLS regression, exchanging the previ-
usly used Kalman Filter with an Unscented Kalman Filter. Dataset 1
 Pulferer et al., 2022 ) was finally recorded utilizing this extended ap-
roach and as such, the participants perceived the mismatch of target
nd feedback unaltered and strictly visually, in contrast to the kines-
hetic perception mentioned for Dataset 2. 
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Fig. 2. Depiction of all 34 bilateral cortical regions of interest as defined within the Desikan-Killiany atlas. 
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.5. Data analysis 

.5.1. Sensor space 

We performed data analysis in all datasets using MATLAB and
EGLAB ( Delorme and Makeig, 2004 ). To quantify the cognitive re-
ponse to an increasingly erroneous feedback signal, we estimated the
uclidean error signal between target and feedback, i.e., between snake
nd feedback dot positions for Dataset 1 and the participant with SCI,
nd between snake and assistive robotic arm positions in Dataset 2 for
ach of the feedback conditions. The sinusoidal patterns of the depicted
arget trajectory (see Fig. 1 A1–3, B1–4) translated to the feedback’s kine-
atics as well. As such, we chose to locate local maxima of the Eu-

lidean error signal and time-lock the EEG (preprocessed and bandpass
ltered as described before) in epochs of [ − 1,3]s within these maxima
see Fig. 1 A-B). The epochs obtained in this manner were then averaged
ithin subjects for each condition. 

.5.2. Source space 

Complementing the time series analysis in sensor space, we ad-
itionally investigated the origin of the measured EEG signals by
ack-projecting to source space via Brainstorm (version 17-May-2022,
 Tadel et al., 2011 )). As in previous studies ( Mondini et al., 2020 ;
risrisawang and Müller-Putz, 2022 ), we obtained head models for all
articipants and sessions using OpenMEEG ( Gramfort et al., 2010 ). The
CBM152 boundary element model (BEM) ( Kybic et al., 2006 ) was then
o-registered to the individual electrode positions recorded prior to each
easurement session (ELPOS, Zebris Medical GmbH, Germany). We ad-

usted the standard conductivity values in each of the three layers of
he BEM, comprising cortex, skull, and scalp conductivity, to (1, 0.008,
). Projection onto the template head model’s surface alleviated devia-
ions of the electrode positions from the standard BEM due to individual
ead geometries. To estimate the channel noise covariance matrix for
enerating forward and inverse solutions, resting state data of each ses-
ion, preprocessed as described in Section 2.3 , were used. For numerical
tability, we regularized the noise covariance matrix by adding an iden-
ity matrix scaled to 10% of the largest eigenvalue. The use of sLORETA
 Pascual-Marqui, 2002 ) provided an inverse solution via minimum norm
maging. We restrained the model by only considering dipoles with an
rientation normal to the cortex, leading to solutions to the inverse prob-
em featuring one source dipole in each of the 15,000 vertices. For sub-
equent analysis and statistical testing, the full cortical map with con-
trained dipole orientations was downsampled to the Desikan-Killiany
tlas ( Desikan et al., 2006 ), consisting of 68 regions of interest spanning
he whole cortex (see Fig. 2 ). We specifically chose this atlas to obtain
6 
 fundamental understanding of the cortical activations elicited during
rror processing. 

.6. Estimation of directional connectivity 

To establish how different cortical areas communicate during error
rocessing, connectivity within the regarded time series was inferred ac-
ording to Granger’s and Wiener’s concept of causality ( Granger, 1969 ).
pecifically, we can assume a causal connection between two time se-
ies if past information of one time series improves the prediction of the
ther time series. In this context, multivariate autoregressive (MVAR)
odels that describe the current state of each time series as a linear

ombination of its own as well as other time series’ histories can find
se. An MVAR model most generalized takes the form 

 ( 𝑛 ) = 

𝑝 ∑
𝑘 =1 

𝑨 𝑘 𝒚 ( 𝑛 − 𝑘 ) + 𝜺 ( 𝑛 ) = 𝑨 𝝋 ( 𝑛 ) + 𝜺 ( 𝑛 ) , (1) 

here 𝒚 ( 𝑛 ) ∈ ( ℝ ) 𝑀× 1 is the multivariate time series at time point n = 1 …
 with N being the total number of samples and M the number of

ime series under consideration. Further, p describes the model or-
er, 𝑨 𝑘 ∈ ( ℝ ) 𝑀×𝑀 corresponds to the coefficient matrix for 𝑘 ∈ [ 1 , 𝑝 ]
 𝑨 = [ 𝑨 1 ... 𝑨 𝑝 ] ∈ ( ℝ ) 𝑀×Mp ), 𝝋 ( 𝑛 ) = [ 𝒚 ( 𝑛 − 1) ... 𝒚 ( 𝑛 − 𝑝 )] 𝑇 ∈ ( ℝ ) Mp × 1 de-
cribes the regressor vector consisting of past lags from all time series
nd 𝜺 ( 𝑛 ) ∈ ( ℝ ) 𝑀× 1 is zero-mean white noise, known also as innovation
rocess vector. In matrix form, Eq. (1) can be written as 𝒀 = 𝑨 𝚽 + 𝑬 ,
hereby 𝒀 , 𝑬 ∈ ( ℝ ) 𝑀×𝑁 and the regressor matrix 𝚽 ∈ ( ℝ ) Mp ×𝑁 . The

oefficient matrix can be estimated using the Least Squares approach.
ere, we opted to use the Arfit module which is based on a stepwise least

quares algorithm for MVAR estimation ( Schneider and Neumaier, 2001 ;
chlögl, 2006 ). 

To capture generalized connectivity patterns, we fitted MVAR mod-
ls on EEG data from all subjects. The EEG data, averaged within each
ubject, were concatenated generating a matrix of the form 𝒀 ∈ ( ℝ ) 𝑀×NS 

here 𝑆 is the number of subjects accounted for. The regressor ma-
rix is now of dimensionality ∈ ( ℝ ) Mp ×NS . In the case of Dataset 1, we
onsidered 𝑀 = 56 time series comprising 55 EEG channels as well as
he Euclidean error signal between target and feedback. The total num-
er of subject averages per condition was 𝑆 = 30 (i.e., 3 session aver-
ges from 10 subjects), and the considered epoch length was N = 801
ime points. For Dataset 2, we fitted an MVAR model on 60 time series
 M = 60), consisting of 59 EEG channels plus the Euclidean error sig-
al from 𝑆 = 10 subject averages per condition (i.e., 1 session average
rom 10 subjects), and the same number of time points as in Dataset
. As each MVAR model critically depends on the model order 𝑝 , the
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ptimum model order 𝑝 𝑜𝑝𝑡𝑖 was selected using the Akaike Information
riterion (AIC) ( Akaike, 1974 ). The AIC considers the fit of the model
ased on the residual errors ( 𝚺 = 𝑐𝑜𝑣 ( 𝒀 − �̃� ) , with �̃� the prediction
f the model) and penalizes the total number of MVAR coefficients as
𝐼𝐶( 𝑝 ) = 𝑁 ⋅ 𝑙𝑜𝑔( |𝚺|) + 2 ⋅𝑀 

2 𝑝 . We selected the optimum model
rder as the knee of the function 𝐴𝐼𝐶( 𝑝 ) . 

Aside from a time domain description of causality, oscillatory con-
ent within the data may be explored in the frequency domain ( Saito
nd Harashima, 1981 ; Akaike, 1998 ; Baccala et al., 1998 ). As the
ag operator transforms as 𝐹 { 𝒀 ( 𝑛 − 𝑘 ) } = 𝑒𝑥𝑝 ( −2 𝜋𝑖𝑘𝑁𝑓 ) 𝒀 ( 𝑓 ) , with
 ( 𝑓 ) the Fourier transform of 𝒀 ( 𝑛 ) , the MVAR model in the fre-
uency domain may be expressed as: 𝒀 ( 𝑓 ) = 𝑯 ( 𝑓 ) 𝑬 ( 𝑓 ) , where 𝑯 ( 𝑓 ) =

 𝑰 − 

𝑝 ∑
𝑘 =0 

𝑨 𝑘 𝑒𝑥𝑝 ( −2 𝜋𝑖𝑘𝑁𝑓 )] 
−1 

describes the transfer matrix. The entries

f this transfer matrix 𝑯 ( 𝑓 ) , derived from the coefficient matrices 𝑨 𝑘 

n the time domain, can then be used to infer directional connectivity,
nown also as directed coherence (DC) ( Baccala et al., 1998 ): 

𝐶 ( 𝑓 ) 𝑡𝑑 = 

𝜎𝑑 𝐻 ( 𝑓 ) 𝑡𝑑 √ ∑𝑀 

𝑚 =1 𝜎
2 
𝑚 
|𝐻 ( 𝑓 ) 𝑡𝑚 |2 

, (2)

ith 𝜎2 
𝑗 
, 𝑗 = 1 …𝑀 the diagonal entries of the diagonal covariance ma-

rix 𝚺 = 𝑑𝑖𝑎𝑔( 𝜎2 1 , ... 𝜎
2 
𝑀 

) , as estimated from the residuals of the MVAR
odel due to the lack of a priori knowledge of the innovation process

ovariance matrix. In detail, 𝑫 𝑪 ( 𝑓 ) ∈ ( ℝ ) 𝑀×𝑀 of Eq. (2) corresponds
o an asymmetric matrix, wherein each entry 𝐷𝐶 𝑡𝑑 describes the direct
nd indirect power contributions of a driving signal 𝑑 to a target sig-
al 𝑡 . To estimate the influence of the Euclidean error signal over all
ther (EEG) channels, we thus considered only the entries of the 𝐷𝐶

atrix corresponding to the error as a driving signal. For the estimation
f the 𝐷𝐶 matrix, we utilized the eMVAR toolbox ( Faes et al., 2013 ).
s our data consisted of both multichannel EEG signals (μV) and the
alculated Euclidean error signal between target and feedback (pixels /
x) from different subjects, we standardized all signals prior to MVAR
tting to remove subject- and signal- specific scale dependencies. To
valuate statistical significance in each condition, 𝑛 = 50 surrogate sig-
als were generated ( Faes et al., 2010 ; Kostoglou and Müller-Putz, 2021 ;
immer et al., 2022 ). In detail, we created artificial (surrogate) signals

y transforming our datasets to the frequency domain, randomly shuf-
ing their phases, and back-transforming to the time domain again. For
ach batch of back-projected surrogate signals, now lacking any causal
elation, we then estimated an MVAR model of model order 𝑝 𝑜𝑝𝑡𝑖 and
alculated the corresponding 𝐷𝐶 matrix. As an estimator for the statis-
ical threshold, we then used the 95th percentile of the 50 estimated 𝐷𝐶

alues. Finally, all values below the threshold were set to zero, imply-
ng no significant causal contribution from these specific target-to-driver
ombinations. 

. Results 

.1. Dataset 1 

In the following sections we present the grand average EEG signals
or the slightly delayed feedback (correct), the slight error and the severe
rror conditions (grand average per condition) of Dataset 1. To investi-
ate discrepancies between the perception of slightly delayed feedback
ersus erroneous feedback, we also evaluated pairwise differences be-
ween feedback conditions (grand average differences between condi-
ions). We outline these differences in conditions, ranging from delayed
eedback to severely erroneous conditions, both in sensor and source
pace. 

.1.1. Sensor space 

.1.1.1. Grand average per condition. As previously shown in
 Pulferer and Müller-Putz, 2022 ), the discrepancy between target
nd feedback clearly modulated the grand average scalp potentials
7 
ithin the erroneous conditions featured in Dataset 1 ( Fig. 3 ). While
e also report periodic behavior above occipital regions in the Delayed
eedback condition (top line topographical maps), both Slight and
evere Error conditions (middle and bottom line topographical maps)
isplayed consistent scalp topographies coupled to the phase of the Eu-
lidean error signal. Specifically, we observed a prominent phase-lock
f fronto-central negative deflections to minima in the Euclidean error
ignal, while fronto-central positive deflections coincided with maxima
n the Euclidean error signal. 

.1.1.2. Grand average differences between conditions. In line with previ-
us research on the processing of discrete error stimuli, we subsequently
nalyzed all pairwise differences that arose from the three feedback con-
itions Delayed Feedback, Slight Error, and Severe Error (cf. Fig. 1 A). 

Topographical maps displaying these three pairwise differences, i.e.,
light Error-Delayed Feedback, Severe Error-Delayed Feedback, and
evere-Slight Error, are shown in Fig. 4 A, from top to bottom. We re-
ort a strong fronto-central negativity around the first minimum of the
uclidean error signal at t = − 1s, followed by a central positivity coin-
iding with the maximum of the Euclidean error signal at t = 0s. This
hase-locked behavior of the difference signals persisted throughout the
poch length and arose again with centro-parietal negativities at t =
0.75, 2.25]s, as well as a weak but distinct centro-parietal positivity
round t = 1.5s. A paired permutation t -test on all session averages
 n = 30) between the condition pairs (3) in all time points (801), chan-
els (55) and frequency bands of interest (12) revealed significant dif-
erences between delayed feedback and both erroneous feedback con-
itions ( Fig. 4 A, top and middle line topographical maps; significant
ifferences marked as black ‘ + ’) throughout the whole epoch length in
he delta, low and broad frequency bands. We corrected for multiple
omparisons ( N = 3 × 55 × 801 × 12 tests) using the False Discovery
ate (FDR) ( Benjamini and Hochberg, 1995 ) at a significance level of
.05. In contrast, we observed minimal significant differences between
oth erroneous feedback conditions ( Fig. 4 A, bottom line topographical
aps), with the most prominent disparity around t = 0.75s. Results of

ig. 4 depict findings in the delta band only; the findings for the low
nd broad frequency bands are shown in Fig.S2A and Fig.S3A, respec-
ively (supplementary material). Additional information on mean and
otal number of epochs investigated for each feedback condition within
ataset 1 are listed in Table 3 . 

.1.2. Source space 

In addition to the time series analysis in sensor space, we projected
he average signals per condition of each participant to source space
s well. To gain a deeper understanding of the functionally involved
ortical areas, we downsampled the full cortical maps to the Desikan-
illiany atlas ( Fig. 2 ). For all conditions, time points, and frequency
ands of interest (see Table 2 ), the mean of all voxels in each of the
8 regions of interest was calculated. As in the sensor space analysis,
airwise differences between the signals of different conditions were
alculated. We employed a permutation paired t- test to compare the
onditions, utilizing FDR correction ( N = 3 × 68 × 801 × 12 tests)
t a significance level of 0.05. Statistical analysis revealed significant
ifferences between delayed feedback and both erroneous conditions of
ataset 1 in the delta, low and broad frequency bands. The results for
ll three comparisons in Dataset 1 in the delta frequency band are pre-
ented in Fig. 4 B (Slight Error-Delayed Feedback, Severe Error-Delayed
eedback, and Severe-Slight Error, left to right). The supplementary ma-
erial provides results pertaining to the low and broad frequency bands
Fig.S2–3B). The vertical black line at t = 0s corresponds to the local
aximum of the Euclidean error signal. Black outlined rectangles mark

ignificantly differing periods arising in each scout, whereas black out-
ined diamonds at the right edge of each plot mark scouts exhibiting
t least one such period of significance throughout the epoch for a bet-
er overview. For the comparison of delayed feedback versus erroneous
onditions (left and middle panels), we detected significant differences
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Fig. 3. Dataset 1. Topographical maps of the grand average electroencephalographic signals, time-locked at t = 0s to local maxima of the Euclidean error signal 
(time series, top) between target (snake) and feedback (feedback dot), for Delayed Feedback, Slight Error, and Severe Error conditions (topographical maps, top 
down). All depicted results correspond to findings in the delta band. 

Table 3 

Total number of epochs and mean number of epochs per participant with standard deviation (STD) for the three 
feedback conditions in Dataset 1. 

Dataset 1 Delayed feedback Slight error Severe error 

Total Nr. of Epochs 10,387 (avg.: 7.2 epochs/trial) 6818 (avg.: 6.3 epochs/trial) 5558 (avg.: 5.1 epochs/trial) 
Mean Nr. of Epochs (STD) 346 (30) 227 (28) 205 (77) 
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hroughout the epoch length in most scouts of the atlas. To capture the
rder of engagement of distinct cortical regions, we sorted the scouts
ased on the time of appearance of the first maximum in the amplitude
f each scout. This revealed a wave-like pattern propagating through the
tlas as single scouts engaged sequentially in response to the Euclidean
rror signal. Remarkably, the order of engagement of the single scouts
as approximately the same for both condition differences (see Fig. 5 ).
urthermore, significant differences in both comparisons largely coin-
ided, suggesting specific regions of interest as the main contributors to
rroneous feedback processing within the brain. In detail, we report sig-
ificant differences between the delayed feedback and both erroneous
onditions bilaterally in the parahippocampal and middle temporal gyri,
osterior cingulate cortex, insula, and the banks of the superior temporal
ulcus ( Fig. 4 B, ‘Slight Error-Delayed Feedback’, ‘Severe Error-Delayed
eedback’). Further, we observed significant differences in the contralat-
ral supramarginal and rostral middle frontal gyri, as well as the cau-
al anterior cingulate and entorhinal cortices. Ipsilaterally, both inferior
nd transverse temporal, as well as caudal middle frontal gyri must be
entioned, along with parietal areas spanning inferior parietal lobule

nd precuneus. In contrast to these findings, no outstanding differences
an be reported between both erroneous conditions (see Fig. 4 B, right
anel). 

In addition to the analysis regarding the regions of interest, we fur-
her analyzed the differences between conditions across the whole cor-
ex. The resulting grand average full cortical maps for all pairwise differ-
nces in Dataset 1 are shown in Fig. 4 C (Slight Error-Delayed Feedback,
evere Error-Delayed Feedback, and Severe-Slight Error, top down).
s employed in ( Tadel et al., 2019 ), we smoothened the source maps
trictly containing dipoles normal to the cortex to alleviate individual in-
uences on the grand average results. The smoothing was implemented
y ( Worsley et al., 2009 ) based on a Gaussian kernel scaled to the di-
ensions of the cortical mesh (full width half maximum = 10mm). Con-

istent with the findings in sensor space, modulations in the difference
etween delayed feedback and erroneous signals arose in the cortex as
ell. Differences between delayed feedback and erroneous conditions
n the contralateral frontal cortex, spanning the area from the precen-
ral gyrus to the caudal middle and superior frontal gyrus, appeared
hase-locked to the Euclidean error signal in a similar fashion as ob-
erved in sensor space. In addition, we report modulations in the bi-
F  

8 
ateral postcentral gyri and the parietal lobules throughout the whole
poch length. Regarding both erroneous conditions, amplitude differ-
nces appeared strongly attenuated, akin to the findings observed in
ensor space ( Fig. 4 C, bottom line cortical maps). 

.2. Dataset 2 

As for Dataset 1, we present the grand average EEG signals of Dataset
 for the slightly delayed feedback (correct), minimal, moderate and
evere error conditions in the following sections. To analyze differences
etween the perception of delayed feedback versus erroneous feedback,
e again evaluated the differences between pairs of conditions both in

ensor and in source space. 

.2.1. Sensor space 

.2.1.1. Grand average per condition. As with Dataset 1, we observed
ncreasing modulations in the grand average EEG signals with increasing
iscrepancy between target and feedback in sensor space ( Fig. 6 ). In
ontrast to the grand average signals in the Delayed Feedback condition
1st row topographical maps), we observed similar patterns in the scalp
otentials for the Minimal, Moderate and Severe Error conditions (2nd
o 4th row topographical maps, respectively). Similar to the findings in
ataset 1, a centro-parietal negativity arose shortly after minima in the
uclidean error signal, followed by a fronto-central positive deflection
oinciding with maxima in the Euclidean error signal. 

.2.1.2. Grand average differences between conditions. As for Dataset 1,
e subsequently analyzed all possible pairwise differences between the

onditions Delayed Feedback, Minimal Error, Moderate Error and Se-
ere Error (cf. Fig. 1 B), leading to six comparisons. Topographical maps
f three of the six pairwise differences (Severe-Minimal Error, Severe
rror-Delayed Feedback, and Minimal Error-Delayed Feedback) are pre-
ented in Fig. 7 A, from top to bottom. The remaining difference plots
an be found in Fig.S4 (supplementary material). 

Similar to the findings for Dataset 1, the difference patterns in
ataset 2 for Delayed Feedback/Minimal Error in comparison with the
evere Error condition ( Fig. 7 A, top and middle line topographical
aps) appeared in phase with the modulations of the Euclidean error

ignal between target and feedback, while differences between Delayed
eedback and Minimal Error ( Fig. 7 A, bottom line topographical maps)
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Fig. 4. Dataset 1. A (top) Grand average Euclidean error signal between target (snake) and feedback (feedback dot) for the three feedback conditions Delayed 
Feedback, Slight Error, and Severe Error. (bottom) Grand average difference patterns in the EEG signals, time-locked to local maxima of the Euclidean error signal 
( t = 0ms) for Slight Error-Delayed Feedback, Severe Error-Delayed Feedback, and Severe-Slight Error conditions (topographical maps, top down). Channels displaying 
significant differences are marked with a black ‘ + ’. B Grand average difference patterns in the cortical regions of interest (scouts) for Slight Error-Delayed Feedback, 
Severe Error-Delayed Feedback, and Severe-Slight Error conditions (left to right). Periods of significant difference are marked with black outlined rectangles, scouts 
exhibiting at least one period of significance are marked with a black outlined diamond to the right. C Grand average full cortical difference patterns for Slight 
Error-Delayed Feedback, Severe Error-Delayed Feedback, and Severe-Slight Error conditions (top down). All depicted results correspond to findings in the delta 
frequency band. 
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howed slight attenuation in comparison. Further, we report a centro-
arietal negativity coinciding with local minima of the Euclidean error
ignal for Dataset 2 (cf. Fig. 7 A, t = [ − 0.5, 1, 2.5]s), along with a fronto-
entral positivity around local maxima (cf. t = [0.25, 2]s), as observed
or Dataset 1. However, the difference patterns between Delayed Feed-
ack/Minimal Error and Severe Error conditions exhibited a delay of
round 0.25s compared to the results observed in Dataset 1. 

Regarding the grand average signals, a permutation paired t -test
as employed. However, with six pairwise comparisons, along with
 larger number of EEG channels (59), the number of tests demand-
9 
ng FDR correction at a significance level of 0.05 more than doubled
 N = 6 × 59 × 801 × 12 tests). Unlike the results observed in Dataset
, statistical testing revealed no significant difference in any of the six
airwise comparisons or 12 frequency bands of interest. Additional in-
ormation on mean and total number of epochs investigated for each
eedback condition within Dataset 2 are listed in Table 4 . 

As only the Delayed Feedback and Severe Error conditions were
hared in both datasets, a direct comparison was limited to the Severe
rror-Delayed Feedback difference signal. This comparison revealed co-
nciding difference patterns in the scalp potentials (see Fig. 4 A and
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Fig. 5. Dataset 1. Order of engagement (from first to last) of each scout in the A Slight Error-Delayed Feedback and B Severe Error-Delayed Feedback condition 
differences. 

Fig. 6. Dataset 2 . Topographical maps of the grand average electroencephalographic signals, time-locked at t = 0s to local maxima of the Euclidean error signal 
(time series, top) between target (snake) and feedback (assistive robotic arm), for Delayed Feedback, Minimal Error, Moderate Error and Severe Error conditions 
(topographical maps, top down). All depicted results correspond to findings in the delta band. 

Table 4 

Total number of epochs and mean number of epochs per participant with standard deviation (STD) for the four feedback conditions in Dataset 2. 

Dataset 2 Delayed Feedback Minimal Error Moderate Error Severe Error 

Total Nr. of Epochs 4093 (avg.: 6.8 epochs/trial) 1975 (avg.: 8.2 epochs/trial) 2333 (avg.: 9.7 epochs/trial) 2131 (avg.: 8.9 epochs/trial) 
Mean Nr. of Epochs (STD) 409 (74) 198 (49) 233 (58) 213 (46) 
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ig. 7 A, middle line topographical maps). Furthermore, the grand av-
rage feedback conditions showed similar scalp potentials in the Severe
rror condition for both datasets (see Figs. 3 and 6 ; bottom line topo-
raphical maps). 

.2.2. Source space 

As for Dataset 1, we projected the average signals per condition of
ach participant to source space as well for Dataset 2, and downsam-
led the full cortical maps to the Desikan-Killiany atlas ( Fig. 2 ). The
rand average results on the scouts in Dataset 2 for three of the six pair-
ise comparisons (Severe-Minimal Error, Severe Error-Delayed Feed-
ack, and Minimal Error-Delayed Feedback) are shown in Fig. 7 B; re-
aining difference plots can be found in Fig.S4 (supplementary mate-

ial). The vertical black line at t = 0s corresponds to the local maxi-
um of the Euclidean error signal. Contrary to the results on Dataset 1,

tatistical analysis ( N = 6 × 68 × 801 × 12 tests) revealed no signifi-
ant differences between any pairs of conditions in any frequency band
f interest. However, sorting the scouts according to the first appear-
nce of a local maximum in each scout again, we observed qualitatively
imilar difference patterns across the atlas as in Dataset 1 for the Se-
ere Error-Delayed Feedback difference ( Fig. 7 B, middle panel). In con-
rast to Dataset 1, the arising patterns were less prominent for all differ-
10 
nces in conditions, possibly due to the smaller number of participants.
onetheless, error-induced modulations of the single scout signals re-
ained visible, suggesting a common cognitive process that arises with

rror perception and processing in both investigated datasets. 
An analysis of the full cortical maps of the grand average differ-

nces in Dataset 2 revealed qualitatively similar, though overall more
rratic source patterns than observed for Dataset 1 ( Fig. 7 C). For lack
f space, we again only show the difference projections in formerly
entioned condition pairs; the remaining comparisons can be found

n Fig.S4 (supplementary material). Focusing on the difference between
he only shared pair of conditions in Dataset 1 and Dataset 2 (see Fig. 4 C
nd Fig. 7 C, middle line cortical maps), i.e., the Severe Error-Delayed
eedback difference, comparable patterns were observed. Interestingly
owever, the results in Dataset 2 appeared slightly less lateralized, with
he largest differences being centered around the sagittal midline in the
ilateral superior frontal and precentral gyri, as well as the parietal lob-
les. 

.3. Spinal cord injured participant 

Following the time series analyses on Datasets 1 and 2, we investi-
ated pre-recorded data of a participant with SCI to analyze common
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Fig. 7. Dataset 2 . A (top) Grand average Euclidean error signal between target (snake) and feedback (assistive robotic arm) for the four feedback conditions Delayed 
Feedback, Minimal Error, Moderate Error, and Severe Error. (bottom) Grand average difference patterns in EEG signals, time-locked to local maxima of the Euclidean 
error signal ( t = 0ms) for Severe-Minimal Error, Severe Error-Delayed Feedback and Minimal Error-Delayed Feedback feedback conditions (topographical maps, top 
down). B Grand average difference in the scout signals for Severe-Minimal Error, Severe Error-Delayed Feedback and Minimal Error-Delayed Feedback conditions (left 
to right). C Grand average full cortical difference maps for Severe-Minimal Error, Severe Error-Delayed Feedback, and Minimal Error-Delayed Feedback conditions 
(top down). All depicted results correspond to findings in the delta frequency band. 
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ognitive processes during error processing between participants expe-
iencing no versus a complete loss of motor output. Collective results in
he dataset recorded from the participant with SCI, both in sensor and in
ource space, are presented in Fig. 8 . An analysis of the pairwise differ-
nces in sensor space between the three delivered feedback conditions
 Fig. 8 A, topographical maps; Slight/Severe Error-Delayed Feedback,
evere-Slight Error, top down) revealed comparable difference patterns
o those observed within Datasets 1 and 2. Although here the findings
orresponded to a single participant, the difference patterns between de-
ayed feedback and erroneous conditions ( Fig. 8 A, top and middle line
opographical maps) exhibited matching characteristics with the ones
btained from the 30 sessions in the able-bodied participants compris-
ng Dataset 1. Again, we report fronto-central positivities at, and even
11 
hortly before, local error maxima, followed by centro-parietal negativi-
ies corresponding to local minima of the Euclidean error signal. Further
omparisons (see Fig.S5, supplementary material) revealed that the ob-
erved modulations appeared in both erroneous conditions as well in
he participant with SCI, while no modulation was seen in the delayed
eedback condition. However, the observed Severe-Slight Error differ-
nces in the SCI participant remained largely undamped ( Fig. 8 A, bot-
om line topographical maps), in contrast to the dissipating difference
ignals observed in Dataset 1. Additional information on the number of
pochs investigated for each feedback condition in the participant with
CI are listed in Table 5 . 

Regarding source space projection, the difference maps in the partic-
pant with SCI appeared more obscure both for the regions of interest de-
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Fig. 8. Participant with spinal cord injury. A (top) Grand average Euclidean error signal between target (snake) and feedback (feedback dot) for the three 
conditions Delayed Feedback, Slight Error, and Severe Error. (bottom) Grand average difference in electroencephalographic signals, time-locked to local maxima of 
the Euclidean error signal ( t = 0ms) for Slight Error-Delayed Feedback, Severe Error-Delayed Feedback, and Severe-Slight Error conditions (topographical maps, top 
down). B Grand average difference in the scout signals for Slight Error-Delayed Feedback, Severe Error-Delayed Feedback, and Severe-Slight Error conditions (left 
to right). C Grand average full cortical difference maps for Slight Error-Delayed Feedback, Severe Error-Delayed Feedback, and Severe-Slight Error conditions (top 
down). All depicted results correspond to findings in the delta frequency band. 

Table 5 

Total number of epochs for the three feedback conditions in the participant with SCI. 

Participant with SCI Delayed feedback Slight error Severe error 

Total Nr. of Epochs 290 (avg.: 6.0 epochs/trial) 138 (avg.: 5.8 epochs/trial) 156 (avg.: 6.5 epochs/trial) 
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ned in the Desikan-Killiany atlas ( Fig. 8 B), as well as for the full cortical
aps ( Fig. 8 C). The resulting difference signals on the regions of interest
aintained high amplitudes in all three comparisons ( Fig. 8 B), even in

he comparison between both erroneous conditions (right panel). How-
ver, the same modulation as seen already for Datasets 1 and 2 arose
n the difference signals of delayed feedback and both erroneous signals
12 
left and middle panel). Similar conclusions could be drawn regarding
he full cortical maps. Considering the differences between delayed feed-
ack and both erroneous conditions (‘Slight Error-Delayed Feedback’,

Severe Error-Delayed Feedback’; Fig. 8 C, top and middle line corti-
al maps), we observed central and centro-parietal positivities around
 = [ − 0.25, 1.25]s, roughly coinciding with the local maxima of the Eu-
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Fig. 9. Directed Coherence from the Euclidean error signal (driving time series) to the EEG channels (target time-series) in A Dataset 1 for Delayed Feedback, 
Slight, and Severe Error conditions (left to right), and B Dataset 2 for Delayed Feedback, Minimal, Moderate, and Severe Error conditions (left to right). For both 
datasets, increasing engagement of central and occipital areas from delayed feedback to severely erroneous feedback conditions can be observed. The depicted results 
correspond to findings in the delta band. Each map was normalized concerning its maximum DC value to ensure comparability between conditions and datasets. 
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lidean error signal. Additionally, we report slight parietal negativities
round t = [0.5, 2]s, approximately at or slightly before local minima
f the Euclidean error signal. However, compared with the grand aver-
ge signals of the 30 able-bodied participants comprising Dataset 1, the
verall difference patterns on the cortex naturally appeared less distinct
nd erratic. 

.4. Directional connectivity analysis 

Investigating a range of different model orders ( 𝑝 ∈ [ 1 , 50 ] ), the op-
imum model order for Dataset 1 was found to be 𝑝 𝑜𝑝𝑡𝑖 = 27 , and the op-
imum order for Dataset 2 was identified as 𝑝 𝑜𝑝𝑡𝑖 = 14 . For both datasets,
 time window of [ − 2,2]s within each local Euclidean error signal max-
mum was selected. This symmetric time window was chosen to mini-
ize averaging effects which dilute the signals in time points of larger

emporal distance to the time-locked first maximum ( t = 0ms) . 1 

We only considered DC values from the Euclidean error signal to
ll investigated EEG channels in the delta band. The estimated DC for
atasets 1 and 2 is presented in the form of topographical maps in
ig. 9 A and 9 B, respectively. The findings revealed increasing informa-
ion outflow from the error signal towards contralateral central as well
s bilateral occipital areas with increasing erroneous feedback for both
atasets. Specifically, these areas spanned regions above the contralat-
ral primary motor, as well as the visual cortices, which increasingly en-
aged with progressively erroneous feedback. Noticeably, however, the
C patterns in the Delayed Feedback condition differed considerably be-

ween datasets. During the attempted movement employed in Dataset 1,
here feedback was exclusively delivered on-screen, we observed high

nformation outflow bilaterally towards the scalp regions above the in-
erior frontal and caudal middle frontal gyri. Similarly, high DC values
ere shown ipsilaterally for areas covering the superior and inferior
arietal lobules. In contrast, limited information outflow arose in men-
ioned areas for Dataset 2, with high contributions in the contralateral
arietal regions overlapping the cortical areas containing both cuneus
nd precuneus. 
1 In prior analyses, the asymmetric window of [ − 1,3]s was chosen to inves- 
igate both the characteristics immediately prior to, and the periodicity arising 
ith additional local extrema after each local Euclidean error signal maximum 

t = 0ms). 
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. Discussion 

Within our analysis of two prerecorded datasets investigating contin-
ous target tracking combined with increasingly erroneous feedback, we
resent three major results. 

First, a neural correlate to continuous error processing not only ex-
sts but can furthermore be distinguished without previously defined
rror onsets. We succeeded in meaningfully time-locking the EEG sig-
als to local maxima of the Euclidean error signal between target and
eedback, revealing strong error-driven modulations in delta brain ac-
ivity within all erroneous conditions. Connectivity analysis revealed an
merging centro-occipital network of error processing with increasingly
rroneous feedback, suggesting an increase in both visual perception
f the mismatch, and the focus on corrective motor output, ascribed to
isual and motor cortices, respectively. 

Second, the periodic target-feedback mismatch promotes a consis-
ent cortical response. Source space analysis revealed a consistent order
f engagement of different cerebral regions during continuous error pro-
essing across different severity levels of the perceived error. And third,
 connection between the ERN/Pe and different cognitive components of
rror processing might tentatively be suggested. The continuous charac-
eristics of the target-feedback mismatch employed in this study allowed
o match source signals with the driving error signal at any point in time
ithin the regarded epoch, relating cortical regions with specific time

rames in error processing, which has, to our knowledge, not been in-
estigated in this form before. 

.1. A correlate to continuous error processing 

An in-depth analysis of two different datasets, comprising overall 40
essions of data in 20 able-bodied participants, revealed strong modula-
ions in both scalp potentials and estimated dipole sources with the Eu-
lidean error signal between target and feedback. We report a periodic
ccurrence of centro-parietal negativities in the difference signals be-
ween delayed feedback and erroneous conditions coinciding with local
inima in the Euclidean error signal, followed by fronto-central positiv-

ties around local maxima. Analyzing the grand average feedback con-
itions, these differences trace back to the erroneous conditions ( Figs. 3
nd 6 ). Furthermore, statistical analysis revealed a significant discrep-
ncy between delayed feedback and erroneous conditions in the delta,



H.S. Pulferer, K. Kostoglou and G.R. Müller-Putz NeuroImage 274 (2023) 120144 

l  

t  

K  

P  

n  

s  

f  

t  

b  

e  

o  

m  

d  

t  

t  

a  

r  

q  

(
 

t  

t  

W  

a  

s  

e  

t  

S  

I  

d  

f  

s  

s  

w  

w  

r  

l  

C  

s  

c  

2  

i  

u  

s  

s  

i  

i  

b  

b  

a  

a  

E  

a  

(  

g  

t
 

2  

(  

p  

e  

n  

a  

E  

t  

D  

k  

p  

s  

i  

t  

w  

v  

c  

t  

t  

t  

g  

w  

H  

v  

a  

t
 

a  

t  

p  

q  

t  

a  

s  

t  

(  

c
 

s  

c  

a  

o  

h  

a  

b  

t  

a  

t  

l  

H  

i  

i  

p  

b
 

d  

n  

w  

c  

s  

L  

c  

g  

p  

(  

s  

(
 

t  

c

4

 

n  
ow and broad frequency band for the larger dataset (Dataset 1), both in
he EEG sensor space and in the brain regions comprising the Desikan-
illiany atlas. As discussed in the original work ( Mondini et al., 2020 ;
ulferer et al., 2022 ), the snake kinematics were sampled from pink
oise, bandpass filtered between 0.2 and 0.4 Hz. We hypothesize that the
pecific importance of the delta band in the current work was inherited
rom the low-frequency movement of the depicted target. In contrast to
he observed differences between slightly delayed and erroneous feed-
ack conditions, marginally significant differences arose between both
rroneous conditions. Taken together, these findings suggest that the
bserved modulations indeed reflect a cognitive response to the mis-
atch between target and feedback. Regarding Dataset 2, no significant
ifferences arose. This lack of significance might tentatively be linked
o the smaller number of only 10 sessions in Dataset 2 in comparison to
he 30 sessions recorded within Dataset 1. However, we did not conduct
 power analysis to gage the necessary number of sessions for the cur-
ent work, as both datasets initially aimed to answer different research
uestions and literature advises against post-hoc analyses of this kind
 Goodman and Berlin, 1994 ; Althouse, 2021 ). 

Interestingly, we observed remarkable similarities between the es-
ablished physiology of both ERN and Pe, and the centro-parietal nega-
ivity and consecutive fronto-central positivity measured in our data.

e report clear and consistent cortical modulations resembling ERN
nd Pe during the exposure to a continuous error signal of varying
everity despite the continuous exposure to an erroneous signal. How-
ver, additional analysis of Dataset 1 indeed showed declining ampli-
udes in the difference signals from session 1 to session 3 (see Fig.
6–8, supplementary material), which may be explained several fold.
n line with the conflict-monitoring theory, decreasing interest or even
ecreasing perceived importance of the mismatch between target and
eedback might have caused reduced perception of conflict during later
essions ( Yeung et al., 2004 ). Indeed, each session depicted the exact
ame conditions of increasingly erroneous feedback, which arguably
ould lead to a loss of engagement and perceived urgency when faced
ith yet another deviation from the intended target state. Alternatively,

educed amplitudes with increasing session number might suggest a
earning effect according to reinforcement-learning theory ( Holroyd and
oles, 2002 ). In particular, the diminishing especially of the ERN-like
calp potentials coinciding with minima in the Euclidean error signal
ould be evidence of the proposed - yet unproven ( Nieuwenhuis et al.,
002 ) - reduction of a feedback ERN with the acquisition of an internal
nput-output mapping. In particular, for the chosen objective of contin-
ous movement decoding from the ongoing EEG the participants neces-
arily relied on a feedback dot portraying the current EEG-decoded po-
itions on screen. As such, the feedback remained necessary for inform-
ng the participants of the current performance throughout the sessions,
mplying that the ERN-like potential corresponded strictly to a feed-
ack ERN, which would strengthen the assumptions on learning raised
y Holroyd and Coles ( Holroyd and Coles, 2002 ). However, the same
rgument suggests that there was no skill set to acquire to begin with
ccording to the proposed connection between feedback and response
RN. The consistent correlations between target and decoded positions
cross sessions reported in the original work substantiate this objection
 Pulferer et al., 2022 ). Among all of the mentioned considerations re-
arding decreasing amplitudes across sessions, the conflict-monitoring
heory appears to provide more powerful evidence. 

Most interestingly, we observed coinciding results for Datasets 1 and
. As stated, the movement decoding approach employed in Dataset 2
Partial Least Squares Regression + Kalman Filter) introduced an am-
litude mismatch between actual and decoded kinematics. We hypoth-
size that the reduced amplitudes of the decoded signals (feedback) fi-
ally lead to quantitatively decreasing Euclidean error between target
nd feedback, an effect which progressively surfaced as the amount of
EG-decoded positional information increased over the feedback condi-
ions (0%, 50% and 100% for Dataset 1; 0%, 33%, 66% and 100% for
ataset 2). As discussed in the initial study ( Mondini et al., 2020 ), the
14 
inesthetic perception of increasingly erroneous feedback in Dataset 2
ersisted nonetheless, as participants reported the need to increase their
elf-motion over the conditions to achieve comparable amplitudes. Thus,
ncreasing error perception took place in the form of kinesthetic rather
han visual feedback in Dataset 2. Nonetheless, the results coincided
ith findings in Dataset 1, where error perception occurred strictly via
isual feedback. In addition, apart from the delay observed in Dataset 2
ompared to Dataset 1, which likely represented the inertia of the assis-
ive robotic arm employed ( Fig. 1 B), we observed similar difference pat-
erns in both attempted and executed movement tasks. Taken together,
hese findings promote the robustness of this continuous correlate re-
arding the type of stimulus and error modality, which is in agreement
ith the results presented by Milter and colleagues ( Miltner et al., 1997 ;
olroyd and Coles, 2002 ) on discrete error stimuli. Overall, these obser-
ations further suggest a direct connection between the observed ERN-
nd Pe-like scalp potentials and the actual ERN and Pe reported in con-
ext of discrete error stimuli. 

Apart from these findings, the order of appearance of the ERN-like
nd Pe-like potentials might raise additional questions. Considering the
ime-locked behavior of the signals, the observed potentials seem to ap-
ear in a reversed order – Pe before ERN – compared to the known se-
uence reported in literature. However, due to the sinusoidal nature of
he driving erroneous feedback signal, it appears problematic to mark
 clear starting point to the process. Considering this, we argue that,
tarting from the initial deviation from the target, i.e., the minima in
he erroneous feedback signal, the sequence of the reported potentials
ERN before Pe) actually aligns with previous research concerning dis-
rete error stimuli. 

Investigating the influence of the continuous error on the brain
ignals, connectivity analysis revealed engagement of one consistent
entro-occipital network with an increasing mismatch between feedback
nd target ( Fig. 9 A-B, ‘Severe Error’). We observed stronger engagement
f the contralateral central regions for Dataset 2, likely explained by
igher-level motor activity during executed movement compared to the
ttempted movement task. Notably, however, clear differences could
e detected between both datasets during the delayed feedback condi-
ion, both in the connectivity results ( Fig. 9 A-B, ‘Delayed Feedback’)
nd the EEG signals ( Figs. 3 and 6 , top line topographical maps, respec-
ively), especially in the bilateral inferior frontal gyri. Previous reports
inked these regions to inhibitory motor control ( Swick et al., 2008 ;
ampshire et al., 2010 ), which matches the requirement of attempt-

ng, but not executing, movement as employed in Dataset 1. These find-
ngs suggest that inhibition of motor responses progressively loses im-
ortance when the participants are faced with an increasing mismatch
etween target and feedback. 

Regarding the participant with SCI, we could not detect significant
ifferences between conditions. However, the observed difference sig-
als arose not only for able-bodied participants but for the participant
ith SCI as well. This appeared in line with previous works on the pro-

essing of discrete error stimuli, which reported the feasibility of mea-
uring the ERN and Pe from participants with SCI ( Keyl et al., 2018 ;
opes-Dias et al., 2021 ) and suggests that the reported correlate for
ontinuous error processing can play a role in BCI applications tar-
eting actual end users. Although the results showed slightly erratic
atterns in source space, as expected from single-participant results
 Fig. 8 B-C), the scalp potentials in the participant with SCI exhibited
imilar characteristics to those obtained from able-bodied participants
 Figs. 4 and 7 ). 

Altogether, our results promote that a neural correlate much akin
o the ERN and Pe reported for discrete error stimuli emerges within
ontinuous error processing. 

.2. Periodic feedback-target mismatch promotes periodic cortical response 

Our results reveal strong EEG modulations by the Euclidean error sig-
al between target and feedback. We observed significant differences
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etween delayed feedback and erroneous conditions in most scouts
 Desikan et al., 2006 ), paired with minimal difference between both
rroneous conditions, for Dataset 1 ( Fig. 4 B). This phase-locked behav-
or, though not significant (possibly due to the lower number of partici-
ants), emerged in Dataset 2 and the participant with SCI as well ( Fig. 7 B
nd Fig. 8 B). Further analysis of the scouts exhibiting numerous periods
f significant difference revealed bilateral engagement of the parahip-
ocampal cortex (PHC) and middle temporal gyrus (MTG), posterior cin-
ulate cortex (PCC), insula (IN), and the banks of the superior temporal
ulcus (BanksSTS). Statistical testing revealed significance contralater-
lly in the supramarginal (SMG) and rostral middle frontal gyri (RMF),
audal anterior cingulate (cACC) and entorhinal (EC) cortices, and ip-
ilaterally in inferior (IT) and transverse (TT) temporal, caudal middle
rontal (CMF) gyri, inferior parietal lobule (IPL) and precuneus (PCun).
omparing these regions and their respective time points of maximum
mplitude with the corresponding Euclidean error signal, interesting in-
ights emerge. 

Remarkably, as the Euclidean error signal starts to increase (around
 = − 750 ms), we first observe maximum amplitude in the SMG
nd PHC, regions previously linked to rapid action reprogramming
 Hartwigsen et al., 2012 ) and scene perception ( Epstein and Kan-
isher, 1998 ), both of which undoubtedly come in demand as tar-
et and feedback begin to deviate. In addition, the EC and medial
emporal regions engage, which previously demonstrated a connection
o motor learning and error detection in both humans and macaques
 Hargreaves et al., 2012 ; Ku et al., 2021 ). Shortly afterwards, the
anksSTS, MTG and RMF activate, regions previously linked to the
bservation of reaching-to-grasp movement performed by an external
gent ( Kilintari et al., 2014 ), as well as during the observation of er-
ors of commission in human participants ( Laurens et al., 2003 ). Sub-
equently, cingulate regions (cACC, PCC) engage shortly prior to and
oinciding with the maxima in the Euclidean error signal, areas which
emonstrated importance during error and response detection in hu-
ans ( Ursu et al., 2009 ) and in translating decision outcomes into
igher-level strategies in macaque studies ( Pearson et al., 2009 ), respec-
ively. At a decreasing Euclidean error signal, we observe maximum am-
litude in PCun, an area previously linked to shifting attention between
ifferent visual inputs as well ( Wenderoth et al., 2005 ). In a final stage,
N and medial frontal regions engage. These areas are linked to error
wareness ( Klein et al., 2007 ; Hester et al., 2009 ) and response inhibi-
ion ( Li et al., 2006 ) and presumably activate as the effort of correcting
he erroneous response diminishes with decreasing deviation from the
arget. Interestingly, this sequence of engagement remained consistent
ver both erroneous conditions in Dataset 1 ( Fig. 5 ) and reappeared
ith recurring Euclidean error signal modulations. Overall, these find-

ngs promote the periodicity of cognitive processes in the presence of
eriodic feedback-target mismatch, and - to our knowledge, for the first
ime - allow the identification of active brain regions at distinct stages
f error processing. 

.3. The ERN, the Pe, performance monitoring, and corrective behavior 

If we divide error processing into subcomponents of performance
onitoring, error perception, error evaluation, and corrective behavior,
e identify contributions of distinct cortical regions discussed before.
he PHC, tasked with scene perception ( Epstein and Kanwisher, 1998 ),
s well as the BanksSTS and MTG connected to observation of reach-
nd-grasp movement ( Kilintari et al., 2014 ) and action recognition and
nderstanding ( Herrington et al., 2011 ), offer all prerequisites for per-
ormance monitoring. In particular, the superior temporal sulcus report-
dly engages during visual target stimulus processing ( Pail et al., 2016 ),
uggesting considerable importance within the employed paradigms. In
 similar fashion, the RMF, MTG, and IN, related to the observation of er-
or commission and error awareness, might pose as candidates for error
erception ( Laurens et al., 2003 ; Hester et al., 2009 ), while EC and cACC
nd could relate to error evaluation/detection, as suggested previously
15 
 Ursu et al., 2009 ; Hargreaves et al., 2012 ). Specifically, the rostral cin-
ulate motor area neighboring primary and supplementary motor areas
 Jumah and Dossani, 2022 ) reportedly engages during the self-detected
rrors as well as negative feedback ( Ullsperger and von Cramon, 2003 ),
upporting the suggested processing sequence. 

While these regions fit well into the suggested categorization of error
rocessing into subprocesses, the sequence of engagement in relation to
he Euclidean error signal nonetheless raises some questions. For exam-
le, RMF, MTG and IN, all areas that best fit error perception or aware-
ess, engage at vastly different periods around the first local maximum
f the Euclidean error signal. While RMF and MTG seem to portray the
erception of an increasing deviation between target and feedback, the
N engages last in the discussed sequence, coinciding with the perception
f increasingly congruent target and feedback information. This obser-
ation suggests that the mentioned regions cater to different intricacies
f error monitoring. Relating these observations to the reported scalp
otentials, another incongruence to our categorization arises. From our
bservations, the ERN-like complex occurred simultaneously with the
ortical activation of regions involved in error perception and evaluation
nd arose shortly after minima in the Euclidean error signal. However,
ccording to conflict-monitoring theory, one might expect the observed
RN-like potential rather at or shortly after maxima of the Euclidean
rror signal, where the conflict between target and feedback arguably
eaks ( Yeung et al., 2004 ). Instead, the alternating engagement of the
egions mentioned before relating to action monitoring, error perception
nd evaluation rather promotes that our suggested sequence of subpro-
esses executes at a much faster pace than initially proposed and might
ndicate that learning, as proposed by the reinforcement-learning the-
ry, is attempted ( Holroyd and Coles, 2002 ). 

Finally, within the regarded paradigms, we hypothesize that the cog-
itive activity related to the correction of erroneous feedback should
each a maximum as the deviation from the intended position peaks. In-
eed, the PCC reportedly connects observed outcomes of prior decisions
ith higher-level strategies ( Pearson et al., 2009 ) and interestingly coin-

ides with the occurrence of the Pe-like scalp potential at the maximum
f the Euclidean error signal, which tentatively hints at involvement in
orrection efforts. However, the lack of usually consulted measures for
orrection - force or velocity of a collected response signal to the erro-
eous event, for instance ( Carbonnell and Falkenstein, 2006 ; Burle et al.,
008 ) - did not allow for a clear statement on behavioral adjustments
ithin this study. As the performance largely depended on the detection

apacity of our movement decoders, measures of latency or progress
uch as the much-employed post-error slowing ( Chang et al., 2014 ) or
ost-error improvements in accuracy ( Carp and Compton, 2009 ) could
ot be used. Furthermore, it remains unclear whether the conjunction
f the Pe and maxima in the perceived error between target and feed-
ack portrays a causal relationship between the two, or whether the Pe
ust arises time-locked to the same event provoking the ERN-like compo-
ent and the time delay coincidentally matches up with local maxima.
atencies of up to 500 ms after an error occurrence have long since
een established ( Falkenstein et al. ), however, our results reveal a tem-
oral distance between supposed ERN and Pe of about 750 ms for able-
odied in both datasets (see Figs. 4 A and 7 A) and the participant with
CI ( Fig. 8 A). According to this, our findings suggest that the positiv-
ty we observed corresponds to behavioral adjustments, rather than a
eaction to the error (initial deviation from the target) itself. The Pe
as recently reported as a stand-alone correlate to error awareness that

an even appear without the prior occurrence of an ERN ( Di Gregorio
t al., 2018 ), supporting the hypothesis that these components of error
rocessing are indeed distinct. However, other research identified the
e as a correlate to accumulating information about erroneous events
 Steinhauser and Yeung, 2010 ) and confidence in previously made de-
isions ( Boldt and Yeung, 2015 ; Desender et al., 2019 ), rather than a
orrelate to corrective behavior itself as our timeline might suggest. In
otal, further investigations will need to clarify whether single contri-
utions can be identified in the whole error processing mechanism, or
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hether this process constitutes a superposition of various feedback net-
orks. 

. Limitations of our approach 

As this work relied on previously recorded data, several issues in
eed of correction must be mentioned for further studies. First, the
racking tasks we designed leave limited options for disentangling the
ifferent components of error processing. All at once, cognitive func-
ions for error monitoring, perception, evaluation, and correction are
n demand, which makes a clear evaluation of functional connectivity
rduous at best. Previous literature forms the framework for analysis
n this case. However, a more specific paradigm design will be needed
or future work. Second, the sinusoidal behavior of the target, initially
esigned to prevent correlation between both Cartesian axes, further
bscured the origin of periodicity in the data and required extensive
dditional analysis to disprove a direct relation between the observed
atterns and the target’s kinematics (see Fig.S9 and Fig.S10, supplemen-
ary material). Dependencies of this kind need to be studied in detail in
urther studies. And lastly, of course, source space decomposition must
e analyzed with caution. While our source space results - especially
he regions of interest - are in line with previous works, the spatial res-
lution of the inverse solution remains an issue, and bold interpretation
ust be avoided. High-density EEG setups and individual MRI scans al-

eviate this problem and could further contribute to sound analysis of
rror processing in the human brain. 

. Conclusions 

Most interestingly, we conclude that utilizing a periodically varying
rror signal instead of established discrete error stimuli (to our knowl-
dge, for the first time) elicits a continuous cognitive response phase-
ocked to the error signal. This continuous neural correlate exhibited
EG patterns akin to error-related negativity and consecutive error pos-
tivity reported within discrete-stimulus tasks and arose exclusively in
rroneous feedback conditions. It further proved to be robust to differ-
nt stimulus types, appearing consistent for both visual and kinesthetic
eedback and emerged as independent of the error modality, arising both
or error processing during attempted and executed movement. Further-
ore, we observed consistent patterns both in the able-bodied and the

pinal cord injured participant (AIS A), which, considering the high-
evel lesion (NLI C2), affirms our findings even for the extreme case of
trictly efferent signals. And finally, we were able to tentatively link the
eriodic behavior of the error-induced modulations in a network of cor-
ical regions to action monitoring, error perception, error evaluation,
nd corrective behavior, suggesting that identifying single components
f the whole error processing mechanism is feasible. 
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