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Background: Surgical interventions can cause severe fluid imbalances in patients
undergoing cardiac surgery, affecting length of hospital stay and survival.
Therefore, appropriate management of daily fluid goals is a key element of
postoperative intensive care in these patients. Because fluid balance is
influenced by a complex interplay of patient-, surgery- and intensive care unit
(ICU)-specific factors, fluid prediction is difficult and often inaccurate.

Methods: A novel system theory based digital model for cumulative fluid balance
(CFB) prediction is presented using recorded patient fluid data as the sole
parameter source by applying the concept of a transfer function. Using a
retrospective dataset of n = 618 cardiac intensive care patients, patient-
individual models were created and evaluated. RMSE analyses and error
calculations were performed for reasonable combinations of model estimation
periods and clinically relevant prediction horizons for CFB.

Results: Our models have shown that a clinically relevant time horizon for CFB
prediction with the combination of 48 h estimation time and 8–16 h prediction
time achieves high accuracy. With an 8-h prediction time, nearly 50% of CFB
predictions arewithin ±0.5 L, and 77% are still within the clinically acceptable range
of ±1.0 L.

Conclusion: Our study has provided a promising proof of principle and may form
the basis for further efforts in the development of computational models for fluid
prediction that do not require large datasets for training and validation, as is the
case with machine learning or AI-based models. The adaptive transfer function
approach allows estimation of CFB course on a dynamically changing patient fluid
balance system by simulating the response to the current fluid management
regime, providing a useful digital tool for clinicians in daily intensive care.
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1 Introduction

Fluid management is a challenging part of intensive care unit (ICU)
treatment. In this regard, monitoring of vital signals and periodic
assessment of fluid status are crucial. In daily clinical practice, the
amount of body fluids gained or lost is usually estimated by calculating
the external daily fluid balance (Shepherd, 2011). This relates the
amount of fluid administered during the day to the fluid losses
observed during the same period. For long-term monitoring of fluid
status, calculation and visualization of vital signs in combination with
the cumulative fluid balance (CFB) can be beneficial. The CFB is
calculated as cumulative fluid intake (CFI) minus cumulative losses
(CFL) over ICU stay.

Possible CFB courses during a patient’s stay in the ICU have
been described previously for critically ill, hyperhydrated patients
(Hoste et al., 2014; Malbrain et al., 2014; 2018; Ogbu et al., 2015) and
can be divided into four successive phases, as shown in Figure 1. In
the first two phases, fluid accumulation occurs primarily, as
demonstrated by a steadily increasing CFB due to administration
of high volumes of resuscitation fluids and low fluid losses. Once
hemodynamic stabilization is achieved, the patient’s fluid status may
recover spontaneously in the subsequent phases and the excess
volume can be evacuated. Otherwise, active fluid management
strategies may be considered (Goldstein et al., 2014; Rosner et al.,
2014; Claure-Del Granado and Mehta, 2016; Monnet et al., 2016) to
restore euvolemia, as, for example, a high fluid overload is associated
with severe side effects (Malbrain et al., 2018; Ouchi et al., 2020) and
an increased risk of death (Rosenberg et al., 2009; Lee et al., 2015;
Messmer et al., 2020). Especially after cardiac surgery, liberal fluid
therapy has been shown to lead to higher in-hospital mortality and
cardiovascular complications (Palomba et al., 2022).

Based on the calculations for the daily fluid balance, individual goals
are usually set for the patient to achieve optimal fluid management
during the continued stay in the ICU. However, these goals may change
due to alterations in the patient’s health status and the resulting
adjustments to ongoing therapy. Therefore, setting adequate and
achievable fluid balance goals requires profound and experienced
knowledge. In addition to an intake-output-calculation, both
currently applied therapies and planned interventions must be
considered to estimate a specific fluid balance goal. Therefore,
assessing and predicting the fluid balance can be challenging.

Recent approaches to predict various physiological parameters
using artificial intelligence (Johnson et al., 2018; Gutierrez, 2020), deep
or machine learning have been developed and applied in various
clinical settings (Celi et al., 2008; Komorowski et al., 2018; Li et al.,
2018; Parreco et al., 2018; Rojas et al., 2018; Giannini et al., 2019;
Shillan et al., 2019). However, model building using these methods
requires previously acquired training data collected in large study
populations. In this work, we develop and evaluate a system and
control theory based model to support fluid management in
postsurgical patients without requiring a prior data set for model
training. In addition to modeling the hemodynamic response (Chen
et al., 2004; Bighamian et al., 2018), the use of control techniques,
particularly closed-loop approaches, have been described previously,
e.g., in intraoperative situations (Dumont, 2012;Miller andGan, 2013;
Rinehart et al., 2014; Joosten et al., 2015; 2016; 2019; Restoux et al.,
2016) and ventilation (Sanchez-Morillo et al., 2017; Kwong et al.,
2019; Radhakrishnan et al., 2019), maintaining organ perfusion in

brain death (Soltesz et al., 2018), fluid resuscitation (Kramer et al.,
2008; Bighamian et al., 2016; Hundeshagen et al., 2017), sepsis
(Merouani et al., 2008; Uemura et al., 2017), ICU sedation control
(Haddad and Bailey, 2009; Gholami et al., 2012; Padula et al., 2017), in
the management of diabetes (Hovorka, 2011; Haidar, 2016; Thabit
et al., 2017; Kovatchev, 2018), in antibiotics administration (Herrero
et al., 2018), in detecting the onset of seizure (Kamali et al., 2020) and
in gait analysis (Nacpil et al., 2021).

In this work, we present a first-of-its-kind digital model for
predicting the patient-specific CFB trend over clinically relevant
therapeutic timespans based on single patient CFI and CFB time
series data. The algorithm should not only serve to improve the
adjustment or optimization of therapies after cardiac surgery, but
also to reduce the workload in intensive care units, as estimating the
current CFB course is very time-consuming. The control theory
model is intended to provide a basis for a more generally applicable
algorithm.

2 Materials and methods

2.1 Study population and sample selection

A retrospective data set with a total of n = 2061 adult patients
collected between 2011 and 2017 was used for sample selection. All
patients underwent elective cardiac surgery for coronary artery
bypass grafting and/or surgical valve replacement with
subsequent admission to the cardio-thoracic intensive care unit
at the Medical University of Graz, Austria. The study was
approved by the Ethics Committee of Medical University of Graz
in accordance with the Declaration of Helsinki (vote EK 30-
076 ex17/18).

FIGURE 1
Possible trajectories of cumulative fluid balance (CFB) in
postsurgical patients admitted to the intensive care unit (ICU) during
the four consecutive phases of fluid therapy (Hoste et al., 2014;
Malbrain et al., 2014; 2018; Ogbu et al., 2015). Rescue (R),
optimization (O), stabilization (S), evacuation (E).
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n = 926 patients were excluded because length of stay was less
than 4 days and hemodynamic stabilization after surgery takes
approximately 3 days (Hill and Hill, 1998; Desborough, 2000).
n = 414 p atients with ICU length of stay greater than 7 days
were also excluded, as they tended to have higher mortality and risk
for readmission (Carden et al., 2008). This criterion had to be taken
into account to increase the homogeneity to validate the algorithm
in patients whose fluid trajectory corresponds to the previously

described four phase model of fluid therapy. The re-accumulation of
fluids after an evacuation phase caused by instabilities and the need
for re-evacuation was not considered in this study. After a final
quality check of the data (availability of fluid data for the entire stay,
inconsistent data entries such as negative fluid intake), patient
selection resulted in a subset of n = 618 patients as can be seen
in Figure 2. Patient-related data and medication extracted from the
electronic health record system are summarized in Table 1.

2.2 A system theory based digital model for
predicting fluid balance

A fundamental concept within system theory is the application
of a transfer function (TF), which is often used to describe the
behavior of a physical or biological system. The TF allows the
analysis of the dynamic properties of a system that models the
systems output for each possible input function.

In the discrete-time domain, the TF can be determined using a
discrete-time input time series U[k] and the corresponding output
time series Y[k]. The Z-transforms of both signals (U[z] and Y[z])
are related to give the TF of the patient, P[z]. Following the control
system theory, the transfer function should be chosen to correspond
to the lowest-order differential equation to describe the behavior of a
system. Basically, from a physiological point of view, oscillation and
instability of the response to a fluid input is possible, resulting in the
model to be at least a second order system. However, higher order
systems led to a worse prediction in general. Possible reasons could

FIGURE 2
Overview of exclusion criteria for obtaining the final study cohort. Length of stay (LOS).

TABLE 1 Patient characteristics of the study population. Coronary artery
bypass grafting (CABG), surgical valve replacement (SVR), length of stay (LOS),
liters (L), cumulative fluid balance (CFB), Simplified Acute Physiology 3 Score
(Moreno et al., 2005) (SAPS3), standard deviation (SD).

Study population n = 618

Age (y)* 69 ± 10

Weight (kg)* 79 ± 19

Female 189 (30%)

LOS (d)* 5.00 ± 1

Type of operation

CABG 40.6%

SVR with CABG 18,6%

SVR 40.8%

CFB at end of stay (L)* 1.67 ± 2.81

SAPS3 38.49 ± 7.97

* mean ± SD.

Frontiers in Physiology frontiersin.org03

Polz et al. 10.3389/fphys.2023.1101966

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1101966


be overfitting or the low variability of the input data, whichmakes an
identification of a system depending on multiple parameters more
difficult. Since it is not possible to increase the variability of the input
data artificially, the transfer function with the empirically
determined best result in prediction was selected. The model can
basically be compared to a physical two tank water level system. The
exponent n (see Eq. 1) that determines the order of the TF was set to
n = 2. The general mathematical model of the system within the
Z-domain is given by Eq. 1. The output of the patient model can
never depend on a future input, so the conditionm ≤ nmust hold for
a causal system.

P z[ ] � Y z[ ]
U z[ ] �

∑
m
k�0bkz

k

∑
n
k�0akzk

(1)

The basic idea of CFB prediction using a system theory based
modeling approach is shown in Figure 3. The process can be divided
into two major steps: (i) estimation of a linear model of the patient’s
response to fluid intake using a TF in the Z-domain based on the
discrete-time CFI as the system input function and the discrete-time
CFB as the output function of the system, and (ii) prediction of the
future CFB trajectory based on the patient’s individual TF model
and constant fluid intake. This so-called “black box” problem
reduces the patient’s CFB response to fluid intake to a simple
relationship between CFI and CFB expressed by the TF, which is
used as a mathematical model to estimate the future CFB course
under the clinical assumption that a patient’s treatment remains
unchanged during the prediction period.

2.3 Application of the model

For model implementation and prediction MATLAB (version
9.9 - R2020b Update 1 on Windows 10) and the system
identification library (version 9.13) were used. The “iddata”

function defines the transposed CFI and CFB as a system object.
The number of poles of the TF model P[z] was set to 2, the number
of zeros to 1, the sampling time was set to 60 s. By entering the
“iddata” object and selected parameters into the “tfest” function, a
TF object is created by non-linear least-squares search based updates
tominimize a weighted prediction error norm. As the CFB is directly
calculated from the CFI and CFL there is no delay from input to
output assumed and therefore feedthrough must be activated by
setting the “Feedthrough” parameter of “tfest” true. This object,
along with the modeled and extrapolated input function, was used to
simulate and predict the CFB trajectories. The resulting estimated
TF with the previously described defaults can be seen in following
Eq. 2. Due to the activated feedthrough, the numerator is extended
by the zero leading coefficient b0.

P z[ ] � b0 + b1z−1

1 + a1z−1 + a2z−2
(2)

2.3.1 Preprocessing of raw fluid data
Fluid data was imported from an SQL data base and included

intakes (colloid fluids, crystalloid fluids, medication fluids, oral
intakes, parenteral nutrition, blood products) and losses (urine,
drainage, renal replacement therapy, vomiting, blood samples,
stool, miscellaneous) with their corresponding time points. The
cumulative time series data were interpolated individually
dependent on the specific type of administration or type of fluid
loss using the “interp1” function for the entire length of stay at a
sampling rate of one data point per minute. Interpolation was
performed by inserting the last available value that followed the
cumulative shape of the fluid data.

Gravity infusions that did not have a documented ending
timestamp were assumed by clinicians with a flow rate of about
16 mL per minute until the total administered volume was
reached. Short infusions and drinking were included as bolus.

FIGURE 3
Overall approach to predicting the course of cumulative fluid balance (CFB) using the cumulative fluid intake (CFI) as the only input parameter.
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Insensible losses such as estimating the volume lost by sweating
were not considered in the data. Urine data was linearly
interpolated to the next available documented entry with the
simplified assumption that the bladder has filled evenly in a linear
fashion during this time.

The resulting individual CFI and CFL time series were
subtracted to calculate the corresponding CFB to identify
the TF. The described procedure for preprocessing the input
and output data can be seen in detail in the flow chart in
Figure 4.

2.3.2 Model estimation using the sliding window
approach

Since fluid balance is constantly changing due to
dynamically changing patient characteristics, the TF has to
be periodically recalculated. A sliding window approach was
chosen for TF estimation for (i) computational reasons and (ii)
clinical considerations, because patients may become unstable
again, which affects subsequent estimates. The length of the

sliding window was set at 48, 72, 96, 120 and 144 h, with the first
24, 48, 72, 96 and 120 h used for TF estimation (estimation time)
and the last 24 h of each window used for prediction (prediction
time). The sliding window was incrementally shifted by 2 h.
Table 2 shows the number of patients with sufficient length of
stay to provide data for a given estimation time plus prediction
time. Because the sliding window approach allows multiple
predictions per patient, the total number of predictions is
also shown.

Data in the estimation time period preprocessed as uniformly
sampled data is used to generate the discrete-time transfer function
with the determined poles and zeros. The offset of the CFB is always
set to 0 as initial condition for every window.

2.3.3 CFI extrapolation
For prediction, the future CFI has to be estimated by

extrapolation of the current fluid therapy or available data for
the planned administered volumes. To provide a simple and fast
method for CFI trend analysis and identification of paradigm

FIGURE 4
Flow graph of single patient data fusion and preprocessing for estimating a patient specific TF using the interpolated CFI and CFL data.

TABLE 2 Number of predictions per estimation time.

Estimation time Number of patients Number of predictions

24 618 20,915

48 618 13,499

72 404 6,320

96 197 2,114

120 44 262
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shifts within a given time series without knowing future fluid
therapy, the CFI for all estimation time windows was modeled
using the piecewise.linear function of the SiZer package in R
(Sonderegger, 2020). The function allows for a “broken-stick”
model, where two lines are connected at a previously unknown
point in time, thus providing a simple and fast method for
identifying turning points within a given time series—in
particular the point in time at which the CFI noticeably
decreases (Toms and Lesperance, 2003). Extrapolation of the
approximated CFI is performed using the predict function (base
R) based on the piecewise linear model. We extrapolated the CFI
model data for 24 h, which corresponds adequately to a clinically
relevant time frame from ward visit to ward visit. This modeling
and extrapolation step is required for applicable TF-based
prediction.

2.3.4 Statistical analysis of model predictions
Data preprocessing and statistical analyses were performed in

R (version 4.0.2) within RStudio (version 1.3.959, RStudio PBC,
Massachusetts, United States). The simulated (predicted) CFB
course was compared with the real CFB within the maximal
prediction period of 24 h. The root mean squared error (RMSE)
of the last 30 min between both curves was calculated to
determine the change of prediction error over time for the
selected prediction times of 8, 12, 16, 20 and 24 h. This results
in different prediction error combinations for model estimation
(24–120 h) and model prediction (8–24 h) for a patient.
Depending on the length of stay of each patient, not all
combinations were available for all patients (see also Table 2).
By using a sliding window, multiple predictions per patient could
be obtained for most combinations.

3 Results

The clinical applicability of the proposed model is first
demonstrated exemplarily in a single patient (see Figure 5) and
then evaluated in a homogeneous study population of cardiac
intensive care patients.

3.1 Single patient

The selected example patient was originally admitted to the ICU
for 2 days. The entire 2-day stay was chosen as estimation time for
identifying the patient’s TF. After generating the TF P[z] using the
measured CFI (Figure 5A) and calculated CFB data (Figure 5B)
0–48 h after ICU admission, the TF model was then used to predict
the patient’s future CFB course. Here, the CFI time series data were
linearly approximated and extrapolated by 24 h which can be seen in
Figures 5A, C and was then applied to the patient’s previously
calculated TF, resulting in a prediction of the CFB course for the next
24 h (Figure 5D). To verify the prediction, the RMSE between the
predicted CFB and the original acquired time series data was
calculated after 48 h (RMSE = 0.207).

3.2 Study cohort

To evaluate the performance and predictive ability of our
method, a total of n = 618 cardiac intensive care patients were
analyzed retrospectively. Figure 6A shows the distributions of
aggregated patient RMSE values for the entire cohort, plotted for
the different combinations of estimation and prediction time spans.

FIGURE 5
System theory basedmodel applied to a selected single patient showing the estimationwindow 0–48 h after ICU admission in blue, which was used
to determine the transfer function P[z] with the measured CFI and calculated CFB patient data in the upper row. The left column (A, C) shows the
approximation and extrapolation of the cumulative fluid intake (CFI) used to predict the cumulative fluid balance (CFB) on the bottom right (D). Measured
future patient CFB (B) and predicted CFB (D) in the prediction window was used for statistical analysis of the RMSE.
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The overall prediction error decreases already after extending the
estimation time from 24 to 48 h, whereas further extension shows
only smaller changes. This result is best seen with longer prediction
time periods. Figure 6B depicts the weighted mean values of the
aggregated RMSE of the study population for different combinations
of estimation and prediction periods.

Figure 7 shows the number of predictions included in each error
ranges for different combinations of estimation and prediction
times. The limit of maximal 2 L (L) for the error intervals was
chosen by clinicians based on considerations of applicability in
clinical practice, since there are currently no uniform (consensus)
medical guidelines. The clinically relevant time horizon for

FIGURE 6
(A) Distributions of aggregated root mean squared error (RMSE) for the entire study cohort (n = 618) for different combinations of estimation and
prediction time spans in liters (L) and hours (h), respectively. (B)Weighted mean values of aggregated RMSE for different combinations of estimation and
prediction time spans in liters (L) and hours (h), respectively.

FIGURE 7
Number of predicted cumulative fluid balance values at the end of the prediction period in percent (%) within specified prediction error ranges in
liters (L) for various combinations of estimation and prediction times.
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predicting CFB with high accuracy results from the combination of
48 h estimation time and 8–16 h prediction time. This means that at
a prediction time of 8 h, almost 50% of CBF predictions are within
the range of ±0.5 L, and 77% of predictions are within the range
of ±1.0 L. For longer prediction times (e.g., 16 h) these values
decrease to 37% (±0.5 L) and 63% (±1.0 L), respectively.

4 Discussion

In cardiac intensive care, fluid administration must be used with
caution and tailored to the current needs of the individual patients
(Bignami et al., 2017). Conventional postoperative fluid therapies are
applied primarily for replacement, maintenance, and nutrition purposes
(Van Regenmortel et al., 2018) and often deliver large volumes of various
fluids to the critically ill patient (Hessels et al., 2016). Despite skepticism
(Gonzalez and Vincent, 2011; Perren et al., 2011; Cronhjort et al., 2016;
Köster et al., 2017; Davies et al., 2019), fluid balance could be a valuable
biomarker (Bagshaw et al., 2008) for assessing fluid status and estimating
mortality risk (Epstein and Peerless, 2006; Bouchard et al., 2009;
Rosenberg et al., 2009; Boyd et al., 2011; Grams et al., 2011; Vaara
et al., 2012;Micek et al., 2013; Teixeira et al., 2013; Barmparas et al., 2014;
Acheampong and Vincent, 2015; de Oliveira et al., 2015; Elofson et al.,
2015; Sirvent et al., 2015; Brotfain et al., 2016; Genga and Russell, 2016;
Marik et al., 2017; Pittard et al., 2017; Sakr et al., 2017; Chao et al., 2018;
Codes et al., 2018; Li et al., 2018; Shen et al., 2018; vanMourik et al., 2019).

Cardiac surgery patients usually require large volumes of
resuscitation fluids to compensate for the perioperative fluid loss.
Due to the high amount of fluids, this group was selectively used as
the first validation cohort of the algorithm but is not representative
for other surgical interventions. We hypothesized that
complications lead to an increased length of stay which we used
as an exclusion criterion for the subgroup to narrow down the
cohort to stable courses and therefore form the basis of a more
complex system theoretical model that may be applied commonly
for postoperative fluid management.

To depict a reliable CFB course, both fluid intake and fluid
output must be accurately recorded. However, small volumes in
particular may remain undocumented (Bashir et al., 2017),
which—among other sources of error—may compromise the
effectiveness of fluid balance monitoring. Several evaluations
suggest that 35% of fluid data documented in patients’ medical
records are inaccurate or missing (Reid et al., 2004; Perren et al.,
2011; Diacon and Bell, 2014; Asfour, 2016; Davies et al., 2019; Lim
et al., 2021), leading to a biased representation of patient
characteristics and inaccurate assessment of the current CFB
trend when only daily changes are considered.

To provide clinicians with a model that adequately represents the
patient characteristics based on the CFB trajectory and predicts the
future CFB course, we proposed an initial digital model based on system
and control theory that can be divided into two parts. First, creating a
mathematical representation of a patient’s fluid balance characteristics
in the critical care situation and second, predicting the patient’s future
CFB course to help clinicians optimize therapeutic fluid management.
Here, the “system” status of each patient ismathematicallymodeled by a
discrete-time second-order TF determined from the past CFI and CFB
courses of limited lengths, i.e., the estimation time of the model, using a
sliding window approach.

Only the CFI data up to the time of prediction were used for
identifying the transfer function. Extrapolating the actual trend
rather than predicting a specific value at the end of the
prediction window by using the estimated future fluid intake as
input for the TF emphasizes clinical applicability. The alternative
measure of predictive accuracy using RMSE was again performed for
all combinations of prediction and estimation time to provide a
simple and intuitive interpretation for the user and a more practical
approach for daily clinical practice. The prediction accuracy of this
measure is reported as percentage of predictions within a maximum
deviation of 2 L, which was considered by the clinicians in this study
to be the upper limit of tolerable prediction error. A change in
therapy during the prediction period or a worsening of the patient’s
condition may lead to incorrect predictions. Therefore, prediction
should be considered as a regression model that simulates the
current dynamics of patient characteristics and the impact of
treatment in the estimation window for unchanged future fluid
input.

Statistical analyses of the prediction windows of the entire
patient cohort revealed a mean RMSE of slightly less than 1 L
when a sufficient amount of time series data (48 h or more) is
provided to the model. As can be seen in Figure 6B, the shape of the
mean RMSE values shows a slightly U-shaped trajectory. This may
indicate that an estimation time span of 24 h is not sufficient for
correct patient characterization. The prediction accuracy becomes
noticeably worse when using estimation windows of 120 h or longer.
A possible reason is the use of the broken stick model with the
assumption of a constant fluid intake after the estimated turning
point although the fluid intake changes over time with changes in
the patient’s current hydration status. In addition, the patient
characteristics change dynamically over time and therefore the
estimation window should be chosen to be long enough for
parameter identification, but short enough to only include very
recent data to reflect the current state of the patient as good as
possible. With a prediction time of 8 h, almost 50% of CFB
predictions are within the range of ±0.5L, and 77% are still
within the clinically acceptable range of ±1.0L, demonstrating
good clinical applicability by optimizing fluid status of the
patient in a critical care situation.

The model presented only estimates the behavior of the entire
patient system by analyzing fluid intakes and losses and does not
simulate a mechanistic fluid compartment system. Distributions of
the fluids in the compartments and changes over time are therefore
not included. Increased fluid retention due to, for example, a sodium
excess or the accumulation of fluids in edemas leads to changes that
are usually not relevant in the prediction window and can be
therefore partially neglected. However, it must be emphasized at
this point that the goal of this work was to find an algorithm that
could be used with the existing data in a realistic scenario in daily
clinical practice and that does not require additional subjective
assessments or other biomarkers.

In summary, the presented digital model is not based on
machine or deep learning and therefore does not require large
amounts of data for training and validation of the model. It
allows for early recognition of a change in the CFB course, which
leads to faster adjustment of treatment. The system theory model,
based on single patient data, thus shows high potential for adapting
and optimizing fluid management in critical care situations for a
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clinically feasible prediction window and could be further developed
into a decision support system for fluid balance and imbalance
profiling. With the here presented approach it is therefore possible
to support fluid management with already existing data - with the
mentioned limitations. Its advantage is its ability to reduce workload
by, for example, taking over complex calculations or informing
responsible clinicians of trends in changing health parameters.

Additional clinical studies are needed to further improve the
presented approach in terms of methodological accuracy and clinical
validity by considering additional relevant clinical factors. The next
steps toward a decision support system to assist clinicians with fluid
management are the introduction of a feedback mechanism. The use
of a dynamic, non-linear function instead of the presented TF and its
embedding in a semi-closed loop could allow both the estimation of
CFB trend in response to different fluid intake regimes and support
the identification of the most appropriate CFI trajectory to achieve
targeted CFB goals when treating individual patients.
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