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A B S T R A C T

High vacancy concentrations in crystals may lead to formation and growth of voids, which is connected to
swelling under irradiation and degradation of material properties. Recent experimental work suggests that
vacancy condensation may also be involved in nucleation and evolution of porosity in early stages of ductile
fracture. Mostly in the realm of irradiation effects, void formation and growth has been simulated with phase-
field methods, where voids are treated as pure vacancy phases. Since vacancies induce an eigenstrain field, it is
well-known that the evolution of vacancy concentrations is coupled to the elastic stress field. However, the few
existing elastically coupled diffuse interface models of void growth seem to face a conceptual problem in the
diffuse interface; in the center of which they predict the highest eigenstrains, which results in unrealistically
high, fluctuating stresses. In the current work, we present a new model for coupling elastically driven vacancy
diffusion with a diffuse interface model of void surfaces, which overcomes the named short-comings and
closely reproduces the sharp interface solution. This is achieved by making the eigenstrain a function of the
non-conserved order parameter used to distinguish the crystal and void phase. The model is verified for two-
dimensional example problems by comparison to the analytical solution of the according sharp interface model.
Eventually, the model is used to show the impact of elasto-diffusional coupling on void growth in mechanically
loaded systems. We analyze the model with regard to the bi-stable energy landscape and discuss limitations
and future prospects of the approach.
1. Introduction

High concentrations of vacancies in crystals as resulting from irradi-
ation [1] or large plastic deformations [2,3] may lead to void formation
and growth. Void condensation from vacancy supersaturation and sub-
sequent void growth are well-known to be coupled to the phenomenon
of swelling of irradiated materials [4,5] and they have recently been
suggested to likewise play an important role in early stages of ductile
failure [6,7]. Vacancy condensation and subsequent void growth have
long been modeled in the realm of irradiation; classically in the spa-
tially homogenized so-called ‘rate theories’ of microstructure evolution,
but also in spatially resolved diffuse interface models using the phase-
field method. The phase-field method (see, e.g. [8] or [9]) in this
realm is essentially used to circumvent explicit interface tracking (or
generation) and as a natural nucleation model for voids. The available
phase-field models usually target microstructure evolution under irradi-
ation and are not coupled to the stress field, although stress is known
to be coupled to point defect diffusion. Exceptions are found in [10–
14] and in the works of Yu and Lu, [15,16], where anisotropic elastic
effects where put forth as explanation for distinct types of void lattices
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observed in crystals of different symmetry classes. If void nucleation
and growth shall be considered in the realm of ductile fracture, a proper
coupling of phase-field models of vacancy concentration to elasticity is
mandatory.

Coupling of stress and vacancy kinetics is well known to result from
the eigenstrain of vacancies which emerges from the relaxation of the
surrounding crystal lattice if a single atom is removed. In continuum
formulations, the eigenstrain field of a vacancy distribution is usually
modeled to be proportional to the vacancy concentration. However,
combining the vacancy concentration-based eigenstrain formulation
with the phase-field description of voids as a pure vacancy phase faces
a conceptual problem in the interface, where the vacancy concentration
is ≈ 0.5 while the elastic constants, which are commonly interpolated
between crystal and void phase, are likewise about half of those of
the considered crystal (see next paragraph for details). The resulting
huge and strongly varying eigenstrain in the interface consequently
causes large stresses in and across the interface, which are usually not
in accordance with stresses in corresponding sharp interface models.
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In the latter models, void surfaces are usually considered as stress-
free or, in the case of gas filled bubbles, subject to pressure boundary
conditions. In the current work we propose a formulation for coupling
elastically driven vacancy diffusion with a diffuse interface model of
void surfaces, which strongly alleviates the occurring stresses in the
void surface as compared to existing models.

Phase-field models of void formation and growth from vacancy
supersaturation fall into two categories, in that either the vacancy
concentration 𝑐v is at the same time the indicator of crystal (𝑐v = 𝑐veq or
v = 0, since the equilibrium vacancy concentration is very small, 𝑐veq ≪
) or void phase (𝑐v = 1), e.g. [15–17]; or such that an additional, non-
onserved order parameter, called 𝜂 in the sequel, is used to indicate
he phases, where the energy is such that the vacancy concentration
ries to assume the above named values in the according phases [10,18–
0]. The latter kind of models have been put forth by El-Azab and
o-workers [21–23] who corroborated the feasibility of this approach
y asymptotic matching with a sharp interface model [24] allowing for
istinct point defect reaction kinetics at the surface [25]. In the current
ork, we adopt an approach with an additional order parameter 𝜂,
hich turns out to be likewise crucial for the stress coupling at void

urfaces.
As for coupling the vacancy based phase-field models with stresses,

wo aspects need to be modeled. On the one hand, the combination of
oid and crystal phase requires modeling the elastic properties of the
hases and, across the interface where both phases formally overlap, an
nterpolation of the elastic properties and/or the distribution of stress
r strain among the two phases. This homogenization problem has been
iscussed in detail in [26] for phase-field models of two solid phases.
n the phase-field literature, the most widely applied interpolation
cheme in the overlap region is Khachaturyan’s (compare e.g. [27–
9]), where the elastic stiffness tensor C and the eigenstrain tensor
∗ are interpolated between the phases. As for the homogenization of
he elastic properties, we adopt this model in the current work. On the
ther hand, the eigenstrain field in the bulk due to vacancies is modeled
s a function of the vacancy concentration. In sharp interface models,
he eigenstrain is usually considered as linear function of the vacancy
oncentration 𝜺∗(𝑐v) ∝ 𝑐v𝜺v, where 𝜺v denotes the eigenstrain of a
ingle vacancy. If the vacancy eigenstrain is isotropic, i.e. 𝜺v = 𝜀v∕3 𝐈

with a volumetric scalar eigenstrain 𝜀v and the unit matrix 𝐈, this
yields driving forces for drift diffusion proportional to the gradient of
the hydrostatic pressure. Though the proportionality of the eigenstrain
field to the concentration is only valid for relatively low vacancy
concentrations and thus questionable for the values reached in phase-
field models across the interface and in the void, it is also sometimes
used in diffuse interface models, e.g. in [18,30]. In phase-field models
based solely on the vacancy concentration, the fact that vacancies do
not have eigenstrain in the void phase may be accounted for by the
quadratic form 𝜺∗(𝑐v) = 𝑐v (1 − 𝑐v)𝜺v, as done e.g. in [13–16,31,32].
This form may also be viewed as an interpolation (homogenization) of
the eigenstrain of vacancies in either ‘phase’ as will be explained in
more detail towards the end of in Section 2. However, in modeling
voids, this makes the eigenstrain maximal for 𝑐v = 0.5, i.e. at the
nominal position of the interface. While Yu and Lu, [15,16], consider
this as asset accounting for misfit stress in the interface, it seems
questionable why these eigenstrains should be isotropic in the interface
and why their strength is modeled with the same relaxation strain as
for vacancies in the bulk. We note that whether and to which extent
this affects the results of the named papers is not known to the present
authors.

This paper is structured such that in the subsequent Section 2 we
introduce the governing equations of the phase-field model and briefly
discuss its numerical implementation in Section 3. The determination
of the order parameter dependent equilibrium vacancy concentration
is explained in Section 4. The simulation results obtained with two
different eigenstrain formulations are presented in Section 5, which
is followed by a discussion and an analysis of the model by means
of the bi-stable energy landscape in Section 6. Eventually, we provide
2

conclusions from the work in Section 7. a
2. Model formulation

The employed phase-field model is based on the work of Rokkam
et al. [19,21,22,33], who investigated the evolution of voids due to
the coupled evolution of vacancies and (self-)interstitial atoms under
irradiation. For the current work we only adopt the vacancy related
part of the model, since our intention is directed rather towards void
formation during plastic deformation than during irradiation. Under
irradiation, the high energies of impacting particles lead to an atomic
displacement cascade which produces interstitial atoms and vacancies
roughly in the same amount. The annihilation bias of point defect
sinks, e.g. grain boundaries and dislocations, and the high diffusivity
of interstitial atoms explains the ensuing high vacancy supersaturations
leading to void formation. However, during plastic deformation there
is a production bias of the processes which generate point defects,
for instance, by non-conservative motion of dislocation jogs [34]. Due
to their lower formation energy, vacancies are generated far more
easily than interstitial atoms, which is why we do not model the
latter in the current work. Note though, that the method developed for
incorporating elastic effects is expected to be transferable to coupled
models including interstitials.

We consider a single-component crystalline material that can exist
in two stable phases: a bulk material region in which single vacancies
diffuse and a void region defined as a pure vacancy phase. The phase
distinction is done by a non-conserved order parameter 𝜂. Due to
the underlying phase-field description, the two phases are separated
by a diffuse interface in which the order parameter and the vacancy
concentration 𝑐v vary continuously between their equilibrium values
(bulk: 𝑐v = 𝑐veq, 𝜂 = 0; void: 𝑐v = 𝜂 = 1). The two variables are coupled
via the eigenstrain field 𝜺∗(𝑐v, 𝜂) to an elastic strain field 𝜺el to inves-
tigate elasto-diffusional behavior. The constitutive model is specified
by an energy functional 𝛹

[

𝑐v, 𝜂, 𝜺el
]

, with the kinetic response and
constitutive relationships for the primary variables being derived from
the balance laws for entropy, species concentrations, linear momentum
and moment of momentum by the standard procedure of Coleman and
Noll [35]. The resulting coupled system of equations reads,

𝜕𝑡𝑐
v = 𝛁 ⋅𝑀𝛁

( 𝛿𝛹
𝛿𝑐v

)

in 𝛺 , (2.1a)

𝜕𝑡𝜂 = −𝐿𝛿𝛹
𝛿𝜂

in 𝛺 , (2.1b)

𝝈 = 𝛿𝛹
𝛿𝜺el

, (2.1c)

𝛁 ⋅ 𝝈 = 𝟎 in 𝛺 , (2.1d)

ith 𝛿 indicating functional derivatives and the del operator 𝛁 denot-
ng the material gradient and 𝛁⋅ the according divergence operator.
q. (2.1a) is the (modified) Cahn–Hilliard equation, which results from
he species balance of vacancies and describes the evolution of the
acancy concentration. The gradient of the functional derivative with
espect to the concentration defines the driving force for vacancy diffu-
ion and 𝑀 is the vacancy mobility which is specified below. Eq. (2.1b)
s the Allen–Cahn equation, which defines the evolution of the order
arameter 𝜂, where the functional derivative of the free energy with
espect to the order parameter is a generalized driving force for void
volution and 𝐿 is a generalized surface mobility. The stress tensor

emerges as the variational derivative of the energy density with
espect to the elastic strain, Eq. (2.1c), and Eq. (2.1d) represents the
echanical equilibrium with vanishing body forces. Moreover, balance

f moment of momentum requires the stress tensor to be symmetric,
.e. 𝝈T = 𝝈. Boundary conditions vary in the applications below and
nclude displacement and traction boundary conditions for the elastic
roblem. For the order parameter and the vacancy concentration we
mploy no-flux boundary conditions in the applications below.

Within phase-field modeling, the total free energy density is ex-
ressed in terms of the free energy densities of its constituent phases
nd interfaces [36–38]. We define the total free energy 𝛹 of the
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observed system as an energy functional that depends on the fields of
vacancy concentration, order parameter, and the elastic strain tensor
via integration of a local energy density 𝜓 as

∶= 𝛹
[

𝑐v, 𝜂, 𝜺el
]

= ∫𝛺
𝜓 d𝑉 = ∫𝛺

(

𝜓hom(𝑐v, 𝜂)

+𝜓gr (𝛁𝑐v, 𝛁𝜂) + 𝜓el(𝑐v, 𝜂, 𝜺el)
)

d𝑉 . (2.2)

The energy density is assumed to be expressible as the sum of several
energy density contributions which depend on the underlying fields
or their derivatives. The first energy density contribution inside the
integral describes the free energy density of a (would-be) homoge-
neous system based on the local vacancy concentration and the order
parameter [33]:

𝜓hom(𝑐v, 𝜂) = 1
𝛺a

[

(1 − ℎ(𝜂))
(

𝜓bulk (𝑐v) − 𝜓 ref) +𝑤(𝑐v, 𝜂)
]

, (2.3)

where 𝛺a is the atomic volume. The bulk free energy density 𝜓bulk (𝑐v)
n units of energy per lattice site is taken to be of the form 𝜓bulk (𝑐v) =
𝐸v
f − 𝑇 𝑠vf ) 𝑐

v + 𝑘B𝑇 [𝑐v ln 𝑐v + (1 − 𝑐v) ln(1 − 𝑐v)]. The reference energy
ensity 𝜓 ref is determined from requiring that for the equilibrium
oncentration 𝑐v = 𝑐veq in the bulk, the homogeneous energy densities

f the bulk and the void phase are equal, i.e. 𝜓hom(𝑐v = 𝑐veq, 𝜂 = 0)
!
=

hom(𝑐v = 1, 𝜂 = 1). The function ℎ(𝜂) = 𝜂3(6𝜂2 − 15𝜂 + 10) varies
onotonously from ℎ(𝜂 = 0) = 0 to ℎ(𝜂 = 1) = 1. The parameters

n the bulk free energy density are the formation energy 𝐸v
f and

ormation entropy 𝑠vf of vacancies in the bulk material, the Boltz-
ann constant 𝑘B and absolute temperature 𝑇 . The thermal equilib-

ium vacancy concentration is given by 𝑐veq = 1∕ (1 + exp𝐶), with
=

(

𝐸v
f − 𝑇 𝑠vf

)

∕
(

𝑘B𝑇
)

, as results from requiring the stable phases
o be extremal points of the homogeneous energy, i.e. from solving
𝜕𝑐v (𝜓hom)||

|𝑐v=𝑐veq ,𝜂=0
= 0 for the concentration. The so-called Landau

nergy 𝑤(𝑐v, 𝜂) = �̄�
(

(𝑐v − 1)2 𝜂2 + (𝑐v − 𝑐veq)
2 (𝜂 − 1)2

)

is responsible for
he bi-stability in the system, where the constant �̄� defines the height
f the energy barrier between the two phases. The Landau term is
efined such that it adheres to thermodynamic restrictions regarding
he minima of the bulk and void phase, cf. [33]. The gradient energy
ensity 𝜓gr is chosen as usual in diffuse interface approaches,

gr (𝛁𝑐v, 𝛁𝜂) = 1
𝛺a

[

𝜅c

2
|𝛁𝑐v|2 + 𝜅𝜂

2
|𝛁𝜂|2

]

, (2.4)

where 𝜅c and 𝜅𝜂 are the gradient energy coefficients characterizing the
nergy penalties corresponding to the inhomogeneities in the vacancy
oncentration and the order parameter. The long-range interaction, i.e.
he elastic response of the system under consideration, is modeled with
he elastic energy density

el(𝑐v, 𝜂, 𝜺el) = 1
2
𝜺el(𝑐v, 𝜂) ∶ C(𝜂) ∶ 𝜺el(𝑐v, 𝜂), (2.5)

with the fourth-order elasticity tensor C(𝜂) = (1 − ℎ(𝜂)) Cbulk being a
function of the order parameter. Here, Cbulk denotes the elasticity ten-
sor of the bulk material and 𝜺el(𝑐v, 𝜂) is the elastic small-strain tensor,
i.e. the difference of the total strain and the eigenstrain, 𝜺el(𝑐v, 𝜂) = 𝜺−
𝜺∗(𝑐v, 𝜂). In the current work we employ isotropic elasticity, such that
the elasticity tensor assumes the form Cbulk = 𝐾 𝐈⊗ 𝐈+𝐺(I−2∕3 𝐈⊗ 𝐈),
where 𝐾 and 𝐺 are bulk and shear modulus, respectively, 𝐈 is the unit
matrix and I denotes the fourth order identity tensor on the space of
symmetric tensors.

If the formulation of the total free energy, Eq. (2.2), is inserted in
Eq. (2.1), one obtains the kinetic equations of the underlying coupled
Cahn–Hilliard & Allen–Cahn model (compare [39]) as well as the stress
tensor as

𝜕𝑡𝑐
v = 𝛁 ⋅𝑀 𝛁

[

𝜕𝑐v (𝜓hom + 𝜓el) − 𝜅c

𝛺a 𝛁
2𝑐v

]

, (2.6a)

𝜕𝑡𝜂 = −𝐿
[

𝜕𝜂(𝜓hom + 𝜓el) − 𝜅𝜂

𝛺a 𝛁
2𝜂
]

, (2.6b)

𝝈 = C(𝜂) ∶ 𝜺el(𝑐v, 𝜂) . (2.6c)
3

i

The vacancy mobility 𝑀 is of degenerate character, i.e., it depends on
the vacancy concentration, 𝑀(𝑐v) = 𝛺a𝐷 𝑐v (1− 𝑐v)∕(𝑘B𝑇 ) with 𝐷 being
he vacancy diffusivity. In conjunction with only the homogeneous
nergy density, Eq. (2.3), this form of the mobility reproduces Fickian
iffusion in the bulk (𝜂 = 0).

For the eigenstrain we oppose two different approaches, namely

𝜺∗(𝑐v, 𝜂) =
(

𝑐v − 𝑐veq
)

(1 − ℎ(𝜂)) 𝜺v (2.7)

nd
∗(𝑐v, 𝜂) =

(

𝑐v − 𝑐veq(𝜂)
)

𝜺v, (2.8)

hich we refer to in following as the interpolation and equilibrium
rofile approach, respectively. The interpolation approach, Eq. (2.7),
ollows a description similar to other phase-field models for coupled
lasto-diffusional evolution described with Cahn–Hilliard-type phase-
ield models, e.g. [15,31], where the eigenstrain is a quadratic function
f the concentration, 𝜺∗(𝑐v) = 𝑐v (1 − 𝑐v)𝜺v. The reason we call this type
f models ‘interpolation’ approach is that we may define a (vanishing)
acancy eigenstrain in the void as 𝜺vvoid = 0. An interpolated vacancy
igenstrain �̄�v between the phase dependent eigenstrains of the vacan-
ies is accordingly defined in models solely based on the concentration
s

̄v (𝑐v) = (1 − 𝑐v)𝜺v + 𝑐v𝜺vvoid = (1 − 𝑐v)𝜺v , (2.9)

nd in the current case as

̄v (𝜂) = (1 − ℎ(𝜂))𝜺v + ℎ(𝜂)𝜺vvoid = (1 − ℎ(𝜂))𝜺v . (2.10)

he interpolation approach from the literature thus reads 𝜺∗(𝑐v) =
v�̄�v (𝑐v) and the one in the current work reads 𝜺∗(𝑐v, 𝜂) =

(

𝑐v − 𝑐veq
)

̄v (𝜂).
For both interpolation approaches the eigenstrain attains its max-

mum somewhere in the middle of the diffuse interface. As we shall
ee in Section 5, for the current variant (2.7) this leads to high stresses
nd stress fluctuations within the interface. Such stresses appear unre-
listic since free interfaces in mechanically unloaded systems would be
ssumed stress-free. We also note that when regarding the definition
∗(𝑐v, 𝜂) =

(

𝑐v − 𝑐veq
)

�̄�v (𝜂), there arises the questions why we would
onsider the difference between the vacancy concentration and the
quilibrium vacancy concentration in the bulk to also be of relevance
n the void; note that the ‘equilibrium’ vacancy concentration in the
oid is in fact 𝑐v = 1.

In the equilibrium profile approach (2.8) we take up this line of
hought and define an 𝜂-dependent equilibrium concentration, 𝑐veq(𝜂).
his relation is obtained from the equilibrated common distributions
f 𝑐v and 𝜂 across a flat diffuse interface. In this way, when the
lastic energy is added, a flat equilibrated surface between a void and
crystal with equilibrium concentration in the bulk will be free of

igenstrains and thus also of stresses. Note that in this approach we
llow for non-trivial eigenstrains in the void when 𝑐v is not exactly
qual to one, but this does not lead to noticeable stresses because of the
nterpolated elasticity tensor C(𝜂), which nearly vanishes where 𝜂 ≈ 1,
.e. in the void. Further details on the identification and definition of
he functional dependence 𝑐veq(𝜂) will be provided in Section 4 and a
etailed interpretation of this functional dependence is put forth in the
iscussion, Section 6.

. Methods

The governing equations are brought into a dimensionless form by
sing a suitable transformation of time (𝑡 → 𝜏𝑡), space (𝒙 → 𝜉�̃�),
emperature (𝑇 → 𝛩�̃� ) and energy density (𝜓 → 𝜖�̃�), with 𝜏, 𝜉, 𝛩
nd 𝜖 being the respective characteristic scales, compare e.g. [39].
ollowing an analogous approach to [33], upon choosing a length
cale 𝜉, a suitable time scale 𝜏 is defined as 𝜏 ∶= 𝜉2∕𝐷. For example,

f 𝜉 = 1 nm, the time scale for a simulation temperature of 𝑇 =
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Fig. 1. Mesh of slab geometry to obtain parameters of 𝑐veq(𝜂) with indication of the
hase distribution.

000K is 𝜏 = 0.1701 ns, where 𝐷 = 𝐷0 exp
(

−𝐸v
m∕(𝑘B𝑇 )

)

with the
pre-exponential factor 𝐷0 = 0.25 cm2∕s and the migration energy of
vacancies 𝐸v

m = 0.72 eV [40]. We take the characteristic temperature
to be the melting temperature of the bulk, i.e. 𝛩 ∶= 𝑇melt , and the
energy densities and likewise stresses and elastic constants are scaled
with 𝜖 ∶= 𝑘B𝛩∕𝛺a. After incorporating the degenerate mobility and
applying the non-dimensionalization, the governing equations read

𝜕𝑡𝑐
v = 1

�̃�
�̃� ⋅

{

𝑐v (1 − 𝑐v)�̃�
[

𝜕𝑐v (�̃�hom + �̃�el) − �̃�c�̃�2𝑐v
]}

in 𝛺 , (3.1a)

𝜕𝑡𝜂 = −�̃�
[

𝜕𝜂(�̃�hom + �̃�el) − �̃�𝜂�̃�2𝜂
]

in 𝛺 , (3.1b)

�̃� = C̃(𝜂) ∶ 𝜺el(𝑐v, 𝜂) , (3.1c)

�̃� ⋅ �̃� = 𝟎 in 𝛺 , (3.1d)

where the tilde ̃(.) indicates dimensionless quantities and operators. The
imensionless generalized surface mobility �̃� as well as the dimension-
ess gradient energy coefficients, i.e. �̃�c and �̃�𝜂 , are defined through

̃ ∶= 𝐿𝜏 𝜖, �̃�c ∶= 𝜅c

𝛺a 𝜉2 𝜖
, �̃�𝜂 ∶= 𝜅𝜂

𝛺a 𝜉2 𝜖
. (3.2)

Since reliable experimental data for the mobility 𝐿 and the gradient
energy coefficients 𝜅c and 𝜅𝜂 is not available, they are chosen such
hat the model can reproduce the envisaged physical phenomena. The
mployed values are provided in Table 1.

Eqs. (3.1) are implemented in the phase-field framework PRISMS-
F [41], a parallel finite element code for conducting simulations
elated to microstructural evolution. The spatial discretization is real-
zed with linear Gauss–Lobatto elements, where the quadrature points
oincide with the element nodes. Explicit time-stepping is used for time
iscretization. We assume the relaxation dynamics for elasticity to be
uch faster than for the diffusion of the vacancy concentration and

he order parameter. Accordingly, we solve the mechanical equilibrium,
q. (3.1d), for the current phase fields at each time step. In PRISMS-PF
his is conducted by using the conjugate gradient scheme [41].

Note that in the current work we perform two-dimensional simu-
ations in plane-strain. This leaves the symbolic form of the equations
nchanged and the components of the elasticity tensor for plane-strain
re just the two-dimensional subset of the full tensor. It seems worth
oting, though, that the plane-strain assumptions requires using plane
igenstrains which means that for plane-strain in the 1–2-plane we use
he vacancy eigenstrain

v = 𝜀v

2
(

𝐈 − 𝒆3 ⊗ 𝒆3
)

, (3.3)

where 𝒆3 denotes the unit vector in the normal direction to the plane.

4. Identification of the equilibrium profile

We developed the equilibrium profile approach (2.8) under the
remise that an equilibrated flat surface should be stress-free. To this
nd we first determined the equilibrium profiles of 𝑐v and 𝜂 for the
hase-field model without the elastic energy contribution. For the equi-
ibration we initialized both parameter fields with a tanh-profile across

flat, free surface (to a void region) of a material with equilibrium
acancy concentration 𝑐veq in the bulk. The simulation domain of 72 × 8
imensionless length units squared was discretized with 444 elements,
4

ompare Fig. 1, and the dimensionless time step was chosen to be 𝛥𝑡 =
0−4. To ensure an equilibrium state, the simulation was performed till
he change of total free energy of the system between two time steps 𝑛
nd 𝑛+1, compared to the initial total energy 𝛹 0 at 𝑡 = 0, was negligible,
.e., when (𝛹 𝑛+1−𝛹 𝑛)∕𝛹 0 < 10−10. The equilibrated profiles of 𝑐v and 𝜂
re displayed in Fig. 2 (b), where the void is on the left and the crystal
n the right hand side of the displayed section. Based on these profiles
e plotted the 𝑐v values over the values of the order parameter 𝜂 across

he interface which yields the curve displayed in Fig. 2 (a). The graph
uggested a functional relationship of the form
v
eq(𝜂) = 𝑝1 exp(−𝑝2∕𝜂𝑝3 ) + 𝑝4 𝜂𝑝5 + 𝑐veq, (4.1)

ith fitting parameters 𝑝1 to 𝑝5. Fitting was conducted using the func-
ion curve_fit of the submodule namespace scipy.optimize in
ython [42,43]. Employing curve_fit, a non-linear least squares
ethod is used to fit a predefined function to the provided data by

iving an initial guess for the sought parameters. The initial guess was
et to 𝑝𝑖 = 1, 𝑖 ∈ {1,… , 5}, for which we achieved very good fits upon
onvergence. For the chosen simulation parameters, cf. Table 1, we
btained the parameters such that
v
eq(𝜂) = 1.499 exp(−0.917∕𝜂0.826) + 0.400 𝜂3.793 + 𝑐veq. (4.2)

ig. 2 (a) shows the simulation results as well as the fitted function of
he relationship between vacancy concentration and order parameter.
n Fig. 2 (b) we display besides the equilibrated profiles also the 𝜂-
ependent 𝑐veq(𝜂) as obtained from Eq. (4.2) applied to the 𝜂-profile.
his ‘phase-dependent’ equilibrium vacancy concentration is used in
he eigenstrain definition (2.8), such that the uncoupled equilibrium
rofiles at a flat surface of a material with equilibrium vacancy con-
entration is free of eigenstrain. In Section 6 we further analyze the
btained 𝑐veq(𝜂)-profile with regard to the bi-stable energy landscape of
he phase-field formulation.

. Results

For analyzing the stress fields predicted by the two models we place
single void with dimensionless radius 𝑟 = 𝑟void in the center of the

omain, compare Fig. 3 left. The stresses are analyzed for two cases,
a) for a void in a material with thermal equilibrium concentration of
acancies (𝑆v = 1) and (b) for a void in a material that is 50-times
upersaturated with vacancies (𝑆v = 50), where we introduced the
alue of supersaturation 𝑆v = 𝑐v∕𝑐veq. Employing the symmetry of the
roblem, only a quarter of the domain is analyzed, with a side length
f 200 dimensionless length units. The initial mesh is displayed on
he right hand side of Fig. 3. No-flux boundary conditions are applied
or the vacancy concentration 𝑐v and the order parameter 𝜂 at all
oundaries. For the displacement, symmetric boundary conditions are
pplied at the symmetry planes, while the displacement in �̃�- and �̃�-
irection is set to zero at the other boundaries, cf. central image in
ig. 3. The time step is chosen as 𝛥𝑡 = 10−4 in dimensionless time units.
he model parameters of copper used for the calculations are listed

n Table 1. The single void is initialized with a tanh-profile in radial
irection both for vacancy concentration and order parameter if not
tated otherwise. The simulations in the next Subsection are performed
ill the relative change of the total free energy was negligible, as
escribed in Section 4.

.1. Stress-field around a void in bulk material with thermal equilibrium
acancy concentration

To begin with, we discuss the reason for turning away from the
nterpolation approach. The stimulus for eigenstrains and thus internal
tresses is the supersaturation. Hence, for 𝑆v = 1 the stresses at a flat
urface should be zero. Though for a circular void (very) minor hoop
tresses might be expected at the surface, since the equilibrium vacancy
oncentration is known to be slightly curvature dependent [24], the
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Fig. 2. Results of equilibration at flat surface: (a) functional relationship 𝑐veq(𝜂), (b) equilibrium phase-field profiles.
Fig. 3. Schematic representation of considered geometry with initial and boundary conditions (left and center) and the employed initial mesh (right).
Table 1
Model parameters used in the phase-field model simulations. In the unit column, ls stands for ‘lattice site’.
Symbol Parameter Value Unit Reference

𝐸v
f formation energy of vacancies 1 eV∕ls [33]

𝑠vf formation entropy of vacancies 2.969 𝑘B eV∕(K ls) [44]
𝛺a atomic volume 1.182 × 10−29 m3 [45]
𝑇melt melting temperature 1356 K [45]
𝐸 Young’s modulus 130 GPa [46]
𝜈 Poisson ratio 0.34 − [46]
𝜀v volumetric eigenstrain −0.2 − [1]
𝑘B Boltzmann constant 8.617 34 × 10−5 eV∕K –
�̄� Landau prefactor 1 eV∕ls [33]
�̃� dimensionless generalized surface mobility 1 − [33]
𝜅𝜂 gradient energy coefficient order parameter 1.0 𝜉2 eV [23]
𝜅c gradient energy coefficient vacancy concentration 1.0 𝜉2 eV [23]
𝑇 simulation temperature 1000 K –
𝑟void dimensionless void radius 20 − –
n
t

radial stresses still should be trivial at a curved free surface. However,
for the interpolation approach we observe high stress peaks in the
interface for hoop and radial stresses. In Fig. 4, plots of the radial and
hoop stress as a function of the dimensionless distance to the void
center ratio 𝑟∕𝑟void for two distinct directions, 𝜃 = 0° and 𝜃 = 45°,
re displayed. There is a slight discrepancy between the stresses along
he two directions due to the discretization of a circular void with
uadrilateral elements. However, along either direction one observes
trong fluctuations and high peaks for the radial and hoop stress. The
aximal eigenstrain is found near the nominal position of the void

urface (at 𝜂 = 0.5). As noted above, the high stresses within and
heir fluctuations across the diffuse interface are deemed non-physical.
oreover, besides the strong fluctuations within the diffuse interface,
5

ote that this model also predicts considerable stresses in the bulk close
o the void surface, reaching values of about 55MPa and −165MPa

for the radial and circumferential stresses, respectively (cf. Fig. 4).
As opposed to the stresses within the surface, the bulk stresses are
essentially independent of the direction chosen for evaluation.

As a remedy for the explained problem we propose considering the
equilibrium vacancy concentration to be a function of the order param-
eter, i.e. Eq. (2.8). The stresses obtained from the equilibrium profile
approach with identical simulation parameters and initial conditions to
those in the interpolation approach are displayed in Fig. 5. Here, too,
the radial and hoop stress show peaks at 𝑟 ≈ 𝑟void, but the stresses are an
order of magnitude smaller than those of the interpolation approach.
Likewise, the radial and circumferential stresses in the bulk close to
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Fig. 4. Radial stress (a) and hoop stress (b) near a void in material without supersaturation as obtained from the interpolation approach.
Fig. 5. Radial stress (a) and hoop stress (b) near a void in material without supersaturation as obtained from the equilibrium profile approach.
the void surface only reach about 4MPa and −2MPa, respectively,
hich is even more than an order of magnitude smaller than with the

nterpolation approach.

.2. Stress-field around a void in a supersaturated bulk material

After establishing a better compliance with the expectations in the
ase without supersaturation, we investigate how the eigenstrain mod-
ls affect the stress profile for a void in a material supersaturated with
acancies, for which we derived the analytical solution of stress in a
harp interface formulation. The derivation of the analytical solution is
rovided in Appendix A. We note that the analytical solution complies
ith the expected stress-free material in the non-supersaturated case
𝑆v = 1). The supersaturation in the subsequent example was chosen to
e 𝑆v = 50. Since the void will grow as a consequence of the supersat-
ration, we regard the stresses taken from the initial time step in order
o focus on the stress predictions, only. At a later time the different
inetics of the two models produce different phase-field distributions
nd interface positions which would make a comparison more involved.
or both approaches the void was initialized with a tanh-profile for
he order parameter 𝜂, while we employed the 𝑐veq(𝜂)-relationship for

initializing the vacancy concentration.
Plots of the radial and hoop stress for the interpolation approach

in the directions along 𝜃 = 0° and 𝜃 = 45° are provided in Fig. 6
together with the analytically obtained stresses. Like in the case without
supersaturation, the results show peaks within the interface, leading
6

to a large deviation from the analytical solution. The radial and hoop
stresses also deviate discernibly from the analytical solution in the bulk
near the void surface.

The stresses obtained for the equilibrium profile approach for the
void in a supersaturated matrix are shown in Fig. 7. Minor stress peaks
also occur in this model within the interface but these are much smaller
than those of the interpolation approach. In the bulk, the results from
the equilibrium profile approach are very similar to the analytical
solution even in the vicinity of the void surface.

In the supersaturated case we additionally performed a mesh-
dependence study, to see if the stress fluctuations are merely the result
of coarse mesh resolution. The stresses observed with a seven times
higher mesh resolution than used above are displayed in Fig. 8 (a)
for the interpolation approach and in Fig. 8 (b) for the equilibrium
profile approach, each time evaluated in horizontal direction, 𝜃 = 0°.
In either case we additionally plot the eigenstrain profile and the
analytical solution of the stresses. Note that the irregularities in the
numerically obtained stress profiles stem from the very inhomogeneous
mesh and we deem them to be of no physical significance. For the
interpolation approach we find that the radial stress fluctuations can
be reduced when using a finer mesh, but the overshoot of the hoop
stress appears to be intrinsic to the interpolation approach, Eq. (2.7);
the diagram suggests that this is due to the maximum eigenstrain
occurring in the middle of the interface independent of mesh resolution.
Both stress components also still show discernible deviations from the
analytical solution in the bulk. In the case of the equilibrium profile
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Fig. 6. Radial stress (a) and hoop stress (b) near a void in material with supersaturation 𝑆v = 50 as obtained from the interpolation approach.
approach, Fig. 8 (b), the fluctuations of radial and hoop stresses are
simultaneously reduced with a higher mesh resolution; this seems
likewise expectable from the 𝜂-dependent eigenstrain which smoothly
ransitions from void to bulk. Moreover, the stress components match
he analytical solution well up to the surface.

.3. Elasto-diffusional growth of a void in a supersaturated bulk material
nder deformation

After validating the stress-coupling with the equilibrium profile
pproach in the two former subsections, we now demonstrate the
nfluence of the elasto-diffusional coupling by regarding the growth of
void in a stressed material. Besides the undirected diffusion of vacan-

ies, which will transport vacancies along concentration gradients, we
xpect in inhomogeneous stress states a drift of vacancies along gradi-
nts of what has been termed the elastic chemical potential [15,16,47]:

el ∶=
𝛿𝜓el

𝛿𝑐v
= −𝜺v ∶ 𝝈 = − 𝜀

v

2
tr(𝝈)
1 + 𝜈

, (5.1)

where we inserted Eq. (3.3) to obtain the last equality. The elastic
chemical potential is in this case proportional to the trace of the (non-
planar) stress tensor tr(𝝈) = 𝜎11+𝜎22+𝜎33, where due to the plane-strain
assumption we have 𝜎33 = 𝜈

(

𝜎11 + 𝜎22
)

with Poisson’s ratio 𝜈 = (3𝐾 −
𝐺)∕[2(3𝐾 + 𝐺)]. Vacancies preferentially stay in (and drift towards)
reas with small elastic chemical potential, which means in the current
ase, since 𝜀v = −0.2 is negative, that vacancies prefer regions with
hydrostatic compressive stress (negative trace) over areas with a

ydrostatic tensile stress (positive trace).
As example for the elasto-diffusional coupling we choose a tensile

eformation in �̃�-, i.e. horizontal, direction, compare Fig. 9. A void is
laced in a highly supersaturated material, 𝑆v = 1000, and a dimension-
ess horizontal displacement �̃� = 4 is applied instantly. The simulation
s run until dimensionless time 𝑡 = 500. Obviously, the resulting initial

vacancy concentration of more than 0.1 and stresses on the order of
up to 10GPa are meaningless for any real material. The high values
of supersaturation and strain are only chosen in order to detect the
appearing coupled effects and the resulting growth clearly within a
reasonable simulation time. However, similar effects are expected to
appear also under less extreme conditions after much longer times.

In Fig. 10, the void growth indicated by the change of the dimen-
sionless void radius 𝛥𝑟void for the tensile and transverse direction, 𝜃 = 0°
and 𝜃 = 90°, respectively, is displayed. Initially, the radius of the
void surface, indicated by 𝜂 = 0.5, grows faster along the transverse
direction, as can be seen in Fig. 10 (a). However, in the long run, the
void grows faster in the tensile direction, as may be read from Fig. 10
7

(b). In Fig. 11 (b), the initial (𝑡 = 0) and final distribution (𝑡 = 500)
are opposed, clearly showing the anisotropic void growth. Notably, the
void shape as a result of the coupled simulation does not show a simple,
e.g. ellipsoidal shape.

The observations in this example may be rationalized in conjunction
with the trace of the stress resulting only from the tensile load in the
initial configuration, as displayed in Fig. 11 (a). Starting with a high
supersaturation, we expect the void surface to act as vacancy sink,
where the sink strength is slightly modified by the stress field from
the tensile load, since the gradient of the elastic chemical potential
across the surface is higher where the trace of the stress tensors is
higher. Initially, we therefore expect the void to grow slightly faster
along the transverse direction than along the tensile direction. This
initial behavior may be regarded as dominated by surface reactions.
However, while the concentration diminishes quicker on the surface
in transverse direction, the higher elastic chemical potential around
the transverse direction slows down further vacancy diffusion along
the developing concentration gradient, since the gradient of the elastic
chemical potential induces a drift in the opposite direction. By contrast,
the diffusion is enhanced by the elasto-chemical drift around the tensile
direction. Therefore, the void soon starts growing faster along the
tensile direction than along the transverse direction in the diffusion
dominated regime. We note that on the phenomenological level, such
a developing anisotropy under stress is reminiscent of the so-called
rafting of 𝛾 ′-particles in Ni-based super-alloys, cf. for instance [48].

6. Discussion

The results presented in the last section clearly show that with
the equilibrium profile approach the stress artifacts, which occur in
and close to the diffuse interface in the more traditional interpolation
approach, can be reduced considerably. The very high stress fluctua-
tions displayed by the interpolation approach in the non-supersaturated
case were found to be relatively less severe for a high supersaturation.
But in conjunction with the deviations in the bulk, these fluctuations
may still be expected to affect results of elastically coupled simulations
of vacancy diffusion close to free surfaces. In the non-supersaturated
and the highly supersaturated case, the equilibrium profile approach
showed far lower deviations from the analytical solution both in the
surface and in the adjacent bulk. For very high mesh resolutions,
only the equilibrium profile approach showed no discernible stress
fluctuations and clearly approached the analytical solution. Finally, we
showed that the coupled elasto-diffusion with the equilibrium profile
approach predicts anisotropic void growth in uniaxial tension. In the
latter simulation we used very high supersaturations leading to unrea-
sonably high stresses in order to speed-up the evolution. However, one
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Fig. 7. Radial stress (a) and hoop stress (b) near a void in material with supersaturation 𝑆v = 50 as obtained from the equilibrium profile approach.
Fig. 8. Stress and eigenstrain components for a void under supersaturation simulated on a refined mesh as obtained from (a) the interpolation approach and (b) the equilibrium
profile approach. For comparison, the analytical solutions for the stress components are displayed as black dash-dotted line.
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Fig. 9. Schematic of single void in supersaturated material with initial and boundary
conditions including horizontal deformation.

may expect to observe similar effects with less extreme supersaturation
and stress over longer times.

While the equilibrium profile approach rather emerged of necessity,
a further analysis of the obtained equilibrium profile may justify the
approach retroactively. When the obtained profile 𝑐veq(𝜂) as given in
Eq. (4.2) is plotted into a contour diagram of the dimensionless ho-
mogeneous energy �̃�hom, one finds that the curve is not far from a
minimum energy path connecting the two phase minima, as may be
obtained, e.g. from the nudged elastic band (NEB) method, see Fig. 12.
The NEB method is frequently used in molecular statics to obtain tran-
sition pathways and energy barrier heights to be used in Monte Carlo
8

d

simulations or transition state theory. The minimum energy pathway
(MEP) obtained by the NEB method on the one hand passes the saddle
point between two energy minima and on the other hand the path
itself minimizes the energy in the sense that points on the path locally
minimize the energy in a (hyper-)plane perpendicular to the path. The
path is consequently perpendicular to the energy levels and thus par-
allel to the gradient of the energy, i.e. it is a so-called steepest descent
path.1 In transition state theory this path is considered to be the most
likely ‘reaction’ path to be followed, when a system switches between
two energy minimizing states. In the current example, the result of the
NEB as displayed in Fig. 12 is the MEP between the bulk and void
phase when only the dimensionless homogeneous energy density �̃�hom

is considered. Obviously, the equilibrium profile 𝑐veq(𝜂) obtained from
he relaxed flat surface is not the MEP for the homogeneous energy, cf.
ig. 12. But a deviation from this MEP is expected, since the equilibrium
rofile is obtained from minimizing the total energy, which also con-
ains the surface contribution 𝜓gr involving the gradients of the fields.
ssuming that 𝑐veq(𝜂) is the MEP2 of the total energy, the equilibrium

1 Indeed, the NEB is only designed to converge to an extremal steepest
ecent path, that is, the resulting path might also contain a ridge of maximal
nergy [49]. However, for the current energy the NEB obviously converged to
n MEP.

2 Actually, 𝑐veq(𝜂) is assumed to be the projection of the MEP in the higher
v
imensional space involving the gradients of the fields to the 𝑐 –𝜂-plane.
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Fig. 10. Void growth (void-surface displacement from initial position) along tensile (𝜃 = 0°) and transverse (𝜃 = 90°) direction for a void under supersaturation and tensile
deformation: (a) initial void growth up to dimensionless time 20, (b) void growth over the full simulation time.
Fig. 11. Anisotropic growth of void when exposed to tensile load: (a) Contour plot of trace of stress tr(𝝈) resulting from tensile load in the initial state, (b) Contour plot of
vacancy concentration in initial state (𝑡 = 0) and final state (𝑡 = 500).
Fig. 12. Contour plot of dimensionless homogeneous free energy density with paths
between bulk and void phase.
9

profile approach may be viewed as defining the elastic energy such that
this path, which defines the coupled profiles of the order parameters
across the surface, is also an MEP of the elastically coupled energy,
since the elastic contribution vanishes along this path. Consequently, a
flat surface in the elastically coupled calculation is supposed to likewise
attain the profiles which comply with this MEP and in turn result in a
stress-free surface. While the resulting stresses have been discussed in
detail in Section 5, we now take a look at the energy density across
the surface. We again oppose the equilibrium profile approach and the
interpolation approach. In Fig. 13, the deviations in various energy
density contributions 𝛥�̃�contr = �̃�approach, contr − �̃�uncoupled, contr of the two
coupled models from the model without elastic coupling are plotted
as function of the order parameter 𝜂. The regarded contributions are
the deviations in the homogeneous energy density 𝛥�̃�hom, the gradient
energy density 𝛥�̃�gr , and the elastic energy density 𝛥�̃�el. Note that
the elastic energy density of the uncoupled case vanishes, such that
the latter ‘deviation’ is just the elastic energy of the coupled model,
𝛥�̃�el = �̃�el, approach. The displayed results are deduced from numerically
equilibrated flat-surface-profiles of 𝑐v and 𝜂. For the equilibrations
with regard to the uncoupled and the two coupled energies, the phase
fields were each time initialized with a tanh-profile for 𝜂 and the
concentration profile obtained from the former through Eq. (4.1). The
equilibrated profiles were obtained with a mesh similar to the one
shown in Fig. 1, but with three more levels of refinement in the center.
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Fig. 13. Energy deviations from the uncoupled system (where �̃�el ≡ 0) for (a) interpolation approach and (b) equilibrium profile approach.
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The deviations in the different energy density contributions are
isplayed in Fig. 13 as a function of the order parameter 𝜂, which is
sed to parameterize the position within the flat surface invariant of
he employed approach. The absolute energetic differences are small
or both coupled approaches, where we note that different vertical
cales are used for the deviations in case of the interpolation approach,
ig. 13 (a), and of the equilibrium profile approach, Fig. 13 (b). In
ase of the interpolation approach the deviations are roughly on the
rder of 10−2 for the gradient and the elastic energy densities and
n the order of 10−3 in case of the homogeneous energy density. In
ase of the equilibrium profile approach, the deviations are roughly
n the order of 10−5 for the gradient and the homogeneous energy
ensities and on the order of 10−6 in case of the elastic energy density.
n comparison, the energy deviations from the uncoupled system is
hree orders of magnitude larger for the interpolation approach than
or the equilibrium profile approach. Notably, the (deviation of the)
lastic energy density is nearly four orders of magnitude larger for the
nterpolation approach. From the very low deviations in the energy
ensity contributions observed for the equilibrium profile approach we
ee that the phase-field profiles across a flat interface remain virtually
nchanged upon the elastic coupling.

During the review we were made aware of the work by Aagesen and
o-workers [50], who used a somewhat similar equilibrium concentra-
ion depending on a non-conserved order parameter in a phase-field
ormulation for multiphase materials in the spirit of Kim, Kim and
uzuki [51] based on a grand potential formulation [52]. In contrast
o the current approach, the equilibrium concentration profile in [50]
s obtained from an interpolation rather than from an equilibrated
ystem. But with this proceeding, Aagesen and co-workers achieved a
ecoupling of bulk energy and interfacial energy contributions. In a
imilar way, the current equilibrium profile approach may be viewed
s decoupling the energies of bulk and surface stresses, where the latter
re deemed negligible in the current work. It appears promising to
ddress the relation between the two approaches in more detail.

. Conclusion

The phase-field method offers an important perspective for mod-
ling the concurrent evolution of defects and defect concentrations
n crystals in a spatially resolved fashion. Defect interactions usually
nvolve eigenstress fields induced by the defects and a coupling of
hase-field descriptions with elastic effects is needed to capture these
nteractions. We think that the current work provides convincing evi-
ence and theoretical justification for pursuing the equilibrium profile
pproach in phase-field models of elasto-diffusion of vacancies. It ap-
10

ears that this approach could also be easily extended to phase-field v
odels which additional account for interstitial concentrations, though
he coupling of the equilibrium profiles of different point defects species
cross the surface may require some further investigations. The ap-
roach should also be transferable to electrically charged point defects
n phase-field models, since electrical charges are usually likewise mod-
led proportional to the point defect concentration, which would lead
o charge accumulations in surfaces when variants of the interpolation
pproach would be employed.

The equilibrium profile approach does of course also entail cer-
ain limitations which require further investigations. It is for example
nown that the equilibrium vacancy concentration at a surface depends
n the curvature of the surface. In the regarded cases this curvature
ependence seemed negligible, but this may be different for very
mall voids (high curvature) or also at lower temperatures, when the
quilibrium concentration is much lower to begin with and the relative
nfluence of surface curvature may be larger. The latter point leads
ver to the fact that the equilibrium vacancy concentration is of course
emperature dependent and that, accordingly, the equilibrium profile
ill in general likewise have to be a function of temperature, 𝑐veq(𝜂, 𝑇 ).
he equilibrium profile will in fact also depend on all other parameters

n the energy density, most notably on the gradient coefficients 𝜅c and
𝜂 . How to deal with dependencies of the equilibrium profile upon
ield quantities like temperature and surface curvature shall be topic
f future research.
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Fig. 14. Infinitesimal area element with stresses in polar coordinates.

ppendix A

In this Appendix we derive the analytical solution for plane axisym-
etric problems with volumetric misfit in polar coordinates. Starting
ith the sum of the forces in radial and tangent direction on an

nfinitesimal area element, cf. Fig. 14, one arrives at the equilibrium
quations in polar coordinates,
𝜕𝜎𝑟𝑟
𝜕𝑟

+ 1
𝑟
𝜕𝜎𝑟𝜃
𝜕𝜃

+ 1
𝑟
(

𝜎𝑟𝑟 − 𝜎𝜃𝜃
)

= 0, (A.1a)

𝜕𝜎𝑟𝜃
𝜕𝑟

+ 1
𝑟
𝜕𝜎𝜃𝜃
𝜕𝜃

+
2𝜎𝑟𝜃
𝑟

= 0. (A.1b)

Considering the axisymmetry of the underlying problem, i.e. 𝜎𝑟𝜃 = 0
and 𝜕(⋅)

𝜕𝜃 = 0, the equilibrium equations reduce to the single equation

𝜕𝜎𝑟𝑟
𝜕𝑟

+ 1
𝑟
(

𝜎𝑟𝑟 − 𝜎𝜃𝜃
)

= 0. (A.2)

If only radial displacements are considered, i.e. 𝑢𝑟 ∶= 𝑢, 𝑢𝜃 = 0, the
lementary strain–displacement relations read

𝑟𝑟 =
𝜕𝑢
𝜕𝑟
, 𝜀𝜃𝜃 =

𝑢
𝑟
, 𝜀𝑟𝜃 = 0 . (A.3)

The appearing lattice misfit is incorporated in the form of (Eq. (2.7)
and (2.8))

𝜀∗𝑟𝑟 = 𝜀∗𝜃𝜃 =
𝜀v

2

(

𝑐v − 𝑐veq
)

= 𝜀v

2
(𝑆v − 1) 𝑐veq, 𝜀∗𝑟𝜃 = 0 . (A.4)

We point out that in the considered examples we always assume a
spatially homogeneous vacancy concentration 𝑐v, such that also the
igenstrain components are constants. We accordingly introduce the
onstant 𝜀∗ = 𝜀∗𝑟𝑟 = 𝜀∗𝜃𝜃 . In order to combine Eqs. (A.2) and (A.3)
e employ Hooke’s law in its stress-based form for plane-strain and

he relation between total strain, elastic strain and eigenstrain, i.e.
el = 𝜺 − 𝜺∗. Consequently we obtain

𝜎𝑟𝑟 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
[

𝜈(𝜀𝜃𝜃 − 𝜀∗) + (1 − 𝜈)(𝜀𝑟𝑟 − 𝜀∗)
]

, (A.5a)

𝜎𝜃𝜃 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
[

𝜈(𝜀𝑟𝑟 − 𝜀∗) + (1 − 𝜈)(𝜀𝜃𝜃 − 𝜀∗)
]

, (A.5b)

where 𝐸 is Young’s modulus and 𝜈 Poisson’s ratio. If Eqs. (A.3), (A.5a)
and (A.5b) are inserted in (A.2) one arrives at

(1 − 𝜈)
[

𝜕2𝑢
𝜕𝑟2

+ 1
𝑟
𝜕𝑢
𝜕𝑟

− 𝑢
𝑟2

]

= 0 . (A.6)

The term inside the bracket is an ordinary differential equation the
solutions of which are of the form

𝑢 = 𝐶1𝑟 +
𝐶2
𝑟
, (A.7)

with 𝐶1 and 𝐶2 being constants obtained from boundary conditions. If
q. (A.7) is inserted into Eqs. (A.5a) and (A.5b), while considering the
train–displacement relations of Eq. (A.3), one obtains for the stresses

𝜎𝑟𝑟 =
𝐸 [

𝐶1 − 𝐶2(1 − 2𝜈) 1 − 𝜀∗
]

, (A.8a)
11

(1 + 𝜈)(1 − 2𝜈) 𝑟2
Fig. 15. Schematic depiction of the nudged elastic band method (based on [53]). The
solid lines indicate iso-(hyper-)surfaces of an energy potential 𝑉 .

𝜎𝜃𝜃 =
𝐸

(1 + 𝜈)(1 − 2𝜈)

[

𝐶1 + 𝐶2(1 − 2𝜈) 1
𝑟2

− 𝜀∗
]

. (A.8b)

The constants 𝐶1 and 𝐶2 are obtained from boundary conditions. At
the free surface of the void we have 𝜎𝑟𝑟(𝑟 = 𝑟void) = 0 and we impose
that the radial displacement vanishes at the outer boundary, i.e. 𝑢(𝑟 =
far ) = 0, with 𝑟far being the distance between the origin of the void
nd the boundary of the considered circular domain. These boundary
onditions yield the constants

1 =
𝜀∗

1 + (1 − 2𝜈)
𝑟2far
𝑟2void

, 𝐶2 = −𝐶1 𝑟
2
far . (A.9)

ince we actually do not consider a circular but a quadratic domain
n Section 5.2, this analytical solution is not obviously applicable.
owever, for symmetry reasons, the employed conditions, 𝜎𝑟𝜃 = 0,

𝜕(⋅)
𝜕𝜃 = 0, and 𝑢𝜃 = 0 as well as vanishing radial displacements on the

outer boundary are fulfilled along the horizontal direction, 𝜃 = 0°, and
along the diagonal direction, 𝜃 = 45°. The solutions in these directions
are different because 𝑟far denotes in this case the distance from the
void center to the point on the outer surface, such that 𝑟far = 200
in horizontal and 𝑟far =

√

2 200 in diagonal direction, each time in
dimensionless length units. However, the domain is large enough to
make the difference between the two solutions so small, that it would
be hardly discernible in the plots in Section 5.2. In these plots, the
displayed analytical solution is always the one for 𝜃 = 0°.

Appendix B

In this appendix we give a brief description of the nudged elastic
band (NEB) method [54], which is commonly employed to obtain
so-called minimum energy paths (MEP) between two (local) energy
minima. A path in configuration space is called an MEP if every point
on the path is at an energy minimum in all directions perpendicular
to the path, which means that the path is perpendicular to the iso-
(hyper-)surfaces of the energy potential 𝑉 , compare Fig. 15. An MEP
is consequently a so-called steepest descent path and it passes through
(at least) one saddle point, which represents the maximum energy along
this path [53], while it also marks the minimal energy barrier which
needs to be overcome when changing from one minimum to the other.
Each image 𝑖 represents a configuration of the system along the path.
In the nudged elastic band method the points are modeled as being
connected by springs. Each image is then subject to a force (cf. Fig. 15),

𝑭NEB = 𝑭 S|| + 𝑭⟂, (B.1)
𝑖 𝑖 𝑖
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where 𝑭 S||
𝑖 are spring forces that act parallel to the path while 𝑭⟂

𝑖 are
the forces due to the energy potential that act perpendicular to the path.
The spring forces ensure equal spacing of the images along the path and
are calculated as

𝑭 S||
𝑖 = 𝑘

(

‖𝑹𝑖+1 −𝑹𝑖‖ − ‖𝑹𝑖 −𝑹𝑖−1‖
)

�̂� 𝑖, (B.2)

with 𝑘 being a spring constant, 𝑹𝑖 is the position in state space of image
𝑖 and �̂� 𝑖 is a suitably defined local unit tangent to the path at image 𝑖.
The force perpendicular to the path is given by,

𝑭⟂
𝑖 = 𝑭 𝑖 −

(

𝑭 𝑖 ⋅ �̂� 𝑖
)

�̂� 𝑖, (B.3)

with 𝑭 𝑖 = −𝛁𝑉 (𝑹𝑖) being the negative gradient of the energy potential
𝑉 (𝑹) at image 𝑖. We adopted the tangent estimate from [55], which is
based on the non-normalized tangent vector defined in dependence on
the energy potential as

𝝉 𝑖 =

{

𝝉+𝑖 𝛥𝑉
max
𝑖 + 𝝉−𝑖 𝛥𝑉

min
𝑖 if 𝑉𝑖+1 > 𝑉𝑖−1

𝝉+𝑖 𝛥𝑉
min
𝑖 + 𝝉−𝑖 𝛥𝑉

max
𝑖 if 𝑉𝑖+1 < 𝑉𝑖−1

, (B.4)

where 𝝉+𝑖 = 𝑹𝑖+1−𝑹𝑖, 𝝉−𝑖 = 𝑹𝑖−𝑹𝑖−1, 𝛥𝑉 max
𝑖 = max(|𝑉𝑖+1−𝑉𝑖|, |𝑉𝑖−1−𝑉𝑖|),

and 𝛥𝑉 min
𝑖 = min(|𝑉𝑖+1 −𝑉𝑖|, |𝑉𝑖−1 −𝑉𝑖|). The normalized tangent is then

obtained as �̂� 𝑖 = 𝝉 𝑖∕|𝝉 𝑖|.
An NEB calculation starts from an initial (often linear) pathway and

the image positions are iteratively shifted in the force direction,

𝑹𝑖 ↦ 𝑹𝑖 + 𝛼𝑭NEB
𝑖 , (B.5)

with a parameter 𝛼. The process is stopped when the remaining forces
are sufficiently small in a suitable norm. This results in an (approxi-
mate) steepest descent path with equally spaced images, because 𝑭⟂

𝑖
and 𝑭 S||

𝑖 need to be small simultaneously.
In the current work we obtained the MEP in Fig. 12 numerically

by adopting and modifying the ‘Minimum Energy Path Tools’ Python
package mep [43,56], which is a package that contains various methods
for finding the minimal energy path (originally in molecular statics)
based on the publications by Henkelman et al. [55,57]. The provided
energy in the package was substituted with the homogeneous energy
Eq. (2.3) and the path was discretized with 101 images. We used the
spring constant 𝑘 = 1 and the parameter 𝛼 = 4 × 10−3. The stop criterion
was set to 𝐹NEB < 5 × 10−3, where 𝐹NEB is the norm of the global force
vector,

𝐹NEB =
√

∑

𝑖
‖𝑭NEB

𝑖 ‖

2 , (B.6)

where the sum runs through the images along the path except for the
fixed end-points in the known minima.
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