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Stylized faces enhance ERP
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For their ease of accessibility and low cost, current Brain-Computer Interfaces

(BCI) used to detect subjective emotional and affective states rely largely

on electroencephalographic (EEG) signals. Public datasets are available for

researchers to design models for affect detection from EEG. However, few

designs focus on optimally exploiting the nature of the stimulus elicitation to

improve accuracy. The RSVP protocol is used in this experiment to present human

faces of emotion to 28 participants while EEG was measured. We found that

artificially enhanced human faces with exaggerated, cartoonish visual features

significantly improve some commonly used neural correlates of emotion as

measured by event-related potentials (ERPs). These images elicit an enhanced

N170 component, well known to relate to the facial visual encoding process. Our

findings suggest that the study of emotion elicitation could exploit consistent,

high detail, AI generated stimuli transformations to study the characteristics of

electrical brain activity related to visual affective stimuli. Furthermore, this specific

result might be useful in the context of affective BCI design, where a higher

accuracy in affect decoding from EEG can improve the experience of a user.
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1. Introduction

Emotions are a complex subjective phenomenon. Many scientific models for studying
emotions have been created to work under different contexts. Eckman’s model of basic
emotions, for example, defines categorical emotions based on facial expressions common
across cultures, such as joy, anger, disgust, surprise, sadness, and contempt (Ekman, 2005).
This categorical model of emotions has greatly impacted theories of affective neuroscience,
and has led to models that attempt to classify emotions experienced by humans into
categories. Another common example of a widely used model of categorical emotions was
defined by Robert (1991), based on human and animal behavioral traits. The DEAP dataset,
one of the most widely used datasets for emotion detection from electroencephalography
(EEG), contains tags for the emotions of pride, elation, joy, satisfaction, relief, hope, interest,
surprise, sadness, fear, shame, guilt, envy, disgust, contempt, and anger (Koelstra et al., 2012).

Although categorical models are helpful, when using them to solve the problem
of emotion detection from EEG, machine learning engineers rarely attend to the
neurophysiological models of emotions. This means that models that accurately
predict an emotional category might not have strong corresponding neural correlates
(Torres et al., 2020).
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To make sense of emotions from a neuroscientific perspective,
an approach focused on the human embodied experience of
emotion can be used. The most widely accepted theory of emotions
in humans, the theory of constructed emotions, postulates that
there are two factors of an affective response: core affect and
emotion (Lewis et al., 2010). In the context of this theory, when
an emotional stimulus is presented to a human, emotions do
not exist as a categorical neural pattern in the brain, but are
rather constructed from core affect. Core affect, as defined by
Russell and Barrett (1999), is “the constant stream of transient
alterations in an organism’s neurophysiological and somatovisceral
state that represent its immediate relationship to the flow of
changing events.” That is, affect is the immediate representation of
internal states. Affect is commonly represented in two dichotomic
variables related to immediate response: valence and arousal. The
representation or encoding of affect can later be used by the brain
to create or construct a subjective experience, this is considered a
constructed emotion. Russell (2003) suggests that core affect can
become a constructed emotion through object-directed attributions
or appraisals. This definition allows for a complex understanding of
emotion that depends on the biological, psychological, and social
context of the person experiencing it.

An example to understand the difference of these two
definitions is looking at a video of a stranger with a neutral
face expression changing to a smiling expression. The immediate
change of state in the viewers as measured by neurophysiological
variables would be considered a change in core affect. At the
same time, the attributions that a person makes about that specific
stimulus in the current context determine the constructed emotion.
The emotion depends on the individual’s present and past states.

1.1. Affect and emotions in the brain

Human faces have been selected as stimuli for this experiment,
because they could establish a future connection to models
of categorical human emotions (like the Eckman model).
Furthermore, brain activity patterns elicited by faces expressing
different emotions might be measurable with EEG (Bentin et al.,
1996).

A specialized structure in the brain has been described to
specifically encode a representation of visual stimuli belonging
to faces and face-like images: the Fusiform Face Area (FFA),
although varying slightly between individuals, is located in the
medial anterior face of the left temporal lobe (Kanwisher et al.,
1997; Kanwisher and Yovel, 2006). Using different brain imaging
techniques, the FFA has been consistently found to activate about
170 ms after a person perceives a face. Functional magnetic
resonance imaging (fMRI) and magnetoencephalography (MEG)
were first used to describe the FFA (Halgren et al., 2000).
Transcranial magnetic stimulation (TMS) of the FFA also disrupts
the perception of facial expressions (Pitcher et al., 2008).

For EEG analysis of the FFA, event-related potentials (ERPs) are
used to study the negative electric potential at around 170 ms after a
participant has seen a face, the so-called N170. Studies of the N170
interpret a negative potential in the left temporal lobe 170 ms after
stimulus onset as the usage of resources on the encoding of faces
(Näätänen, 1988; Gao et al., 2019). The N170 has also been found

to be a useful feature to reliably classify the affect of stimulus faces,
indicating an encoding of core affect in the FFA (Blau et al., 2007).

While affective encoding in the N170 can be used for affect
classification, emotion classification has few reliable features that
work across different participants and studies. The most reliable
features relate to connectivity between frontal and left temporal
lobes, as well as inter-hemispheric frontal connectivity. However,
a simple interpretation of the theory of constructed emotions is
that the construction of an emotional experience requires cognitive
resources. Whereas this study aims to measure some of the most
common features for emotion classification (frontal late cortical
potentials, frontal differential entropy, and N170 peak and mean
voltage), a more comprehensive list of features used for emotion
selection is available in Zheng et al. (2019).

1.2. Faces as visual stimuli

Visual encoding of faces is a widely researched phenomenon.
By modifying the properties of the stimulus faces and comparing
the resulting activity between the original stimuli and the modified
images, inferences can be made about the internal representation
of faces. Yang et al. found that the N170 amplitude increases
when there are modified face characteristics that make participants
struggle with facial recognition. This indicates extra resource
allocation for encoding a face when, for example, blocking certain
areas of that face (Yang et al., 2020). Liu et al. (2016) found
that Chinese opera masks elicited a reduced N170 amplitude as
compared to normal faces. Jiang et al. (2016) were able to classify
faces with negative vs. neutral emotions from the Chinese Affective
Picture System using EEG from a single trial of 1 s. For the
detection of emotions from EEG, faces are not a common elicitation
method. Studies generally use videos or pictures with a more
general theme. In this case, late cortical potentials (LCP) have
been found to be relevant for the classification of emotions from
EEG (Rahman et al., 2021). Cuthbert et al. (2000) found that
emotionally loaded images from the International Affective Picture
System (IAPS) produce a larger ERP amplitude from 300 ms and
up to 1 s after stimulus onset. A larger frontal LCP suggests extra
resource allocation. Common features acquired from frontal EEG
for emotion recognition are consistent with the resource allocation
required for the construction of emotions (Singh and Singh, 2021).

1.3. Modifying visual stimuli for cognitive
ease

To explore brain activity related to visual stimuli, images are
commonly manipulated by adding or removing visual features
(Jiang et al., 2016; Liu et al., 2016). Manipulations that exaggerate
the features of a face influence ERP features in an opposite way than
manipulations that obstruct or remove visual features of faces (Itz
et al., 2016).

For this reason, we hypothesize that a stimulus modification
that eases the processing of the visual features of a face can facilitate
the emotional processing of the facial expression, thus increasing
the emotional response and consequently enhancing the features
used for emotion detection from EEG. To measure the processing
of said emotions, neural correlates were selected from ERP features.
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Although methods vary, studies consistently find evidence for
characteristics of EEG related to both affect and emotion. Our
objective in this study is thus to find a reproducible experimental
design where a consistent modification of the visual features will
result in the improvement of the neural correlates used for emotion
and affect detection from ERPs. To achieve this, the experimental
design must be able to disentangle the features that correlate with
affective encoding from those correlating with the construction
of emotional experience. Since categorical emotion detection is a
difficult problem, many EEG features have been proposed, but few
are consistent across experiments. With this objective in mind,
two variables for emotion detection have been selected: late frontal
mean amplitude and differential entropy (DE).

Late cortical potentials are the amplitude of the EEG signal after
a specific time with respect to an event onset compared against
a baseline before stimulus onset. In this study, a window of 300–
600 ms after the onset was selected. LCPs are commonly interpreted
as differences in attention or resource allocation (Näätänen, 1988;
Keil et al., 2002; Lang et al., 2013; Zhu et al., 2015).

Differential entropy as a feature for categorical emotion
classification has been found to yield high accuracies on emotional
classification tasks, but most importantly for this study, it has been
found to be a reliable feature across experimental designs (Duan
et al., 2013; Torres et al., 2020).

The last two variables were selected to represent emotional
encoding. They are selected within the temporal limits for
conscious experience, and align with the presented theory as
markers for the constructed emotion. Although they might
intrinsically also encode the affect that constructed them, they are
considered a measure of the resources used to convert the stimulus
affect to a meaningful experience of emotion.

N170 Mean and N170 Peak voltages were evaluated as
descriptors for the encoding of affect of the stimulus face. The peak
was selected automatically, and the mean voltage was calculated in
a 160–200 ms window after stimulus onset (Hinojosa et al., 2015;
Tian et al., 2018).

2. Materials and methods

This study was approved by the ethics committee of the Medical
University of Graz and was conducted according to the Declaration
of Helsinki. Participants were informed and their consent was
obtained before any data collection was done. All participants
agreed to the collection and publication of their anonymized data.

2.1. Participants

Twenty-eight healthy volunteers (1 left-handed, 14 female,
average age 27 ± 4.3 years) participated in this experiment. In
the data verification section, the data of two participants was
rejected, one male and one female, so EEG analysis was done only
with 26 participants. None of the participants reported cognitive,
mental, or neurological disorders. All participants had normal (or
corrected) vision. Before the measurement, participants reported
their perceived affective state and traits with the State and Trait
Anxiety and Depression Inventory (STADI). No participant scored

above 0.5 of the normalized scores for the different scales of the
STADI. This is interpreted as none of the participants having mild,
moderate, or severe depression or anxiety in neither trait nor
state evaluations.

2.2. Signal recording

Signals were recorded during the visual presentation phase of
the experiment. Participants sat comfortably on an office chair
inside a dimly lit, acoustically dampened, and electromagnetically
shielded booth. They were asked to maintain central fixation and
minimize blinks and movements throughout the measurement.
The stimuli presentation consisted of three blocks lasting 12 min
each. Participants were given time to rest between blocks. The
total duration of the experimental session did not exceed 1 h for
any participant.

2.3. Experimental paradigm

For the presentation of the images, a modification of the rapid
serial visual presentation (RSVP) protocol (Ying and Xu, 2016) was
implemented in PsychoPy v2021.1.4 (Peirce et al., 2019). Images
were shown to participants on a 24 inch monitor (61 cm diagonal
at a resolution of 1,920 × 1,080 pixels). Each of the three blocks
consisted of 300 images (that is, 100 images in three categories). The
flow diagram for the experimental design can be seen in Figure 1.

Individual trials consisted of rapid serial visual presentation of
five images. After every presentation of five images, a sixth face and
a question was shown: “Was this face in this trial?” Participants had
to respond if the sixth image was presented among the previous
five faces. The correct answer to this question was “Yes” in half
of the trials. The goal of this question was to keep participants’
attention and motivation high, as well as gamifying the experiment
by providing a final score. For the first block of the experiment,
participants were also asked to rate the image based on the Self-
Assessment Manikin (SAM) scales for valence and arousal (Peacock
and Wong, 1990).

2.3.1. Stimulus material
One hundred images were selected from the AffectNet dataset

(Mollahosseini et al., 2017) using the following criteria: frontal
or mostly frontal human faces of all ages in full color without
accessories or partially covered. The selected images were obtained
by iterative random sampling and visually filtering out images
with undesired characteristics. Images smaller than the desired
resolution were excluded, and images with a larger resolution were
resized to half the height of the display resolution (540 × 540
pixels). The images were selected from a pool of 103,479 faces
from the AffectNet dataset, hand-labeled for Valence and Arousal.
They were sampled randomly from this pool to obtain a uniform
distribution of affect. To do this, a cartesian plane with boundaries
at −1 and 1 was used from two affect variables: valence and
arousal. A circle of radius 0.5, and center at (0, 0) was used for
a neutral category. Four categories were then created for each of
the cartesian planes. This created a total of 20 pictures for each of
5 affect categories. After this process, a human-driven selection of
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FIGURE 1

Experimental timeline of the RSVP protocol. Reproduced with permission from Mollahosseini et al. (2017), available at mohammadmahoor.com/
affectnet/.

undesired images was executed: faces that were partially covered,
had too much makeup, or were visually unclear were replaced with
images with the same facial expression of emotion. Unfortunately,
the reported affect of the new images was not controlled for. This
yielded a non-uniform distribution of the affect quartiles.

2.3.2. Image modifications
Two modifications were applied independently to every image

to create three experimental categories: control, scrambled, and
cartoonish faces. The control category is referred to as IMG. The
category of stimuli for scrambled faces (SF) was created by splitting
every image in the control group into a 3 × 3 grid and randomly
shuffling the position of the tiles, producing the effect of scrambling
the visual features of the face. The cartoonified (TOON) category of
stimuli was created by subjecting the images in the control group
to a filter based on DL style transfer. This style transfer model
was trained by Pinkney and Adler (2020) to transfer the style of
cartoon characters onto photos of human faces. The model is not
publicly available, but an API can be used to apply the neural
filter on relatively small images. The filter exaggerates features
that animators use to express emotion, which includes increasing
the size of the eyes and mouth, but also changing details like
blushing, adding makeup, or softening textures. Examples of the
modifications are provided in Figure 2.

2.4. EEG recording and processing

Electroencephalography was recorded from 28 locations with a
32 channel LiveAmp amplifier (Brain Products GmbH, Germany)
at a sampling rate of 500 Hz. All EEG impedances were below
25 k�. Four additional channels were used to record EOG. The
recorded locations of the extended 10–20 system are Fp1, Fz, F3,

FIGURE 2

Example of the three image transformations that compose the
three categories of stimuli: IMG (Left), SF (Center), and TOON
(Right). Reproduced with permission from Mollahosseini et al.
(2017), available at mohammadmahoor.com/affectnet/.

F7, FC5, FC1, Cz, C3, T7, CP5, CP1, P3, P7, Pz, O1, Oz, O2, P4, P8,
CP6, CP2, C4, T8, FC6, FC2, F4, F8, and Fp2, as seen in Figure 3.

Collection was done with Brain Products’ BrainVision Recorder
Software synchronized via LSL with stimulus markers from the
stimuli paradigm. The recordings of subjects 14 and 22 were
rejected due to missing stream data in the XDF file. Biosignals
were processed with MNE-Python v0.24.1 (Gramfort et al., 2013).
Bad channels for every participant were selected through visual
inspection. These were substituted by interpolating neighboring
channels. The data was filtered (FIR, hamming window, bandpass
0.1–30 Hz), re-referenced against a common average (CAR), and
epoched with a window of (−200 to 800 ms) relative to the onset
of the face presentation. A baseline correction of 200 ms before
the stimulus onset was used. Trials with a peak-to-peak amplitude
(Vp−p) larger than 80 µV for EEG channels were automatically
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FIGURE 3

Electroencephalography layout used for acquisition. Colored
electrodes represent the selected positions from the extended
10–20 system.

rejected, as well as trials of EOG Vp−p larger than 1 mV. Trials with
channels that had less than 0.1 µV as a minimum signal Vp−p were
considered flat and rejected. No recording presented more than
10% of trial rejection.

2.5. Feature extraction

The following ERP-related features were extracted from
the EEG signals.

2.5.1. Absolute mean amplitude
The absolute mean amplitude is the average value of a given

signal in a 300–600 ms window over the frontal region electrodes.
This variable has been reported to modulate emotional processing.
It is a frontal cortical potential that is assumed to relate to the
amount of cognitive resources used for the construction of an
emotional experience.

2.5.2. Differential entropy
The signal’s differential entropy in the specified window is

defined as:

h(x) = −
∫
∞

−∞

1
√

2πσ 2
e
(x−µ)2

2σ2 · log(
1

√

2πσ 2
e
(x−µ)2

2σ2 ) dx

=
1
2

log(2πσ 2)

where x is the EEG signal, assumed to have a normal distribution
N(µ, σ2). This variable has been found to consistently produce high
machine learning accuracies for affect detection.

2.5.3. N170 mean and peak amplitude
When analyzing the temporal left region of interest, in the

window of 160–200 ms, the mean amplitude of the EEG signal
relates to the average amount of resources used for the cognitive

encoding of specific faces. The largest negative peak was also used
as a descriptive feature of the N170.

3. Results

All participants scored below 0.5 of the normalized scores
for the different scales of the STADI, meaning no participant
presented neither moderate nor severe depression or anxiety
scores. Figure 4 shows the average ERP in the frontal (Fz,
Fp1, F3, F7, FC1, FC2, F4, F8, and Fp2), parietal (Pz, P3, P7,
P4, and P8), temporal left (FC5, T7, and CP5), and temporal
right (FC6, T8, and CP6) ROIs across all participants aggregated
by experimental conditions. The marked windows are: 300–
600 ms for frontal and parietal, and 160–200 ms for temporal
ROIs.

Late cortical potentials present a significant difference between
the three experimental conditions, where the SF condition has the
smallest amplitude, followed by the IMG and TOON conditions.
Analysis of variance was used for the comparison of these
differences for each variable. Repeated measures ANOVAs were
performed with condition (3) × sex (2) as within- and between-
subject variables. An alpha value of 0.05 was selected for all
statistical tests, and presented results were adjusted using Tukey’s
correction for multiple comparisons. Results from these analyses
can be observed in Table 1.

The difference in frontal LCP between conditions was found
significant [F(2,48) = 65.812, p < 0.001, η2 0.245]. Post-hoc
tests revealed all conditions to be significantly different [IMG-SF:
t(24) = −5.91, p < 0.001; IMG-TOON: t(24) = 6.76, p < 0.001;
SF-TOON: t(24) = 10.36, p< 0.001].

Results were also confirmed when looking at the DE
variable: a significant difference between conditions was found
[F(2,48) = 31.15, p < 0.001,η2 = 0.052]. Post-hoc tests for the same
analysis revealed significant differences between the SF condition
and the rest [IMG-SF: t(24) = −6.10, p < 0.001; SF-TOON:
t(24) = 5.44, p < 0.001], but not between IMG and TOON [IMG-
TOON: t(24) = 1.67, p = 0.237]. The relevant post-hoc tests
can be observed in Table 2. No significant difference between
sexes was found.

Figure 5 shows the average ERP for all participants, aggregated
by sex, between conditions in the Temporal Left ROI (FC5,
T7, and CP5). A difference in N170 Peak amplitude was shown
to be significant with the help of a repeated-measures ANOVA
[F(2,48) = 3.384, p < 0.05, η2 0.020], but post-hoc tests
showed no significant differences within conditions. Instead a
significant difference was found in the between subject factor sex
[F(2,48) = 11.6, p = 0.002, η2 0.090]. No significant differences
were found for the N170 Mean variable [F(2,48) = 3.140, p = 0.052,
η2 0.018].

3.1. Differences in N170 between sexes

As mentioned in the last section, and demonstrated in Figure 6,
women present a smaller N170 peak. This difference was found
significant by post-hoc tests (t = 3.41, p = 0.002).

Rapid serial visual presentation task accuracy was measured
as the number of faces correctly remembered to either belong or
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FIGURE 4

Grand average ERP on frontal, parietal, temporal left, and temporal right regions of interest aggregated by experimental categories: control (IMG),
scrambled (SF), and cartoonish (TOON) faces.

TABLE 1 Results from ANOVA tests.

F(2,48) p-Value η2

LCP 65.812 <0.001 0.245

DE 31.15 <0.001 0.052

N170 peak 3.384 <0.05 0.02

N170 mean 3.14 0.052 0.018

TABLE 2 Post-hoc results for variables LCP and DE.

IMG-SF t(24) IMG-TOON t(24) SF-TOON t(24)

LCP −5.91, p< 0.001 6.76, p< 0.001 10.36, p< 0.001

DE −6.10, p< 0.001 1.67, p = 0.237 5.44, p< 0.001

not in the presented RSVP trial. RSVP task accuracy presented a
small [m = 158.42 (9.64), f = 166.36 (5.59), d = 0.96] but significant
difference between sexes. This difference was found significant with
the help of a Mann–Whitney test (U = 48.5, p = 0.024). These
results suggest that the visual processing of faces might be done
differently between sexes.

4. Discussion

We hypothesized that by easing the visual processing of an
image we could enlarge features used for affect and emotion
detection from EEG. We found that LCP and DE variables
significantly improve in the TOON category when compared to
IMG and SF, showing that the selected biomarkers for emotion and
affect improve with the TOON category.

Variables N170 Mean and N170 Peak showed no significant
difference in the within-subject factor category, but showed a
significant difference in the between-subject factor sex. Female
participants present on average a significantly earlier and smaller
N170 ERP. At the same time, RSVP score results were significantly
better for female participants. This difference in the N170 of
participants of different sex could be the reason why no significant
results in the affect variables were found. Previous studies have
shown that “women consistently perform better in face memory
tasks than men and also show earlier and larger N170 components”
(Nowparast Rostami et al., 2020). Our experiment shows earlier,
but smaller N170 peaks in female participants, but also significantly
better scores at the RSVP task. We can thus interpret that
women in our task were allocating significantly less resources
than men for face encoding and processing, while at the same
time performing significantly better at the given task. This finding
suggests models for affect classification that have bases in the N170
peak can improve their results by integrating information about the
participant’s sex. This is a factor that, to our knowledge, current
classification benchmarks do not control for Choi et al. (2015).

An assumption is being made, considering that the N170
amplitude is related to the RSVP performance score. This score
has to do with correct answers in the memory task, which does
not necessarily reflect participant’s perceived difficulty. Future
experimental designs could include a perceived task difficulty
questionnaire to confirm or deny these results. Lastly, if female
participants are not requiring as much resources for the task, its
difficulty could be raised, by increasing the number of faces to
remember, for example, to explore if the RSVP score and the N170
amplitude relate in the proposed way.

The results from this study seem to indicate a visual stimulus
that can significantly modify emotional processing, as measured
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FIGURE 5

Grand average ERP in temporal left ROI for male and female participants in each condition.

FIGURE 6

Average difference between sexes in temporal left ROI. Marked window is 160–200 ms.

by LCP and DE, without modifying the affective encoding of the
observed faces as measured by the N170. However, good results
have already been obtained for affect classification from observed
objects using only information from the N170 and relatively simple
linear models. The current accuracy score for binary classification
of Negative vs. Positive valence is 83% with LDA, 84% with SVM,
and 86% with Lasso, achieved by Tian et al. (2018). These models
achieve a high accuracy without information from the observer’s
sex. Being linear, they are not best suited for modeling conditioning
variables, like age, personality, or handedness.

Models that integrate the information of the participant’s
sex could improve the current accuracy benchmark in affective
detection. An interaction between the sex of the participant and
the sex of the person on the image has not yet been researched,
and could provide yet another insight about the neural correlates
of affect and emotion.

Many other features of the human EEG can convey information
about affect encoding and emotional processing. Connectivity
measures have proved to be useful when classifying affective
states (Costa et al., 2006; Lee and Hsieh, 2014). Integrating these
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models could provide additional information about the process of
emotional construction from affective encoding.

5. Conclusion

In this study we showed how, by means of a style transfer image
modification, images of human faces influenced the ERP features
used for emotion detection. Features used for affect classification
were not significantly modified. This demonstrates a method that
can disentangle affective encoding from emotional processing, by
exploiting specific neural correlates to core affect, and constructed
emotions. We attribute the effect to the visual ease of processing
provided by the TOON category.

The significant difference between sexes in N170 ERPs
suggests that models can benefit from being informed about
the observer’s sex.

These findings enable the study of different neural correlates
of emotion elicitation, while providing a reproducible method
to enhance the emotional response using DL style transfer.
We envision this specific result to be useful in the context of
affective Brain-Computer Interfaces (BCI) design, where a higher
classification accuracy in emotion and affect detection from EEG
can improve the experience of a user.

A relevant future contribution is the dataset created through
this experiment. Currently, in the task of emotion classification
from EEG, there exist only two standard datasets. The publication
of the data collected in this project will provide a machine learning
benchmark that diversifies the definition of the current task of
emotion detection from EEG.
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