
Citation: Landl, M.; Prieler, R.;

Monaco, E.; Hochenauer, C.

Numerical Investigation of Conjugate

Heat Transfer and Natural

Convection Using the

Lattice-Boltzmann Method for

Realistic Thermophysical Properties.

Fluids 2023, 8, 144. https://doi.org/

10.3390/fluids8050144

Academic Editor: D. Andrew S. Rees

Received: 8 March 2023

Revised: 20 April 2023

Accepted: 27 April 2023

Published: 29 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

Numerical Investigation of Conjugate Heat Transfer and
Natural Convection Using the Lattice-Boltzmann Method
for Realistic Thermophysical Properties
Michael Landl 1,* , René Prieler 1, Ernesto Monaco 2 and Christoph Hochenauer 1

1 Institute of Thermal Engineering, Graz University of Technology, Inffeldgasse 25/B, 8010 Graz, Austria;
rene.prieler@tugraz.at (R.P.); christoph.hochenauer@tugraz.at (C.H.)

2 Engineering Software Steyr, Berggasse 35, 4400 Steyr, Austria; ernymon75@hotmail.com
* Correspondence: michael.landl@tugraz.at

Abstract: To enable the lattice-Boltzmann method (LBM) to account for temporally constant but
spatially varying thermophysical properties, modifications must be made. Recently, many methods
have emerged that can account for conjugate heat transfer (CHT). However, there still is a lack of
information on the possible physical property range regarding realistic properties. Therefore, two
test cases were investigated to gain further insight. First, a differentially heated cavity filled with
blocks was used to investigate the influence of CHT on the error and stability of the LBM simulations.
Reference finite volume method (FVM) simulations were carried out to estimate the error. It was
found that a range between 0.5 to 1.5 is recommended for the fluid relaxation time to balance
computational effort, stability, and accuracy. In addition, realistic thermophysical properties of fluids
and solids were selected to test whether the lattice-Boltzmann method is suitable for simulating
relevant industry-related applications. For a stable simulation, a mesh with 64 times more lattices was
needed for the most extreme test case. The second test case was an insulated cavity with a heating pad
as the local heat source, which was investigated in terms of the accuracy of a transient simulation and
compared to a FVM simulation. It was found that the fluid-phase relaxation time mainly determines
the error and that large thermal relaxation times for the solid improve accuracy. Observed deviations
from the FVM reference simulations ranged from approximately 20% to below 1%, depending on
collision operator and combination of relaxation times. For processes with a large temperature spread,
the temporally constant thermophysical properties of the LBM are the primary constraint.

Keywords: lattice-Boltzmann method; conjugate heat transfer; natural convection; Boussinesq
approximation

1. Introduction

Coupled convective (forced or natural) heat transport in fluids and heat conduction in
solids is known as conjugate heat transfer (CHT) [1] and is present in almost all technical
processes. The applications are almost countless and cover a wide range of industries.
For example, the cooling of electronic components [2–5], which must provide more and
more power in ever-smaller spaces, and efficiency improvements cannot fully compensate
for the increasing heat generation. In addition to forced convection, natural convection
plays a major role, for example, in devices intended for domestic use because fans should
be avoided due to their undesirable noise emission and power consumption.

CHT affects the entire energy sector, both conventional and renewable, because it
is the governing physical process in all heat-exchanger designs, such as pillow-plate [6],
fin-and-tube [7], cross-flow [8], double-pipe [9], flat-plate [10], tube-bundle [11], and shell-
and-tube [12]. It also plays an important role when investigating porous media [13,14].

Another important industry in which CHT is of great interest is transportation,
whether to improve the cooling of blades in aero engines [15,16], or in the automotive in-
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dustry either for conventional internal combustion engines [17,18] or, for example, cooling
of battery packs for electrical vehicles [19].

Fast and accurate prediction of CHT is highly desired in industry. Building and testing
a prototype is costly and takes much time. Measuring temperatures, especially in proximity
to or on surfaces, is challenging. In addition, knowledge of the flow field allows more
advanced optimizations than would be possible with prototypes. An established alternative
is, therefore, computational fluid dynamics (CFD), which can save enormous costs and
significantly reduce the time to market.

The geometries of the applications, as mentioned earlier, are often very complex,
and accurate prediction of heat transfer demands a high-quality mesh. Generating such a
mesh for standard CFD methods such as the finite volume method (FVM) usually requires
weeks of work by highly skilled personnel. For porous media, creating a suitable mesh may
even be impossible. Here, the lattice-Boltzmann method (LBM) offers a clear advantage,
as meshing can be highly automated and usually takes only a few seconds.

Turbulent flow significantly affects heat transfer by enhancing it tremendously. There-
fore, the fast and accurate simulation of turbulent flow is crucial. The additional compu-
tations required for a large eddy simulation (LES) subgrid model have a relatively small
impact on simulation time because LBM is typically limited by memory bandwidth.

LBM has made significant progress in accuracy and stability in recent years, and all
needed types of boundary conditions are readily available. In addition, the algorithm can
be massively parallelized relatively effortlessly due to its local formulation. With advanced
compilers and parallel algorithms from the C++ standard library, it is even possible to
develop it for cross-platform architectures, as recently demonstrated by Latt et al. [20].
All of this makes it a compelling alternative to more established methods, such as FVM, for
studying CHT problems in industry.

However, the problem arises that the standard LBM can only be used for athermal,
incompressible flow problems. The most popular approach to incorporating the energy
equation when using the LBM is to include a second set of equations, which recover an
advection-diffusion equation (ADE) for temperature. Unfortunately, this type of energy
equation does not automatically satisfy the conjugate conditions (temperature continuity
and continuity of normal heat flux) at walls and interfaces.

In recent years, many researchers have developed methods for the LBM to solve this
problem. Korba et al. [21] investigated the accuracy of CHT schemes for the LBM and
divided the methods into several groups, for example:

(a) Interface-considering schemes: For example, Li et al. [22] developed such a method,
where the basic equations of LBM remain unchanged, but in the neighboring cells
of the interface, the populations are corrected so that the heat flux density across the
interface remains constant.

(b) Additional source term: One example is the study of Karani and Huber [23], where
by adding an additional source term to the standard LBM the conjugate conditions at
interfaces can be enforced.

(c) Modified equilibrium distribution: Lu et al. [24] presented a unification of methods in
which the enthalpy is introduced into the ADE as the transported quantity instead of
the temperature, together with incorporating an additionally needed source term into
the equilibrium distribution of the resting population.

A more recent CHT model, which is, therefore, not included in [21], is the work
of Kiani-Oshtorjani et al. [25], in which both a source term and a modified equilibrium
distribution were used. In this work, however, results are shown only for conductive
heat transfer, although the model should also be able to handle moving fluids. Although
Korba et al. [21] presented a synopsis of the currently available methods together with
an investigation of the accuracy of these methods, it is still not clear which range of
thermophysical properties relevant for typical industrial applications can be simulated
stably and accurately together with realistic boundary conditions.
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The application of the LBM has recently gained popularity in studying conjugate heat
transfer on a pore scale. For example, Paknahad et al. [26] studied metal foam at pore
scale using a regularized collision operator for the thermal solver, but only steady-state
conditions were considered. In another study, Korba and Li [27] investigated thermal
convection and conjugate heat transfer in porous media and resolved the turbulent flow
through direct numerical simulation.

This study aims to provide a deeper understanding of the limitations of currently avail-
able CHT methods for LBM and to propose an applicable methodology for thermal flows
oriented towards industrial-relevant problems with realistic thermophysical properties.
Therefore, it was first reviewed which of the currently available methods for CHT for the
LBM are suitable for simple and complex geometries together with realistic thermophysical
properties, particularly at high temperatures. To gain further insight into the stability and
accuracy of LBM for CHT, a differentially heated cavity filled with blocks was investigated
by extensive parameter studies. The dimensions of the geometry were taken from Merrikh
and Lage [28]. As a first step, the range of relaxation times for the LBM in which fast
and accurate results can be expected was determined based on steady-state results. The
individual relaxation times in the LBM are directly linked to the thermophysical properties
of the fluids and solids. Furthermore, the influence of the solid-to-fluid ratio of the thermo-
physical properties on the error when using the CHT method was examined by performing
a parameter study on the relaxation times of the energy equation. Finally, the test case was
evaluated for selected cases of realistic thermophysical properties and boundary conditions,
which have not been investigated before, to the authors’ knowledge.

The analysis is then carried out considering an insulated cavity with an electric heating
pad as the heat source regarding the transient behavior of the LBM in the presence of a
heat source term and a more complex convective boundary condition on the outer domain
boundaries. As the basis for the error estimations, the deviations from reference FVM
simulations were used for both test cases.

The remaining paper is divided into four additional sections. Section 2 presents the
governing equations and numerical methods, including all boundary conditions used in
this work. Section 3 explains the investigated test cases and lists the used thermophysical
properties. Section 4 presents and discusses the results. Section 5 concludes the paper and
gives a brief outlook on future work.

2. Numerical Methods

The numerical methods section is divided into two subsections. In the first subsection,
the governing equations of CHT are introduced. The second subsection presents the LBM,
which can be used to solve these equations and also discusses in detail the modifications
that must be made to the standard LBM.

2.1. Governing Equations

The conjugate heat transfer (CHT) problems considered in this work can be mathemat-
ically described using the following equations: the continuum Equation (1), the momentum
Equation (2), and a simplified form of the energy Equation (3):

ND

∑
j=1

∂uj

∂xj
= 0 (1)

∂ui
∂t

+
ND

∑
j=1

ui
∂ui
∂xj

= −1
ρ

∂ p
∂xi

+
ND

∑
j=1

∂

∂xj

(
ν

∂ui
∂xj

)
+ Si (2)

ρ cp
∂T
∂t

+
ND

∑
j=1

∂

∂xj

[
uj ρ cp T

]
−

ND

∑
j=1

∂

∂xj

[
k

∂T
∂xj

]
= 0 (3)
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In Equations (1)–(3), ρ is the density, ui and uj are the velocity vector in index notation,
p is the pressure, T is the temperature, xj is the position vector, t is the time, ND is the
number of dimensions, ν is the kinematic viscosity, k is the thermal conductivity, and cp is
the specific heat capacity (for constant pressure).

2.2. Lattice-Boltzmann Method

The LBM evolution equation reads

fα(x + cαδt, t + δt) = fα(x, t) + Ωα + Sα, (4)

where fα are velocity probability density functions for particle clusters, also called popula-
tions. x is the position vector, t is the time, and δt is the time increment. cα is the discrete
velocity of the population fα, Ωα is the collision operator, and S is an arbitrary source term
that could represent, for example, a body force.

The set of discrete velocities depends on the lattice configuration, typically denoted by
DNDQNα, where ND is the number of dimensions and Nα is the number of discrete velocities.
For example, the D2Q9 lattice is the most commonly used lattice for two-dimensional fluid
simulations, while the D2Q5 is predominantly used for advection-diffusion type problems,
where the reduced set of discrete velocities is sufficient for recovering an ADE on the
macroscopic level.

Figure 1a shows the D2Q9 lattice configuration, where eight velocities are defined
by directly connecting the current lattice and its neighbors. The ninth velocity is zero and
assigned to the rest population.In Figure 1b, it can be seen that the D2Q5 lattice can be
interpreted as a pruned version of the D2Q9.

9
1

2

3

4

56

7 8

(a) D2Q9

5
1

2

3

4

(b) D2Q5
Figure 1. Lattice configurations for two-dimensional simulations.

Density ρ and the momentum vector ρu can be recovered as zero- and first-order
moments of the velocity probability density functions, respectively, as

ρ(x, t) =
Nα

∑
α=1

fα(x, t) (5)

ρu(x, t) =
Nα

∑
α=1

cα fα(x, t) (6)

From Equations (5) and (6), the velocity vector u can be readily calculated. Several
collision operators are available. The most commonly used are the single-relaxation-time
(SRT), often referred to as the Bhatnagar–Gross–Krook (BGK) [29] model, and the multiple-
relaxation-time (MRT) [30] collision operators. The SRT is defined by a single relaxation
time, while the MRT schemes possess as many relaxation times as lattice velocities. A special
case of MRT is the two-relaxation-time (TRT) [31] scheme. In addition to the standard MRT,
there are more sophisticated variants, such as the cascaded [32] and cumulant [33] collision
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operators, which will not be considered in this study. The simplest variant is the BGK [29],
given by

Ωα =
δt
τf

(
f eq
α − fα

)
, (7)

where τf is the relaxation time, linked to the viscosity of the fluid by

τf =
ν

c2
s
+

δt
2

. (8)

and cs is the lattice speed of sound, which depends on the lattice configuration (e.g., D2Q9:
cs =

√
1/3). It is important to mention that a LBM simulation is typically performed

on a uniform grid (i.e., δx = δy = δz = const.) and in lattice units defined by a set of
conversion factors resulting from a conveniently rescaled system, where the time increment
δt, the spatial step size δx and the reference density of the fluid ρ f ,0 in lattice units are
unity (i.e., δt = 1, δx = 1, ρ f ,0 = 1). The system must be rescaled in such a way that
the non-dimensional numbers determining the flow behavior are equal to the original
unscaled system.

The TRT [31] uses two different relaxation times. One for the symmetric (even)
part of the populations f s

α = ( fα + fα)/2 and one for the anti-symmetric (odd) part
f a
α = ( fα − fα)/2, where fα is the population associated with the discrete velocity cα

in opposite direction to cα and the corresponding symmetric and anti-symmetric equilibria
are calculated similarly:

Ωα =
δt
τ s

f

(
f eq, s
α − f s

α

)
+

δt
τ a

f

(
f eq, a
α − f a

α

)
(9)

The symmetric relaxation time τ s
f is related to the fluid viscosity ν (similar to Equation (8)),

while the anti-symmetric relaxation time τ a
f , given by

τ a
f =

Λ + 0.5 (τ s
f − 0.5)

τ s
f − 0.5

(10)

can be used to fine tune the behavior of the collision operator by choosing an appropriate
value for Λ [34]. Since Λ has no direct physical meaning, it is often called magic operator.
In the present work, where not otherwise stated, the TRT was optimized for stability by
setting Λ = 1/4 [34].

Theoretically, it would be possible to relax every population fα towards its equilibrium
f eq
α with its own individual relaxation time τf . By transforming the populations into

momentum space and performing the collision there, it is possible to relax the moments
directly rather than populations, simplifying the task of finding individual relaxation times
to some extent. However, based on the choice of moments, there are still free parameters
that must be fine-tuned for stability and accuracy. For example, the considered moments mα,
following from the Gram–Schmidt procedure, for the D2Q9 lattice configuration are density
ρ, kinetic energy e, energy squared ε, x-momentum jx, x-energy-flux qx, y-momentum jy,
y-energy-flux qy, normal stress pxx, and shear stress pxy.

The MRT [30] collision operator in vector notation is

Ω = δt
(

M−1 S M( f eq − f )
)

= δt
(

M−1 S(meq −m)
)

, (11)

where M is a transformation matrix from population into momentum space, and M−1 is the
inverse Matrix accomplishing the reverse operation. S is a matrix containing the relaxation
times for the individual moments mα. Another advantage of the MRT is that the equilibrium
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moments meq
α can be computed analytically and do not need to be approximated like their

counterparts in population space f eq
α .

Using the Chapman–Enskog theory [35], it can be shown that the LBM, using the
most common lattice configurations, recovers the incompressible athermal Navier–Stokes
equations ((Equations (1) and (2)) as introduced in Section 2.1.

The most commonly used method for incorporating the energy equation is to introduce
a second population gα to simulate an ADE for the temperature as a passive scalar. It should
be noted that conservation of energy is not necessarily guaranteed in this way since viscous
dissipation, pressure work, and kinetic energy are neglected. However, this approximation
is often acceptable.

The LBM evolution equation for the ADE for the temperature T reads formally similar
to its Navier–Stokes counterpart (Equation (4)):

gα(x + cg
αδt, t + δt) = gα(x, t) + Ωg

α + Sg
α (12)

The main difference is in the definition of the equilibrium distributions geq
α and that,

in general, fewer discrete velocities are needed to recover an ADE compared to the incom-
pressible, athermal Navier–Stokes equations. Again, using Chapman–Enskog expansion, it
could be shown that the LBM for the ADE recovers an energy equation in the form of

∂T
∂t

+
ND

∑
j=1

∂

∂xj

[
ujT
]
−

ND

∑
j=1

∂

∂xj

[
a

∂T
∂xj

]
= 0, (13)

where uj is the velocity vector u in index notation and a is the thermal diffusivity.
Even though the temperature T is connected to the flow-field by the advective term in

Equation (13), it can only be seen as a one-way coupling since the density in LBM is not a
function of the temperature. For relatively small temperature changes, a popular method to
restore a two-way coupling between the Navier–Stokes equations and the energy equation
is the Boussinesq approximation, which was also used in the present work.

There are several methods to include the buoyancy source term resulting from the
Boussinesq approximation into the LBM. In the present work, the exact difference method
(EDM) of Kupershtokh [36] was used. In accordance with the Boussinesq approximation, a
force density vector field is first calculated from

F(x, t) = ga ρ0 β(T − T0), (14)

assuming this force field is constant during a time step and the time step is small enough in
order for the forces to be considered pulse-like, the change in momentum can be approxi-
mated as

∆(ρu) = F(x, t)∆t. (15)

If, in addition, it is assumed that the density remains constant, the change in velocity
can be calculated from

∆u = us − u = F(x, t)
∆t
ρ

. (16)

Hence, the shifted macroscopic velocities are given by

us = u + F
∆t
ρ

(17)

and are then used to calculate a shifted equilibrium distribution f eq
s = f eq(us). Finally, the

difference in f eq and f eq
s is added as a source term to the LBM during the collision step as

S = f eq − f eq
s . (18)
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The presented LBM would suffice for all further investigations if only fluid flow were
of interest. The problem, however, is that in the context of CHT, in order to account for
a spatially varying (but temporally constant) density ρ, specific isobaric heat capacity cp,
and thermal conductivity k within the domain, at least an energy equation in the form of
Equation (3) instead of Equation (13) needs to be considered.

Following the review paper of Korba and Li [21], the methods to solve this problem
can be divided into several groups, for example:

(a) Interface-considering schemes: Li et al. [22] developed such a method, where the basic
equations of LBM remain unchanged, but in the neighboring cells of the interface,
the populations gα are corrected so that the heat flux density q̇ across the interface
remains constant. Although this method would have advantages for cases where the
wall is not located exactly between two lattices, it was not used in the present work
because it is not clear how to account for the discontinuity of the wall-normal vectors
at sharp corners.

(b) Additional source term: By comparing Equation (3) with Equation (13), a source term
Sc can be identified, which, when added to the LBM using an appropriate method,
yields Equation (3) on a macroscopic level. Karani and Huber [23] developed such a
method. However, as also pointed out by Korba and Li [21], it is problematic that this
method uses a finite difference approximation of the term 1/

(
ρ cp

)
. The derivative of

a jump is not well-defined mathematically. Therefore, this method was not used in the
present work.

(c) Modified equilibrium distribution: This approach was proposed by Lu et al. [24],
where instead of the temperature T, the enthalpy H = ρ cp T is introduced into the
ADE as the transported quantity. The additionally required source term arising from
this change in variables is included in the modified equilibrium distribution of the
rest population f eq

Nα
. This method was chosen in the present study and will be briefly

introduced in the next section.

2.2.1. Conjugate Heat Transfer Method

The basic LBM evolution equation remains unchanged and is recalled from the previ-
ous section as

gα(x + cg
αδt, t + δt) = gα(x, t) + Ωg

α + Sg
α. (19)

Instead of the temperature T, the enthalpy H is recovered as zero-order moment gα of
the ADE

H = ρcpT =
Nα

∑
α=1

gα (20)

and the modified equilibrium distribution reads in population space

geq
α=Nα

= T
[
ρcp +

(
ρcp
)

0(w
g
α − 1)

]
geq

α = wg
α T
[(

ρcp
)

0 + ρcp cg
α · u

]
,

where wg
α are the lattice weights for the corresponding lattice velocities cg

α and
(
ρcp
)

0 is a
reference-specific volumetric heat capacity at constant pressure, usually defined as the
minimal value of the problem. In the present work, the fluid term is always smaller than
the solid term, which is usually valid if the fluid is a gas. This equilibrium distribution can
be used by the BGK and TRT collision operators. The equilibrium vector in momentum
space [21] is for the standard ADE in terms of the temperature T, given by

meq
T = [0, T, uT, vT, 2/3T]T (21)
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and for the CHT method, the modified momentum equilibrium vector reads, according to [21],

meq
H =

[
0, ρcpT, ρcpuT, ρcpvT, 4 ρcpT − 10/3

(
ρcp
)

0T
]T . (22)

2.2.2. Boundary Conditions

Figure 2 schematically depicts the lattice configuration near the wall as used in the
present work, where xs is the location of a solid lattice, xb is the location of the first fluid
lattice, and xw is the location of the wall, which is assumed to be approximately between
the two adjacent lattices.

xbxs

i i+ 1 i+ 2

xw

1.5 δx

2.5 δx

δx

x

Figure 2. Schematic of the lattice configuration in proximity to walls.

For the fluid populations at the resting walls, the half-way bounce-back [37] was used:

fα(xb, t + δt) = f ∗α (xb, t), (23)

where the wall-normal population fα, at the cell location next to the wall xb, at the new
time level t + δt, is set to the post-collision population of the opposite direction f ∗α from the
current time step.

Three types of boundary conditions were required for the thermal populations. A Dirichlet-
type boundary condition was implemented using the anti-bounce-back method
of Ginzburg et al. [38]. For adiabatic boundary conditions, the zero-gradient method of
Malaspinas [39] was used, which estimates a wall temperature based upon a Taylor series
expansion in proximity to the wall. This temperature was then enforced by using the
anti-bounce-back method of Ginzburg et al. [38]. Additionally, the convective heat flux
boundary condition of Huang et al. [40] was used, which allows setting a specific value for
the heat-transfer coefficient h.

The anti-bounce-back boundary condition [38] reads

gα(xb, t + δt) = −g∗α(xb, t) + 2 wα geq
α (xw, t + δt), (24)

where g∗−α(xb, t) is the population into the opposite direction of gα(xb, t + δt) of the old
time step at the boundary node position xb, wα is the corresponding lattice weight and geq

α

is the equilibrium distribution, which depends on the wall temperature Tw and the wall
velocity vector vw.

The adiabatic boundary condition follows the approach proposed by Malaspinas [39]
but differs in the lattice configuration near the wall. While [39] assumes the lattice-center
coincident with the wall interface, in this study, the interface is located approximately be-
tween two adjacent lattices. Therefore, the evaluation points of the Taylor series expansion
are different.

Evaluating the Taylor series expansion one and two lattices away from the wall at
indices i + 1 and i + 2 (see Figure 2), neglecting third- and higher order terms, and setting
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the temperature gradient at the wall to zero (∂T/∂x)|xw = 0, the wall temperature readily
follows as

Tw =
25 Ti+1 − 9 Ti+2

16
. (25)

The computed wall temperature Tw is then plugged into the anti-bounce-back formu-
lation (Equation (24)) to fulfill the adiabatic boundary requirement automatically.

The convective heat flux boundary condition was implemented as proposed by Huang et al. [40]
and reads

gα =
gn

α + gn
α + (wα + wα)

h
k δx Tamb

1 + h
k δx

− gα, (26)

where superscript n indicates adjacent populations at the interface (e.g., gn
α), h is the heat

transfer coefficient, k is the heat conductivity, and Tamb is the ambient temperature on the
other side of the interface.

3. Test Cases

In the present work, two test cases were investigated. First, a differentially heated
cavity filled with blocks was used to gain insight into the relationship between relaxation
times and errors. The influence of the CHT method on the error was studied in detail for a
wide range of fictive combinations of thermophysical properties. During the simulations,
the thermophysical properties are not modeled as temperature-dependent. To the best
of the authors’ knowledge, this has not been demonstrated for LBM and is an intrinsic
limitation of the standard method. Finally, three realistic combinations of thermophysical
properties were tested. For estimating the error of a LBM simulation, the relative root mean
squared deviation (RMSD) of the temperature gradient at the hot wall (see Figure 3) from a
corresponding FVM simulation was calculated as:

rel. RMSD =

√√√√∑
Ny
n=1
((
∇xTLBM

w −∇xTFVM
w

)
/∇xTFVM

w
)2

Ny
, (27)

where Ny is the number of cells (or lattices) in the y-coordinate direction along the wall,
and ∇xTw is the wall-normal temperature gradient at the hot wall approximated by the
forward difference quotient

∇xTw =
∂Tw

∂x
≈

Tf − Tw

x f − xw
, (28)

where Tw = Th is the hot-wall temperature, xw is the position of the wall, and x f is the
location of the first fluid cell adjacent to the hot wall.

The second test case, an insulated cavity with an electric heating pad as a heat source,
was investigated to scrutinize the transient behavior of the LBM compared to a FVM
simulation. Compared to the first test case, a more complex convective boundary condition
was used at the outer domain boundaries.

All FVM reference simulations were performed using the commercial software pack-
age ANSYS Fluent 19.2 [41]. To allow direct comparison, the FVM simulations were set
up as similar as possible to the LBM simulations, using a uniform Cartesian mesh and
(temporally) constant thermophysical properties. As in the LBM simulations, a buoyancy
term based on the Boussinesq approximation was included. Pressure-velocity coupling
was achieved by using a coupled algorithm, and the pressure interpolation was carried
out by the body-force-weighted scheme. Both the momentum and energy equations were
discretized using the second-order upwind method. A first-order implicit method was
chosen for the transient formulation. Implementation details can be found in the Ansys
Fluent Theory Guide [42]. Mesh refinement studies were conducted to ensure that the mesh
resolution did not influence the reference solutions.
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Figure 3. Schematic of the cavity filled with solid blocks. Reproduced from [28]. The non-dimensional
dimensions are L = 1, B = 0.15, and D = 0.1.

3.1. Cavity Filled with Solid Blocks

The geometry is defined by Merrikh and Lage [28], who used FVM to evaluate various
configurations. Though the LBM was already compared to FVM in studies such as Karani
and Huber [23], and Lu et al. [24], a thorough investigation of the limitations of the CHT
methods and their accuracy for realistic physical properties was still lacking.

In the present work, N = 16 solid blocks were used, and the solid to empty cavity
volume ratio is γ = 0.36. This results in the following dimensions: L = 1.0, B = 0.15, and
D = 0.1. Figure 3 shows the schematics of the simulation domain.

The test case was studied under the influence of a gravitational field g. The left wall is
fixed at a constant high temperature Th, while a constant cold Temperature Tc is considered
at the right wall. The top and bottom walls are assumed to be adiabatic. The no-slip
boundary condition is selected for all walls.

The test case was investigated for a Rayleigh number of

Ra = Gr Pr = 1E-5. (29)

Gr is the Grashof number, defined as

Gr =
|g| β ∆T L3

ν2 , (30)

ν is the dynamic viscosity, β is the (isobaric) thermal expansion coefficient, |g| is the
magnitude of the gravitational field g, ∆T = Th − Tc is the temperature difference between
hot and cold wall, and L is the length and height of the square cavity. Pr is Prandtls number,
given by

Pr =
ν

a
=

µ cp

λ
, (31)

where a is the thermal diffusivity, λ is the thermal conductivity, µ is the dynamic viscosity,
and cp is the specific isobaric heat capacity.

For the FVM simulations, a fictitious fluid was defined, corresponding to the Rayleigh
number Ra = 1× 10−5. The temperature difference (∆T = Th − Tc) should not be too
small to avoid round-off errors. Finally, the product of the isobaric thermal expansion
coefficient and temperature difference must be small (i.e., β ∆T � 1). The magnitude of the
gravitational acceleration was conveniently chosen as |g| = 10 to yield pleasing numerical
values for the thermophysical properties. These considerations led to the thermophysical
properties and boundary conditions listed in Table 1. The LBM simulations were performed
in lattice units. Thus, the fictitious thermophysical properties were only needed to convert
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the system into a physical dimensional system to allow direct comparison with results from
the FVM.

Table 1. Fictitious thermophysical properties and boundary conditions for the first test case.

ρ 1 kg/m3 µ 0.001 kg/m s L 1 m

cp 100 J/kg K β 0.0005 1/K Tc 563.15 K

λ 0.1 W/m K |g| 10 m/s2 Th 583.15 K

For the parametric study, the thermophysical properties of the solids (ks and (ρc)s)
were calculated from the solid/fluid ratios of the thermal conductivities rk = ks/k f , and
the product of density and heat capacity rc = (ρc) f /(ρc)s. In the case where the product of
density and heat capacity is smaller for the fluid than for the solid, which is typically valid
if the fluid is a gas, i.e., (ρc) f < (ρc)s → (ρc)0 = (ρc) f , the relationship between the fluid
relaxation time τf and the ratio of the thermal conductivities rk is as follows:

τg f =
1

Pr
τf +

Pr− 1
2Pr

(32)

τgs =
rk
Pr

τf +
Pr− rk

2Pr
(33)

Note that rc does not appear in Equations (32) and (33).
Three combinations of realistic thermophysical properties representative of high-

temperature applications were selected for fluids and solids (see Table 2). The properties
for air were obtained at the respective mean temperature levels from the open-source
thermophysical property library CoolProp [43,44]. In contrast, the properties for flue gas,
used in case C, are the mass-averaged values from a FVM simulation of a walking hearth
type reheating furnace carried out by Prieler et al. [45]. The properties of wool used in case
A are from internal communications with a mineral wool producer. The steel properties in
cases B and C are for low-alloyed steel and were obtained from the graph given in [45].

Table 2. Physical properties for the verification test cases.

Fluid ρ cp λ µ β
Case Solid kg/m3 J/kg K W/m K kg/m s 1/K

A Air 0.5663 1056.6 0.04737 3.15787 × 10−5 0.001605
Wool 145 840 0.07699

B Air 1.0928 1007.44 0.02808 1.96342 × 10−5 0.003102
Steel 7800 458.9 49.1

C Flue gas 0.2842 1360 0.0454 8.2204 × 10−5 0.00125
Steel 7800 599.3 27.28

All simulations were started with a resting fluid, and the temperature field was
initialized with the mean temperature T0 = (Tc + Th)/2. For the parametric study on
relaxation times, a mesh study showed that a grid resolution of 280 by 280 lattices is
sufficient for the LBM simulations. When conducting a mesh independence study, it is
important to choose a representative and sensitive quantity. In this work, the average
Nusselt number along the hot wall, as defined by Merrikh and Lage [28], was selected:

Nuavg =
havg L

λ f
=

L
Th − Tc

−∫ L

0

∂T
∂x

∣∣∣
x=0

dy

 (34)
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Figure 4 shows the results of the mesh independence study for the TRT collision
operator. It can be seen that for all relaxation times τ, the grid resolution of 280 by 280
lattices is within the asymptotic range. Furthermore, it could be argued that even the
resolution of 240 by 240 lattices is within 1% of the average Nusselt number obtained with
a grid resolution of 560 by 560 lattices, with the exception of the largest relaxation time of
τ = 1.5, where the deviation would still be less than 2%, however. For the investigation
of realistic thermophysical properties, higher mesh resolutions up to 2240 by 2240 lattices
were needed for stability reasons. The actual mesh resolutions used per case are given in
the discussion of the results.
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Figure 4. Mesh independence study, showing the average Nusselt number along the hot wall obtained
with the TRT collision operator for increasingly finer meshes and different relaxation times τ.

3.2. Insulated Cavity with a Heating Pad

As a second test case for a realistic combination of physical properties, an insulated
cavity filled with air and heated by a heating pad was selected. Figure 5 shows the
geometry and dimensions in mm, where the gray area consists of mineral wool that serves
as insulation. The cavity in the center is filled with air, and the red section represents the
heating pad. The thermophysical properties of air and wool are listed in Table 3.

Table 3. Physical properties of air and wool for the insulated cavity with heating-pad test case.

Air Wool

ρ 0.4551 145 kg/m3

cp 1090 840 J/kg K

λ 0.05536 0.11343 W/m K

µ 3.6281 × 10−5 kg/m s

β 0.0013075 1/K

335

135100

3
3
0

1
3
0

1
0
0

1
0

120

60

Figure 5. Schematic and dimensions of the insulated cavity with a heating pad. All dimensions
in mm.
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The simulation was initialized at time t = 0 s with a constant temperature of T = 23 ◦C
and the fluid at rest. The heating pad provides a constant electrical heating power of
Pel = 205 W. Assuming natural convection outside of the domain, a convective boundary
condition with an ambient temperature of Tamb = 23 ◦C was used together with a heat
transfer coefficient of h = 4 W/m2 for the outer domain boundary. The case setup and
boundary conditions are given in Table 4.

Table 4. Mesh resolution, boundary conditions, and relaxation times for the insulated cavity with
heating pad test case.

Nx 335 − Pel 205 W τf 0.55 −
Ny 330 − |g| 9.81 m/s2 τg f 0.5711 −
∆x 1 mm Tamb 23 °C τgs 0.5615 −

4. Results and Discussion
4.1. Cavity Filled with Solid Blocks

The investigations for this test case are divided into four parts. First, correct implemen-
tation of the CHT method is demonstrated. Second, a parametric study for the relaxation
times was performed, with all relaxation times set equal (τf = τg). This served to determine
a reasonable range of relaxation times to be used in the third part of the study, where the
influence of the CHT method was examined in more detail. In addition, the magnitude of
the deviation without the influence of the CHT method could be determined. For each LBM
simulation, a corresponding FVM simulation was performed and used as the reference for
estimating the error by calculating the relative root mean squared deviation (RMSD) of
the wall-normal temperature gradient at the hot wall. In the fourth part of this test case,
realistic combinations of physical properties were investigated.

Figure 6 shows, as an example, the predictions for the temperature field (Figure 6a)
together with predictions for the velocity field and streamlines (Figure 6b) obtained with the
LBM using a relaxation time of τf = τg = 0.9 and the TRT collision operator. Since τf = τg
implies that the thermal diffusivities of fluid and solid are the same, the influence of the
advective heat transport can easily be seen in the temperature field. Without the presence of
a gravitational field, the temperature distribution between the hot and cold walls would be
linear and quasi-one-dimensional. Figure 6b shows that the fluid predominantly flows at
high velocity clockwise between the outer layer of solid blocks and the four middle blocks.
Note that the dimensional values were obtained from the simulation in lattice units using
the fictitious medium defined by the thermophysical properties and boundary conditions
given in Table 1.
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Figure 6. Steady-state prediction for (a) the temperature field and (b) velocity field with streamlines
using a relaxation time of τf = τg f = τgs = 0.9 and the TRT collision operator.
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4.1.1. Implementation Validation

To ensure correct implementation of the CHT model [24], qualitative and quantitative
comparison to previously published work by Merrikh and Lage [28], Raji et al. [46], Karani
and Huber [23], Lu et al. [47], and Lu et al. [24] is presented. Figure 7 shows the steady-state
predictions for the temperature field (Figure 7a) and the streamlines of the velocity field
(Figure 7b) as obtained by Lu et al. [24]. In the same figure, the temperature field (Figure 7c)
is shown together with the velocity field and streamlines (Figure 7d) obtained using the
solver implemented in this work. Both the temperature field and the streamlines for the
velocity field agree very well in proximity to the hot and cold walls. A slight deviation can
be observed in the central part of the temperature field.

To gain further confidence in the implementation, the results for the average Nusselt
number (Equation (34)) were compared with those presented in several other publications,
considering variations in the ratio of heat conductivities. As the ratio of the thermal
diffusivities was chosen to be unity, the ratio of the heat capacities was scaled accordingly.
The Prandtl number for these selected test cases was set to unity (Pr = 1) and the Rayleigh
number was Ra = 1× 105. In addition, the results obtained in the present work were also
compared to reference FVM simulations. As can be seen in Table 5, the obtained predictions
agree very well with results previously presented by other authors. Additionally, they are
in very good accordance with the reference FVM simulations. Furthermore, the confidence
in adequate implementation is strengthened by not only the averaged Nusselt number
along the hot wall agreeing very well with the carried out FVM simulations, but also the
distribution of the local Nusselt number along the hot wall, as can be seen in Figure 8.
They agree closely and are essentially indistinguishable; only for the most extreme case of
λs/λ f = 100 can a slight deviation between the LBM and FVM predictions be observed.

Overall, the validation studies provide a high level of confidence in the adequacy and
accuracy of the implemented numerical method.
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Figure 7. Visual comparision of the predictions for the temperature and flow field between the
work of Lu et al. [24] and results obtained with the TRT collision operator implemented in the
present work. (Ra = 10× 105, Pr = 1, λs/λ f = 10, as/a f = 1.0). (a) Temperature field taken from
Lu et al. [24]; (b) velocity field and streamlines taken from Lu et al. [24]; (c) temperature field present
work; (d) velocity field and streamlines present work.
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Table 5. Predictions for Nuavg along the hot wall (Equation (34)) for various ratios of fluid and solid
heat conductivities obtained with the TRT collision operator together with FVM reference simulations,
comparison to previously published results from other authors [23,24,28,46,47].

λs/λ f [28] [46] [23] [47] [24] FVM LBM

0.1 0.813 0.785 0.7969 0.8143 0.8215 0.8119 0.8178
1 1.233 1.193 1.185 1.2491 1.2425 1.2318 1.2367
10 2.030 2.066 2.031 2.0566 2.0518 2.0262 2.0347
100 2.313 2.394 2.4506 2.3351 2.3355 2.3071 2.3106
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Figure 8. Predictions of the distribution of the local Nusselt number along the hot wall for the
normalized coordinate y/L obtained with the TRT collision operator compared to reference FVM
simulations for various ratios of fluid and solid heat conductivities. (Ra = 1× 105, Pr = 1, as/a f = 1).

In addition, simulations were performed for a different number of solid blocks and
compared with the results of Merrikh and Lage [28]. For these simulations, a mesh of the
same quality as in the mesh study was created by removing or adding lattices in such a
way that the number of lattices per channel and per solid block remained constant. This
results in mesh resolutions of 210 by 210 for the 9-block test case, 280 by 280 for the 16-block
base case, and 420 by 420 cells for the 36-block test case. Predictions for Nuavg for various
solid-to-fluid heat conductivity ratios and different number of blocks are listed in Table 6.
On the left-hand side of each pipe (|) are the results obtained by Merrikh and Lage [28],
and on the right-hand side are the results obtained using the TRT collision operator of the
present work (PW). The excellent agreement in each case demonstrates that the current
implementation is reliable and accurate for various block configurations.

Table 6. Predictions for Nuavg for various solid-to-fluid heat conductivity ratios and different number of
blocks. On the left-hand side of each pipe (|) are the results obtained by Merrikh and Lage [28] reported
and on the right-hand side, results obtained with the TRT collision operator of the present work (PW).

Blocks Source λs/λ f = 0.1 λs/λ f = 1 λs/λ f = 10 λs/λ f = 100

9 [28] | PW 1.053 | 1.048 1.383 | 1.376 2.140 | 2.134 2.418 | 2.405
16 [28] | PW 0.813 | 0.818 1.233 | 1.237 2.030 | 2.035 2.313 | 2.311
36 [28] | PW 0.676 | 0.676 1.098 | 1.098 1.922 | 1.923 2.211 | 2.221
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4.1.2. Base Error

Figure 9 shows the relative root mean squared deviation (RMSD) in % from the
reference FVM for the different collision operators, where the TRT collision operator was
simulated twice. Once with a magic number of Λ = 1/4 = TRT − S and once with
Λ = 3/16 = TRT − A. S indicates a fine-tuned anti-symmetric relaxation time τa

f for
stability and A for accuracy [34], respectively.

The relative simulation time is defined as ∆t/∆t|τ=1.5 because the computational effort
scales linearly with the time-step size, which depends on the relaxation time given by the
diffusive scaling as

∆tp = ∆x2
p

νLBM
νP

, (35)

where the mesh resolution determines ∆xp. Assuming the mesh resolution is kept constant,
the time step only depends on the viscosity in lattice units νLBM which is given by νLBM =
(τf − 0.5)/3.

From Figure 9, a viable relaxation time in the range of 0.6 ≤ τf ≤ 1.5 was derived.
The upper bound is determined by a deviation of approximately 5% from the reference
simulation, and the lower bound follows from simulation time considerations where
choosing τ = 0.6 instead of τ = 1.5 leads to an order of magnitude longer simulation time.
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Figure 9. Relative root mean squared deviation in % together with relative simulation time as a factor
of simulation time at τ = 1.5 for a variation in the relaxation time τ.

As the limit τ = 0.5 is approached, the computational cost increases exponentially,
and the simulation becomes less stable. The BGK operator fails, for this test case, at a lower
limit of 0.56. Interestingly, the BGK operator achieves a smaller deviation from the FVM
predictions for values of τ < 1; however, the deviation increases rapidly for relaxation
times above τ = 1. It should also be mentioned that it is inherently less stable than TRT
and MRT. Second, the influence of the magic operator Λ on the overall prediction is small.
The lines for both types of TRT simulations in Figure 9 almost coincide. The MRT yields
very similar results for τ < 1 but behaves better for larger values of τ. For the present
test case, there was no significant advantage in terms of stability to using the MRT. It is,
therefore suggested that the TRT collision operator is used, as it is easier to implement, can
be fine-tuned with a single parameter, and is about 20–30% faster overall.

For this test case and a Rayleigh number of Ra = 1× 105, the stability limits during the
parametric study were observed as:

BGK 0.58 ≤ τ ≤ 4.0

TRT − A 0.56 ≤ τ ≤ 5.9

TRT − S 0.56 ≤ τ ≤ 5.9

MRT 0.56 ≤ τ ≤ 7.0

As expected, the BGK operator is slightly less stable than the TRT and MRT. Sur-
prisingly, the TRT − S operator, which is fine-tuned for stability, demonstrated no clear
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advantage compared to the TRT− A (fine-tuned for accuracy). The MRT collision operator
offers similar stability to TRT at the lower end but is more stable for larger relaxation times.
However, it does not matter since the error is already intolerably high for τ = 5.9.

4.1.3. Influence of the CHT Method on the Deviation

In the second part of the investigation, the relaxation time for the energy equation
of the solids τgs was varied. For the sake of simplicity, the fluid’s relaxation times for
the Navier–Stokes equation and the energy equation were set equal, i.e., τf = τg f . This
results in an implicit variation in the ratios of the physical properties rλ = λs/λ f , and
rc = (ρc)s/(ρc) f .

In the case where the product of density and heat capacity is smaller for the fluid than
for the solid, which is typically valid if the fluid is a gas, i.e., (ρc) f < (ρc)s → (ρc)0 = (ρc) f ,
the relationships between the thermal relaxation times, the fluid relaxation time τf , and the
ratio of the thermal conductivities rλ are as follows:

τg f =
1
Pr

τf +
Pr− 1

2Pr

τgs =
rλ

Pr
τf +

Pr− rλ

2Pr
(36)

Note that τf = τg f implies Pr = 1 and that the ratio rc does not appear in Equation (36).
From this variation, it is possible to determine a range of possible material combinations
for a stable and accurate LBM simulation.

Based on the findings from the last section (Section 4.1.2), four different relaxation
times for the fluid were selected: τf = 1.5, 1.2, 0.9, 0.6. The upper and lower limits are based
on two assumptions: First, the error should remain small (≈< 5%). Second, the physical
time step should not be too small.

Figure 10 shows the relative RMSD from the corresponding FVM simulation for the BGK,
TRT, and MRT collision operators using the enthalpy-based CHT method of Lu et al. [24].
During a sweep of the relaxation time of the solid τgs, the fluid relaxation times τf and τg f
were kept constant.
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Figure 10. Relative deviation in percent in comparison for all used collision operators, BGK blue
solid line, TRT green dashed, and MRT red dot-dashed, for (a) τf = τg f = 0.6, (b) τf = τg f = 0.9, (c)
τf = τg f = 1.2, and (d) τf = τg f = 1.5.
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Two conclusions can be drawn from Figure 10. First, the base error is determined
by the fluid relaxation time τf . Second, starting from this base deviation, the RMSD of
the simulation grows rapidly when approaching the limit of τgs = 0.5 and continuously
decreases as the relaxation time τgs becomes larger. This is surprising since in the standard
LBM (without an additional CHT method), the error becomes smaller approaching τf = 0.5,
but at the cost of a much smaller time step and stability issues.

Interestingly, the BGK operator performs very well for relaxation times less than one
for the fluid part (τf < 1.0). However, the deviation in the BGK depends much more
strongly on the fluid relaxation time than TRT and MRT, which is an unpleasant behavior.
This is most likely due to the viscosity dependence of the location of the wall when using
the half-way bounce-back boundary condition, which directly affects the approximation of
the wall-normal temperature gradient at the hot wall. The MRT collision operator provides
a slightly better solution but at a higher computational cost of approximately 20–30%.

4.1.4. Realistic Physical Properties

Finally, turning to realistic thermophysical properties reveals an issue that is less
linked to the CHT method but more to the LBM itself. An investigation of the realistic
properties defined in Table 2 at a Rayleigh number of Ra = 1× 105 would make no sense
since this would result in very small temperature differences ∆T with no practical relevance
(see Table 7).

Table 7. Rayleigh numbers and temperature differences for the fictitious fluid and the realistic
material pairings air/wool, air/steel, and flue gas/steel.

Fictitious Air/Wool Air/Steel Flue Gas/Steel

g 10 9.81 9.81 9.81 m/s2

Ra 1 × 105 1 × 105 1 × 105 1 × 105 −
∆T 20 0.02804 0.001116 0.2771 K

∆T 20 20 20 20 K
Ra 1 × 105 7.13 × 107 1.33 × 109 2.35 × 108 −
β∆T 0.01 0.03 0.06 0.03 −

Therefore, for the assessment of the LBM for realistic parameters, the temperature
difference was fixed to ∆T = 20K. This leads to substantially higher Rayleigh numbers,
which are listed in Table 7. Further increasing the temperature differences would lead to
even higher Rayleigh numbers, thus requiring a turbulence model. As turbulence is an
inherently three-dimensional phenomenon, it is widely agreed that two-dimensional LES is
non-physical. Therefore, the temperature spread was not further increased as the selected
boundary conditions already pushed the boundaries of what was demonstrated in the open
literature before. However, it is planned to extend the solver into three dimensions in a
future work where a LES sub-grid model can be implemented with relative ease.

Table 8 shows the stability of the test cases with realistic physical properties. First, it
must be said that only the air/wool case could be simulated with the coarse grid of 280
by 280 lattices used for all results presented so far. Increasing the resolution to 560 by 560
allowed a stable simulation of the air/wool test case with a relaxation time of τf = 0.9. For
a fluid relaxation time of τf = 1.5, the mesh needs to be refined further. A resolution of
2240 by 2240 yielded a stable result. However, because of the extremely high computational
cost associated with such a fine mesh, such a high relaxation time is not advisable.

For the flue gas/steel test case, the lowest relaxation time τf for which a stable sim-
ulation could be obtained was τf = 0.75. This is because, for the flue gas/steel test case,
the Prandtls number is greater than unity. From Equation (36), it is known that the relax-
ation time for the energy equation is smaller than for Navier–Stokes (τg f < τf ). Choosing
τf = 0.75 results in τg f = 0.6 for the flue gas/steel test case. From that, it can be followed
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that the smallest relaxation time of the bunch (τf , τg f , and τgs) defines the stability of
the simulation.

For the air/steel test case, the mesh had to be refined to a resolution of 2240 by 2240
latices, which allowed for a stable simulation. With a Rayleigh number of Ra = 1.33× 109,
the flow is probably in the transitional region and could benefit from a turbulence model,
but this is beyond the scope of the present work.

Table 8. Stability matrix (X stable, x unstable) for realistic thermophysical property test cases for
different cell counts and relaxation times τf . Note that τg f and τgs are calculated accordingly.

Air/Wool Air/Steel Flue Gas/Steel
Ra = 7.13 × 107 Ra = 1.33 × 109 Ra = 2.35 × 108

Nx × Ny / τf 0.6 0.9 1.5 0.6 0.9 1.5 0.6 0.75 0.9 1.5

280 × 280 X x x x x x x x x x
560 × 560 X X x x x x x x x x

1120 × 1120 X X x x x x x X x x
2240 × 2240 X X X X x x x X X X

4.2. Cavity with a Heating Pad

The simulation was run using the TRT collision operator and a relaxation time
τf = 0.55 until a simulation time of t = 25,000 s ≈ 6.94 h was reached. The relaxation
time was slightly reduced below our recommendation in the last section because, otherwise,
the local Mach number for this test case would have been too large for accurate simulations.
Figure 11 shows the final temperature field for the entire domain, and the velocity field
zoomed into the cavity along with the streamlines. The flow and temperature field inside
the cavity is quite similar to Rayleigh–Bernard convection and exhibits the counter-rotating
vortices characteristic of natural convection, where the hot air rises in the center and, as it
cools on the walls at the top of the cavity, falls back down to the heating pad.
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Figure 11. Prediction for (a) the temperature field and (b) velocity field (zoomed to the cavity) using
a relaxation time of τf = 0.55 and the TRT collision operator.

However, the transient behavior is the most significant regime for this type of problem.
Figure 12a shows a comparison of the temperature profile at the centerline (x = const.)
obtained with the LBM and FVM, respectively, after a simulation time of t = 7200 s.
The results show that the temperature profiles agree very well, but the LBM simulation
is slightly hotter. This can also be seen in Figure 12b, which shows the time trace of a
temperature probe at position x = center, y = 200 mm, indicating that the LBM simulation
heats up marginally quicker, but both methods agree closely once the system reaches
steady-state conditions. The difference is most likely due to the implementation of the
heating-pad source term in the energy equation of the LBM. Further research is needed to
improve the implementation. However, the results are very promising and support our
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conclusion that LBM equipped with proper CHT methods can be an alternative to standard
CFD techniques for this kind of application.
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Figure 12. Comparision of LBM and FVM predictions for (a) the temperature profile at the center-line
(x = const.) and (b) the heat-up curve for a temperature probe located at x = center, y = 200 mm.

5. Conclusions and Outlook

Two different test cases were investigated. First, a differentially heated cavity filled
with solid blocks was used to explore the stability and accuracy of the unmodified double-
distribution LBM. Without modification, the thermal relaxation times for the solid and fluid
are the same (τgs = τg f ), resulting in equal thermal diffusivities a f = as. For simplicity, the
fluid-flow relaxation time τf was chosen equal to the thermal relaxation times, implicitly
setting the Prandtl number to unity (Pr = 1). It was confirmed that the accuracy of the
LBM comes as a compromise between simulation time and stability. When the relaxation
time is decreased, the simulation usually becomes more accurate, but at the expense of
stability and computational effort. Above a certain value for the relaxation time, the results
become implausible. According to our research, in similar cases, it would be advisable
to use a relaxation time in the range of 0.6 ≤ τf ≤ 1.5. It was also confirmed that the
TRT collision operator represents the best compromise regarding accuracy, stability, and
computation time compared to BGK and MRT.

Next, a variation in the solid relaxation time τgs was performed at four different fluid
relaxation times τf . It was found that the principal source of error concerns the fluid solver
and depends on the relaxation time τf . Besides that, increasing the relaxation time of the
solid τgs leads to a more accurate result, which is surprising because it is the other way
around for standard LBM without CHT. Further investigations are required to understand
this seemingly contradicting behavior better.

If the temperature difference is increased to practical values, the Rayleigh number
increases drastically, which requires refining the mesh significantly. This is a fact often over-
looked by previous LBM research, where the restriction to small Ra numbers (Ra = 1× 105)
would lead to very small temperature differences, well below 1 K, for realistic thermo-
physical properties. Subsequently, and for test cases of greater practical importance, a
turbulence model would have to be used, which is beyond the scope of the present work.
However, the second test case demonstrated that the LBM provides accurate and fast
predictions, especially if the transient solution is of interest. Still, the main limitations,
especially for processes with large temperature differences, are the temporal constant
thermophysical properties.

In future work, it is planned to extend the solver to three dimensions, allowing the
inclusion of a turbulence model in the form of a LES sub-grid model with relative ease.
This will allow consideration of test cases with higher Rayleigh numbers and investigation
if a turbulence model can further stabilize the CHT model.
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Abbreviations
The following abbreviations are used in this manuscript:
ADE advection-diffusion equation
BGK Bhatnagar–Gross–Krook
CFD computational fluid dynamics
CHT conjugate heat transfer
EDM exact difference method
FVM finite volume method
LBM lattice-Boltzmann method
LES large eddy simulation
LHS left-hand side
MRT multiple-relaxation-time
RHS right-hand side
RMSD root mean squared deviation
SRT single-relaxation time
TRT two-relaxation time
Nomenclature
a thermal diffusivity
cp specific heat capacity at constant pressure
cs lattice speed of sound
cα discrete velocity of population fα

fα, gα velocity probability density function; population
f eq
α , geq

α equilibrium population
f neq
α , gneq

α non-equilibrium part of the population
f a
α , ga

α anti-symmetric part of the population
f s
α, gs

α symmetric part of the population
fα, gα opposite-direction population
Gr Grashof number
H enthalpy
h heat transfer coefficient
β thermal (isobaric) expansion coefficient
ga gravitational acceleration vector
m, mα moments of the populations
meq, meq

α equilibrium moments of the populations
M transformation matrix from population into momentum space
δt time increment
δx spatial step size
γ solid-to-empty-cavity ratio
Gr Grashof number
Λ magic parameter of the TRT collision operator
µ dynamic viscosity
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N number of solid blocks
Nα number of discrete velocities
ND number of dimensions
Nu Nusselt number
Nuavg average Nusselt number along the hot wall
Pel electrical heating power
Pr Prandtl number
Ra Raleigh number
ρ density
ρ f ,0 reference density in lattice units
rc solid/fluid ratio of the product of density and heat capacity
rk solid/fluid ratio of the heat conductivities
Sα source term
T temperature
Tc cold (wall) temperature
Th hot (wall) temperature
Tw wall temperature
t time
ui, uj, u velocity vector
wα lattice weights for the corresponding velocities
xi, xj, x position vector
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