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Abstract

We determine necessary and sufficient conditions on the isoperimetric properties of a reg-
ular graph G of growing degree d, under which the random subgraph Gp typically undergoes
a phase transition around p = 1

d which resembles the emergence of a giant component in
the binomial random graph model G(n, p).

More precisely, let d = ω(1), let ϵ > 0 be a small enough constant, and let p ·d = 1+ϵ. We
show that if C is sufficiently large and G is a d-regular n-vertex graph where every subset
S ⊆ V (G) of order at most n

2 has edge-boundary of size at least C|S|, then Gp typically
has a unique component of linear order, whose order is asymptotically y(ϵ)n, where y(ϵ) is
the survival probability of a Galton-Watson tree with offspring distribution Po(1 + ϵ). We
further give examples to show that this result is tight both in terms of its dependence on C,
and with respect to the order of the second-largest component, which is in contrast to the
case of constant d.

We also consider a more general setting, where we only control the expansion of sets up
to size k. In this case, we show that if G is such that every subset S ⊆ V (G) of order at
most k has edge-boundary of size at least d|S| and p is such that p · d ≥ 1 + ϵ, then Gp

typically contains a component of order Ω(k).

1 Introduction

1.1 Background and Motivation

In 1957, Broadbent and Hammersley [11] initiated the study of percolation theory in order to
model the flow of fluid through a medium with randomly blocked channels. In (bond) percolation,
given a host graph G, the percolated random subgraph Gp is obtained by retaining every edge
of G independently and with probability p. A fundamental and extensively studied example
of such a model is when the host graph G is the complete graph Kn, which coincides with the
classical binomial random graph model G(n, p).

In their seminal paper from 1960, Erdős and Rényi [18] showed that G(n, p)1 undergoes a
dramatic phase transition, with respect to its component structure, when the expected average
degree is around 1 (that is, when p ·n ≈ 1). More precisely, given a constant ϵ > 0, let us define
y := y(ϵ) to be the unique solution in (0, 1) of the equation

y = 1 − exp (−(1 + ϵ)y) . (1)

Erdős and Rényi showed the following phase transition result.
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1In fact, Erdős and Rényi worked in the closely related uniform random graph model G(n,m).
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Theorem 1.1 ([18]). Let ϵ > 0 be a small enough constant. Then, with probability tending to
1 as n tends to infinity,

(a) if p = 1−ϵ
n , then all components of G(n, p) are of order Oϵ (log n); and,

(b) if p = 1+ϵ
n , then there exists a unique giant component in G(n, p) of order (1+o(1))y(ϵ)n.

Furthermore, all other components of G(n, p) are of order Oϵ (log n).

We refer the reader to [8, 19, 25] for systematic coverage of random graphs, and to the
monographs [10, 21, 26] for more background on percolation theory.

Let us say a little about a proof of Theorem 1.1. A standard heuristic (see, for example,
[4, Chapter 10.4]) shows that, since every vertex in the host graph has degree ≈ n, a local
exploration process of the clusters in G(n, p) can be approximated by a branching process
where the expected number of children is pn. From this, one can deduce that each vertex
is contained in a ‘large’ component, in this case linear sized, with probability ≈ y(ϵ) where
ϵ = np− 1, and what remains is to show that these large clusters ‘merge’ into a unique ‘giant’
component (throughout the rest of the paper, we will often refer to a linear sized component as
a giant component).

This heuristic implies that the threshold probability depends only on the local structure of
the graph, the vertex degrees, whereas the order of the largest component above this threshold
grows with the order of the host graph. In the case of G(n, p), these two parameters are
coincidentally approximately equal. However, more generally this heuristic suggests that we
should see a sharp change in the order of the largest component in a random subgraph of an
arbitrary d-regular host graph G, for d = ω(1), when p is around 1

d .
In the subcritical regime, it is known (and it is fairly easy to show) that for d-regular graphs

the behaviour of Theorem 1.1 (a) is universal, in that when p = 1−ϵ
d , typically all components of

Gp are of order at most Oϵ(log |V (G)|) (see [13, Theorem 1] and also [33]). In the supercritical
regime, consider first a disjoint union of copies of Kd+1 — the largest component (whether we
percolate or not) is then of order at most d. Thus, for such a phase transition to typically occur,
one needs some additional conditions on the edge distribution of the host graph. Indeed, this
phase transition has been studied in certain specific families of host graphs. In particular, in
the case of the d-dimensional hypercube Qd, the pioneering work of Ajtai, Komlós, and Sze-
merédi [1] and of Bollobás, Kohayakawa, and  Luczak [9] shows that the component structure
of a supercritical percolated hypercube is quantitatively similar to that in Theorem 1.1 (b), in
that the largest component has asymptotic order y(ϵ)|V (Qd)| and the second-largest compo-
nent has order Oϵ(log |V (Qd)|). This result has been further generalised by the authors to any
high-dimensional product graph, whose base graphs are regular and of bounded degree [13]. In
a different context, this phenomenon has also been observed in pseudo-random graphs, which
lack any clear geometric structure but have fairly good expansion. In this setting Frieze, Kriv-
elevich, and Martin [20] showed that when λ

d = o(1), supercritical percolated (n, d, λ)-graphs
demonstrate similar behaviour in terms of their component structure.

In all these cases, the proofs rely heavily on the expansion properties of the host graph.
However, in this regard, high-dimensional product graphs and pseudo-random graphs are quite
dissimilar. The former are well-structured with respect to their geometry and display a high
level of symmetry, yet they are (generally) not very good expanders, whereas the latter are
much better expanders and have very uniform edge-distribution, but lack any obvious geometric
structure or symmetry.

In light of this, it is perhaps natural to ask if a sufficiently strong assumption on the expansion
of the base graph G alone is sufficient to guarantee a similar phase transition as in G(n, p),
without any further assumptions of geometric structure or pseudo-randomness, and if so, what
are the minimal such requirements.
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Question 1.2. Let d = ω(1), and let G be a d-regular graph on n vertices. What requirements
on the expansion of G do guarantee the typical existence of a component of asymptotic size y(ϵ)n
in the supercritical regime?

To make this question more precise, we will need some way to quantify the expansion proper-
ties of the host graph. A well-known notion, capturing in part the expansion properties, is the
isoperimetric constant of the graph, also known as the Cheeger constant due to its connection
to the Cheeger isoperimetric constant of a Riemannian manifold [12].

Given a regular graph G = (V,E) and a subset S ⊆ V (G), we write ∂G(S) for the size of the
edge-boundary of S, that is, the number of edges in G with one endpoint in S and the other
endpoint in SC := V \ S. The isoperimetric constant of G is defined as

i(G) := min
S⊆V,1≤|S|≤|V |/2

{
∂G(S)

|S|

}
.

For example, it follows from Harper’s Theorem [23] that i(Qd) = 1, whereas if G is an (n, d, λ)-
graph with λ

d = o(1), then standard results imply i(G) = (1 + od(1))d2 (see, for example, [31]).
Graphs with constant degree and i(G) > 0 are known as expander graphs and have turned

out to be very important in diverse areas of discrete mathematics and computer science (we
refer the reader to [24] for a comprehensive survey on expander graphs and their applications).
Question 1.2 has been studied in the context of constant degree expander graphs. For constant
degree expanders with high-girth, the phase transition occurs around p = 1

d−1 (note that when

d = ω(1) and outside the critical window, the scaling of 1
d suffices, whereas in the constant

degree case, this difference matters). Indeed, Alon, Benjamini, and Stacey [2] showed that if
G is an expander, then there exists at most one linear-sized component in Gp for any p and
under the further assumption that the graph has high-girth, they showed the existence of a
unique giant component in the supercritical regime (that is, when p · (d − 1) > 1), whose
asymptotic order was determined by Krivelevich, Lubetzky, and Sudakov [29]. Benjamini,
Nachmias, and Peres [6] showed that under extra assumptions on the host graph there is an
o(1)-sharp threshold for the appearance of a giant component, and conjectured its universality.
Subsequent work by Benjamini, Boucheron, Lugosi, and Rossignol [5] showed the existence of a
sharp threshold for the existence of a giant component of order cn for any c ∈ (0, 1). Questions
of a similar flavour to Question 1.2 have also been studied under the assumption that the host
graph is transitive. In particular, Easo [16] showed necessary and sufficient conditions for the
existence of a percolation threshold in vertex-transitive graphs, and Easo and Hutchcroft [17]
showed sufficient conditions for the existence of a unique giant component above the percolation
threshold in vertex-transitive graphs.

1.2 Main results

Towards answering Question 1.2, our first main result shows that a fairly weak assumption
on the isoperimetric constant of the base graph is sufficient to guarantee the existence of a
component whose asymptotic order is arbitrarily close to y(ϵ)n.

Theorem 1. Let d = ω(1), and let G be a d-regular n-vertex graph. Let ϵ > 0 be a small
constant and let p = 1+ϵ

d . Then, there exists a constant C0 := C0(ϵ) > 0, such that for every

C ≥ C0 the following holds. If i(G) ≥ C, then with probability at least 1 − exp
(
−

√
Cn
d

)
,

∣∣|L1| − yn
∣∣ ≤ 10n

C1/20
,

where y = y(ϵ) is as defined in (1) and L1 is the largest component of Gp. Furthermore, the
second-largest component of Gp is of order at most (1 + od(1)) 10n

C1/20 .
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We note that in fact an even weaker assumption on the isoperimetry of the graph, re-
stricted to sets of linear size, suffices (see Remark 4.6). Furthermore, it suffices to take
C0(ϵ) = Ω

(
ϵ−40

)
. Observe that for constant C this does not quite answer Question 1.2, but when

taking C = C(d) → ∞ so that
√
Cn
d → ∞, the result implies that whp2 |L1| = (1 + od(1)) yn

and all other components have sublinear order. In particular, when G is an (n, d, λ)-graph with
λ = o(d), we have that i(G) ≥ (1 − o(1)) d

2 , and so Theorem 1 implies the typical existence
of a giant component of order (1 + od(1))yn in the supercritical regime, which was first shown
in [20]. On the other hand, in the case of the hypercube Qd, a subcube S of size 2d−1 has
an edge-boundary of size only |S|. Nevertheless, we note that an ad-hoc adjustment of our
method, utilising Harper’s inequality [23], can give a proof for the typical existence of a giant
of the correct asymptotic order in supercritical Qd

p. Since, in general, our methods will always
lead to some inverse polynomial dependence on ϵ, we have not attempted to optimise the power
of C in the estimate of Theorem 1, nor the power ϵ in the estimate of C0. Nevertheless, the
above example suggests it would be very interesting to see if the dependence here could be
significantly improved.

Theorem 1 is tight in two senses. Firstly, there exist a d-regular graph G whose isoperimetric
constant is bounded from below and some supercritical probability p such that whp Gp contains
no linear sized component in the supercritical regime, and in fact only (poly-)logarithmically
sized components.

Theorem 2. Let C > 1 be a constant, let d = ω(1), let n = ω(d2), and let p ≤ C
d . Then, there

exists a d-regular n-vertex graph G with i(G) ≥ 1
40C such that whp all the components in Gp

are of order at most 3d log n.

Secondly, the bound on the size of the second-largest component in Theorem 1 is close to
tight, in that there exist d-regular graphs G whose isoperimetric constant is arbitrarily large
and supercritical probabilities p for which the second-largest component in Gp has almost linear
size.

Theorem 3. Let n ≥ d = ω(1), let ϵ > 0 be a sufficiently small constant, and let p = 1+ϵ
d .

Then there exist C0 := C0(ϵ) > 0 and t0 := t0(C) > 0, such that for all C with d ≥ 7C ≥ 7C0

and t ≥ t0 with t = o(d), the following holds. There exists a d-regular n-vertex graph G with
i(G) ≥ C such that the second-largest component of Gp is of order at least ϵn

2t with probability
at least 1 − exp (− exp(−30C)t) − od(1).

We note that in Theorem 3, C can, but does not have to, depend on d and tend slowly to
infinity. Furthermore, if we take t = ω(exp(C)), we obtain that whp there is a component of
order Ω

(
n
t

)
. Finally, we remark that in order to simplify the statements of Theorems 2 and 3,

there are some implicit parity assumptions on n and d.
As mentioned before, the connection between the phase transition in a percolated subgraph

and the isoperimetric properties of the host graph has been studied before for constant-degree
high-girth expanders. To be more precise, given fixed constants d ∈ N and i > 0, in their
pioneering paper, Alon, Benjamini, and Stacey [2] showed that for a d-regular graph G with
i(G) ≥ i and high-girth, Gp undergoes a phase transition around p = 1

d−1 , where the order
of the largest component grows from sublinear to linear. Furthermore, they showed that the
second-largest component in Gp in the supercritical regime is typically of order O(nc), for
some c < 1. Subsequent work by Krivelevich, Lubetzky, and Sudakov [29] determined that
the typical asymptotic order of the largest component in the supercritical regime is y(ϵ)n, and
demonstrated the existence of a high-girth constant-degree expander H such that the second-
largest component of Hp in the supercritical regime is of order Ω(nc), for any c < 1.

Let us briefly compare this to our results, where instead the degree is tending to infinity.
Whilst we have a similar phase transition in terms of the size of the largest component when

2With high probability, that is, with probability tending to 1 as d tends to infinity.
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p is around 1
d , we require a stronger assumption on the isoperimetric constant, i(G) ≥ C.

Theorem 2 shows that this is in some sense necessary, demonstrating a difference between the
constant degree and growing degree setting. Moreover, whilst our assumption on the isoperi-
metric constant is stronger, let us note that any (n, d, λ)-graph G satisfies i(G) = Θ(d), and
that for every S ⊆ V (Qd) with |S| ≤ |V (Qd)|1−c, for any c < 1, we have ∂Qd(S) = Θ(d)|S|. It is
thus perhaps surprising that Theorem 1 holds whp for any large enough C, with no dependence
on d in how quickly we need C to tend to infinity.

Furthermore, outside of the largest component, the typical component structure in the su-
percritical regime is quantitatively different — in the constant degree setting the second-largest
component is whp of order O(nc) for some c < 1, while when the degree is growing, Theorem
3 shows that the second-largest component can be typically of order Ω(n/t), for any function t
tending to infinity arbitrarily slowly, demonstrating a stark difference between the two settings.

Finally, we will also consider what we can say about Question 1.2 when we have rather less
control over the expansion of the host graph. Indeed, let us suppose that we do not have good
control on the isoperimetric constant of G, or even over the expansion of linear sized sets as
in Remark 4.6, but rather a more ‘restricted’ control over the expansion of G, up to sets of a
fixed size k. In the spirit of Question 1.2, can we still hope to determine the existence of some
‘large’ component? In this case, a graph consisting of many disjoint expanding graphs of size 2k
shows that we cannot hope to find a component of order larger than 2k. Our second main result
demonstrates that we can guarantee whp a component of order Ω(k), when the probability p
is sufficiently large with respect to our local control on the expansion of G.

Theorem 4. Let k = ω(1), d ≤ k and let G be a graph on more than k vertices, such that every
S ⊆ V (G) with |S| ≤ k satisfies ∂G(S) ≥ d|S|. Let ϵ > 0 be a small constant and let p = 1+ϵ

d .
Then, with probability tending to 1 as k tends to infinity, Gp contains a component of order at
least k

2 .

At first sight, the assumptions of Theorem 4 seem quite dissimilar to other statements about
the existence of large clusters in percolated subgraphs. However, for sets S of size one, the
condition is equivalent to the condition on the minimum degree of the host graph, δ(G) ≥ d,
and for such graphs it is already known (see, e.g., [32]) that when p ≥ 1+ϵ

d whp Gp contains
a component of order Ω(d). In particular, the main interest here is when k ≫ d. In some
sense, we can think of Theorem 4 as giving an alternative heuristic for the nature of the phase
transition — here our point of criticality is controlled by the expansion ratio of subsets, whereas
the quantitative aspects of the component structure above the critical point are controlled by
the scale on which this level of expansion holds. Indeed, in the complete graph, sets of order
k have edge-expansion of

(
1 − k

n

)
n · k. Thus, choosing k = δn, Theorem 4 shows that when

p · n > 1
1−δ , whp G(n, p) contains a linear sized component. Choosing δ sufficiently small, we

have that whenever p · n > 1, whp G(n, p) contains a linear sized component.
In this way, Theorem 4 once again demonstrates the intrinsic connection between the expan-

sion of the host graph, both global and ‘local’, and the typical emergence of large components in
the percolated subgraphs. Moreover, we prove a variant of Theorem 4 which requires a slightly
stronger assumption on the probability and on the degree of the graph, but allows one to verify
instead only a ‘local’ expansion property in the host graph (see Theorem 3.1, stated in Section
3).

The paper is structured as follows. In Section 2 we set our notation, collect several lemmas
which we will use throughout the proofs, and describe the Breadth First Search (BFS) algorithm
which we will also use. In Section 3 we give short proofs of Theorems 4 and 3.1, utilising the BFS
algorithm. The proof of Theorem 1, given in Section 4, is the most involved part of the paper,
and therein lie several novel ideas. In Section 5 we give two constructions proving Theorems 2
and 3. Finally, in Section 6, we discuss our results and avenues for future research.
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2 Preliminaries

As mentioned in the introduction, given a graph H and a subset S ⊆ V (H), we denote by ∂H(S)
the number of edges with one endpoint in S and the other endpoint in SC = V (H)\S. We denote
by NH(S) the external neighbourhood of S in H. Given two disjoint subsets A,B ⊆ V (H), we
denote by eH(A,B) the number of edges (in H) with one endpoint in A and the other endpoint
in B. We denote by eH(A) the number of edges in H[A]. Given v ∈ V (H), we denote by CH(v)
the connected component in H to which v belongs. In each case, if the underlying graph is
clear from the context, we may omit the subscript. Furthermore, throughout the paper, we
omit rounding signs for the sake of clarity of presentation.

If y(ϵ) is defined as in (1), then we note that y(ϵ) is the survival probability of a Galton-
Watson tree with offspring distribution Po(1+ ϵ), and it can be shown that y(ϵ) is an increasing
continuous function on (0,∞) with y(ϵ) = 2ϵ−O(ϵ2).

Given an n-vertex graph H and a subset I ⊆ [n], the I-restricted isoperimetric constant of
H is given by

iI(H) := min
S⊆V (H),|S|∈I

{
∂H(S)

|S|

}
.

When I = {k}, we may abbreviate i{k}(H) into ik(H).3 For example, in Theorems 1 and 4, our
assumptions correspond to a lower bound on the restricted isoperimetric constants i[n

2
](G) and

i[k](G), respectively.
We will make use of two standard probabilistic bounds. The first one is a typical Chernoff-type

tail bound on the binomial distribution (see, for example, Appendix A in [4]).

Lemma 2.1. Let n ∈ N, let p ∈ [0, 1], and let X ∼ Bin(n, p). Then for any t ≥ 0,

P [|X − np| ≥ t] ≤ 2 exp

(
− t2

3np

)
.

The second one is a variant of the well-known Azuma-Hoeffding inequality (see, for example,
Chapter 7 in [4]),

Lemma 2.2. Let m ∈ N and let p ∈ [0, 1]. Let X = (X1, X2, . . . , Xm) be a random vector with
range Λ = {0, 1}m with Xℓ distributed according to Bernoulli(p). Let f : Λ → R be such that
there exists C ∈ R such that for every x, x′ ∈ Λ which differ only in one coordinate,

|f(x) − f(x′)| ≤ C.

Then, for every t ≥ 0,

P
[∣∣f(X) − E [f(X)]

∣∣ ≥ t
]
≤ 2 exp

(
− t2

2mpC2

)
.

We also require the following bound on the number of k-vertex trees in a graph G, which
follows immediately from [7, Lemma 2].

Lemma 2.3. Let k ∈ N and let tk(G) be the number of trees on k vertices which are subgraphs
of an n-vertex graph G. Let d := ∆(G) be the maximum degree of G. Then

tk(G) ≤ n
kk−2dk−1

k!
≤ n(ed)k−1.

Finally, we will utilise the following lemma, allowing one to find large matchings in percolated
subgraphs, which follows immediately from [14, Lemma 3.8].

Lemma 2.4. Let G be a d-regular graph. Let c1 > 0 and 0 < δ < 1
2 be constants. Let s ≥ c1d.

Let F ⊆ E(G) be such that |F | ≥ s, and let q = δ
d . Then, there exists a constant c2 = c2(δ) ≥ δ2

such that Fq, a random subset of F obtained by retaining each edge independently with probability
q, contains a matching of size at least c2s

d with probability at least 1 − exp
(
− c2s

d

)
.

3We note that in some papers ik is used to refer to i[k]
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2.1 The Breadth First Search algorithm

The Breadth First Search (BFS) algorithm is an algorithm which explores the components of a
graph G by building a maximal spanning forest.

The algorithm receives as input a graph G = (V,E) and an order σ on V . The algorithm
maintains three sets of vertices:

• W, the set of vertices whose exploration is complete;

• Q, the set of vertices currently being explored, kept in a queue; and

• U, the set of vertices that have not been explored yet.

The algorithm starts with W = Q = ∅ and U = V (G), and ends when Q ∪ U = ∅. At each
step, if Q is non-empty, then the algorithm queries U for neighbours in G of the first vertex v
in Q, according to σ. Each neighbour which is discovered is added to the back of the queue
Q. Once all neighbours of v have been discovered, we move v from Q to W . If Q = ∅, then
we move the next vertex from U (according to σ) into Q. Note that the set of edges discovered
during the algorithm forms a maximal spanning forest of G. In particular, we begin exploring
a component K of G when the first vertex of K (according to σ) enters Q, which was empty
at that moment, and we complete exploring the component the first moment Q becomes empty
again.

In order to analyse the BFS algorithm on a random subgraph Gp of a graph G with |E(G)|
edges, we will utilise the principle of deferred decisions. That is, we will take a sequence (Xj : 1 ≤
j ≤ |E(G)|) of i.i.d. Bernoulli(p) random variables, which we will think of as representing a
positive or negative answer to a query in the algorithm. When the j-th edge of G is queried
during the BFS algorithm, we will include it in Gp if and only if Xj = 1. Note that the
forest obtained in this way has the same distribution as a forest obtained by running the BFS
algorithm on Gp. We say the j-th edge of G is queried at time j in the process, and write
W (j), Q(j) and U(j) for the sets W,Q and U directly after this edge has been queried.

3 Large components — assuming restricted isoperimetry

We begin with the proof of Theorem 4. The proof is short, drawing inspiration from [32] and
showcases how one can utilise the properties of the BFS algorithm in the setting of percolation.

Proof of Theorem 4. We run the BFS algorithm described in Section 2.1 on Gp. Let t0 be the
first time that |W (t0)| = k

2 , and let t1 be the first time when |W (t1)| = k.

Suppose towards a contradiction that Q is empty at some time t ∈ [t0, t1], and let k′ ∈
[
k
2 , k
]

be such that |W (t)| = k′. By our assumption on the isoperimetric properties of G we have
∂(W (t)) ≥ d · k′, and since each edge between W (t) and W (t)C has been queried at time t, we
have that t ≥ k′d.

On the other hand, at any time t, we have that
∑t

j=1Xj ≤ |W (t) ∪Q(t)|, and in particular

if Q(t) is empty, then |W (t)| ≥
∑t

j=1Xj ≥
∑k′d

j=1Xj . By Lemma 2.1,

P

 k′d∑
j=1

Xj ≤
(

1 +
ϵ

2

)
k′

 ≤ exp

(
− ϵ2k′2

4 · 3(1 + ϵ)k′

)
≤ exp

(
−ϵ2k

25

)
.

Recalling that k′ ∈
[
k
2 , k
]
, by the union bound over the at most kd possible values of k′d, we

have that the probability that
∑t

j=1Xj ≤
(
1 + ϵ

2

)
k′ is at most

dk · exp

(
−ϵ2k

25

)
≤ k2 · exp

(
−ϵ2k

25

)
= o(1),

7



where the inequality follows from our assumption that k ≥ d, and the equality follows from
our assumption that k = ω(1). Thus, whp at any time t ∈ [t0, t1], we have that |W (t)| ≥∑t

j=1Xj ≥
∑k′d

j=1Xj > k′ — a contradiction.
Therefore, whp Q(t) is not empty for any t ∈ [t0, t1], and all the vertices in W (t1) \W (t0)

belong to the same component. We thus conclude that whp there exists a component of size
at least k

2 in Gp.

We note that in the above argument, we can choose t0 to be the first moment where |W (t0)| =
δk for small δ, and with a similar analysis deduce the existence of a component of order at least
(1 − o(1))k. We have chosen δ = 1

2 for clarity of presentation.
As mentioned in the introduction, under an additional assumption on the maximum degree

of G and with a slightly larger probability, we can make a similar conclusion as to the size of
the largest component under a much weaker isoperimetric assumption, where we only bound
the expansion of sets of size exactly k.

Theorem 3.1. Let k = ω(1), let c1, c2 ∈ (0, 1], and let d ≤ c1(1 − c2)k. Let G be a graph on
more than k vertices, with maximum degree d, and with ik(G) ≥ c1d. Let ϵ > 0 be sufficiently

small, and let p = 1+ϵ
c2·c1d . Then, whp, Gp contains a component of order at least c1(1−c2)k

4 .

Before proving Theorem 3.1, we first prove the following lemma, which allows us to translate
a bound on ik1(G) to one on i[k2](G), with k2 being not much smaller than k1. The proof draws
on ideas from [27].

Lemma 3.2. Let k, d be positive integers, let c1, c2 ∈ [0, 1] be such that c1d < k and let us write

c3 := c1(1−c2)
2 . Let G be a graph on more than k vertices, with maximum degree d, and such

that ik(G) ≥ c1d. Then there exists a subgraph G′ ⊆ G with |V (G′)| ≥ |V (G)| − k, such that
i[c3k](G

′) ≥ c1c2d.

Proof. Initialise G0 = G and W0 = ∅. At each iteration j, if there is a subset B ⊆ V (Gj−1) of
size |B| ≤ c3k with ∂Gj (B) < c2c1d|B|, we update Wj := Wj−1∪B and Gj := Gj−1[V (Gj−1)\B].
We terminate this process once there are no more such subsets B, and let G′ be the resulting
graph.

Suppose towards contradiction that there is some m such that |Wm| ≥ k, where we may
assume without loss of generality that m is minimal with this property. Let B0 be the last
subset added to Wm, so that Wm = Wm−1 ∪ B0. Then, there is some B1 ⊆ B0 such that
|Wm−1 ∪B1| = k. Let us further set B2 := B0 \B1.

On the one hand, by our assumption on the isoperimetric inequality on G, that is, ik(G) ≥ c1d,
we have that

∂G (Wm−1 ∪B1) ≥ c1dk. (2)

On the other hand,

∂G (Wm−1 ∪B1) ≤ ∂G(Wm−1) + eG(B1, V (G) \ (Wm−1 ∪B1))

≤ ∂G(Wm−1) + eG (B0, V (G) \ (Wm−1 ∪B0)) + eG(B1, B2).

Now, by construction, we have that ∂G(Wm−1) < c1c2d|Wm−1| < c2c1dk. Moreover, by our
choice of Wm−1 and B0, we have eG (B0, V (G) \ (Wm−1 ∪B0)) = ∂Gm−1(B0) < c1c2d|B0|. Fi-
nally, since the graph G has maximum degree d, we have that eG(B1, B2) < d|B0|. Recalling

that |B0| ≤ c3k = c1(1−c2)k
2 and c1 ∈ [0, 1], we have that

∂G (Wm−1 ∪B1) < c1c2dk + c1c2d ·
c1(1 − c2)k

2
+ d · c1(1 − c2)k

2

≤ c1dk

(
c2 +

(1 + c2)(1 − c2)

2

)
= c1dk

(
c2 +

1 − c22
2

)
, (3)

8



where in the last inequality we used our assumption that c1 ≤ 1. Observe that f(c2) = c2+
1−c22
2

is continuous, increasing on (−∞, 1], and attains the value of 1 when c2 = 1. Recalling that
c2 ∈ [0, 1], it follows from (2) and (3) that

c1dk ≤ ∂G (Wm−1 ∪B1) < c1dk

(
c2 +

1 − c22
2

)
≤ c1dk,

a contradiction.

We can now show that Theorem 3.1 follows from Lemma 3.2 and Theorem 4.

Proof of Theorem 3.1. By Lemma 3.2, there exists a non-empty subgraph G′ ⊆ G such that
every S ⊆ V (G′) with |S| ≤ c1(1−c2)k

2 has ∂G′(S) ≥ c1c2d|S|. Applying Theorem 4 to G′ with
p = 1+ϵ

c1c2d
, we conclude that whp G′

p (and thus Gp) contains a component of size at least
c1(1−c2)k

4 .

It would be interesting to see whether the maximum degree condition of Lemma 3.2, and thus
of Theorem 3.1, can be replaced with an assumption on the average degree of G.

Remark 3.3. We note that by analysing a DFS rather than a BFS process, in a manner
similar to that of [32], under the assumptions of Theorem 4 or 3.1 one can further show the
likely existence of paths of length Θ(ϵk) in Gp.

4 Existence of a giant component under weak isoperimetric
assumptions

Let us start this section by defining some useful notation, and giving a broad outline of the
proof of Theorem 1.

Our proof will proceed using a three-round exposure. Let δ := δ(ϵ) > 0 be a sufficiently small
constant. We let p2 = p3 = δ

d , and let p1 be such that (1 − p1)(1 − p2)(1 − p3) = 1 − p, so that
Gp has the same distribution as Gp1 ∪ Gp2 ∪ Gp3 . In order to easily describe the intermediary
stages of the three-round exposure, we let p′ be such that (1− p1)(1− p2) = (1− p′), and define
the following three graphs.

• G(1) = Gp1 , noting that p1 ≥ 1+ϵ−2δ
d ;

• G(2) = G(1) ∪Gp2 , noting that G(2) ∼ Gp′ and p′ ≥ 1+ϵ−δ
d ; and

• G(3) = G(2) ∪Gp3 , noting that G(3) ∼ Gp.

Let us write ρ1 = p1, ρ2 = p′ and ρ3 = p, so that G(j) ∼ Gρj for each j ∈ {1, 2, 3}. Note that
V (G(j)) = V (G) for each j ∈ {1, 2, 3}.

We now define several sets which will be crucial to our analysis in the section. Firstly,
VL(G(j)) is the set of vertices which lie in ‘large’ components in G(j). To be precise,

VL(G(j)) :=
{
v ∈ V (G) : |CG(j)(v)| ≥ δd

}
.

Secondly, WL(G(j)) is the set of vertices with many neighbours in VL(G(j)). That is,

WL(G(j)) :=
{
w ∈ V (G) : |NG(w) ∩ VL(G(j))| ≥ δ5d

}
.

Finally, VS(G(j)) is the set of vertices in ‘small’ components in G(j). That is,

VS(G(j)) :=
{
v ∈ V (G) : |CG(j)(v)| ≤ log2 d

}
.

9



Our strategy for proving Theorem 1 is then broadly as follows. The first step, which is
relatively standard, is to show that whp the right asymptotic proportion of vertices lie in
‘large’ components in each G(j). To do this, we estimate the number of vertices which lies in
‘small’ components and then show that a negligible proportion of the vertices lies in components
of intermediate size.

The key part of the proof, which contains several novel arguments, is to show that whp almost
all vertices have many neighbours which lie in ‘large’ components in G(2). Such a statement
already appears in the seminal work of Ajtai, Komlós and Szemerédi [1], and is a key part of
the analysis of the phase transition in various geometric graphs [1, 13]. However, the proofs in
these settings rely heavily on the self-symmetry of these graphs, and a key improvement here
is to prove such a statement without any structural assumptions on the host graph, in fact
relying only on its regularity. This follows from a delicate argument analysing a modified BFS
process starting at the neighbours of a fixed vertex. The rough idea here is that, before we have
discovered Ω(d) neighbours which lie in large components, whp o(d) vertices are contained in
components which are not ’large’, which will allow us to couple the exploration process from
below with a supercritical branching process, and conclude that each neighbour has a constant
probability of lying in a large component.

With these two results in hand, we can argue for the typical existence of a giant component,
roughly as in [1, 9, 13]. More precisely, we show that almost every vertex in VL(G(2)) will
coalesce into a single component in G(3) as follows. We say that a partition VL(G(2)) = A∪B
is component-respecting if K∩VL(G(2)) is fully contained in either A or B, for every component
K of G(2). Given a component-respecting partition VL(G(2)) = A∪B, since almost every vertex
is adjacent to many vertices in large components in G(2), we can extend this partition to an
almost partition A′∪B′ of V (G) such that A ⊆ A′, B ⊆ B′ and every vertex in A′, B′ has many
neighbours in A,B, respectively. Our assumption on the isoperimetric properties of G ensures
that there are many edges between A′ and B′, which we can extend to a large family of paths
in G between A and B of length at most 3. Using Lemma 2.4 we can argue that with very high
probability one of these paths is present in G(3), and in fact that the failure probability is small
enough that whp this holds for every component-respecting partition of VL(G(2)) of relevant
sizes. Hence, whp G(3) contains a component containing almost all the vertices in VL(G(2)),
which contains asymptotically the required number of vertices.

Let us begin then by estimating the order of VS(G(j)) for each j ∈ {1, 2, 3}. Note that the
number of vertices in small components is a decreasing property, and it thus suffices to upper
bound the order of VS(G(1)) and to lower bound the order of VS(G(3)). To that end, let

F (c) =

∞∑
k=1

kk−1

k!
ck−1 exp (−ck) .

It is known (see for example [18, p. 346]) that given c > 1, we have that

F (c) = 1 − y(c− 1), (4)

where y(x) is defined as in (1). With this in hand, we are ready to estimate |VS(G(j))|, in a
manner similar to the one used already in the seminal work of Erdős and Rényi [18].

Lemma 4.1. We have that whp

|VS(G(1))| ≤ (1 + od(1)) (1 − y(ϵ− 2δ))n,

|VS(G(3))| ≥ (1 − od(1)) (1 − y(ϵ))n.

Proof. We begin by bounding E [|VS(G(1))|] from above. Fix k ≤ log2 d. Let Xk be the number
of vertices contained in components of order k in G(1) = Gp1 . Let Tk denote the set of trees on
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k vertices in G. Then, recalling ρ1 = p1, we have

E [|VS(G(1))|] ≤ E

log2 d∑
k=1

Xk

 ≤
log2 d∑
k=1

k
∑
T∈Tk

ρk−1
1 (1 − ρ1)

eG(T,TC)

≤ n

log2 d∑
k=1

(dk)k−1

k!
ρk−1
1 (1 − ρ1)

kik(G),

where the third inequality follows from the first inequality in Lemma 2.3, and from the definition
of the restricted isoperimetric constant ik(G). Since k ≤ log2 d and G is d-regular, it follows that
ik(G) ≥ d − log2 d. Therefore, since ρ1 ≥ 1+ϵ−2δ

d and x exp (−ax) is decreasing when ax > 1,
we have

E[|VS(G(1))|] ≤ n

log2 d∑
k=1

kk−1

k!
(dρ1)

k−1 exp
(
−ρ1k(d− log2 d)

)
≤ n

log2 d∑
k=1

kk−1

k!
(1 + ϵ− 2δ)k−1 exp

(
−(1 + ϵ− 2δ)k

(
1 − log2 d

d

))

≤ exp

(
2 log4 d

d

)
n

log2 d∑
k=1

kk−1

k!
(1 + ϵ− 2δ)k−1 exp (−(1 + ϵ− 2δ)k)

≤ (1 + od(1))n · F (1 + ϵ− 2δ)

= (1 + od(1)) (1 − y(ϵ− 2δ))n,

where the penultimate inequality and last equality follow from (4).
Let us now bound |VS(G(3))| from below. Since G is d-regular, for every v ∈ V (G) a standard

coupling argument implies that |CG(3)(v)| is stochastically dominated by the number of vertices
in a Galton-Watson tree with offspring distribution Bin(d, ρ3). Hence, standard results (see,
for example, [15, Theorem 4.3.12]) imply that for every v ∈ V (G),

P
[
|CG(3)(v)| ≥ log d

]
≤ y(ϵ) + od(1).

Therefore,

E[|VS(G(3))|] ≥ (1 − od(1)) (1 − y(ϵ))n.

Finally, we show that |VS(G(j))| is tightly concentrated around its mean for each j ∈ {1, 2, 3}.
Indeed, let us consider the standard edge-exposure martingale on G(j). Changing any edge can
change the value of |VS(G(j))| by at most 2 log2 d. Therefore, by Lemma 2.2,

P
[∣∣|VS(G(j))| − E[|VS(G(j))|]

∣∣ ≥ n2/3
]
≤ 2 exp

(
− n4/3

2 · dn
2 · ρj · (2 log2 d)2

)

≤ 2 exp

(
− n1/3

5 log4 n

)
= o(1),

where we used d ≤ n in the last inequality.

We now show that whp there are od(n) vertices in V (G) \ (VS(G(j)) ∪ VL(G(j))).

Lemma 4.2. For all j ∈ {1, 2, 3}, whp the number of vertices in components of order between
log2 d and δd in G(j) is od(n).
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Proof. Fix log2 d ≤ k ≤ δd. As in the proof of Lemma 4.1, let X
(j)
k be the number of vertices

in components of order k in G(j). Then, by the second inequality in Lemma 2.3, we obtain

E[X
(j)
k ] ≤ k

∑
T∈Tk

ρk−1
j (1 − ρj)

eG(T,TC)

≤ nk(ed)k−1ρk−1
j (1 − ρj)

kik(G).

Since k ≤ δd and G is d-regular, we have that ik(G) ≥ (1 − δ)d. Furthermore, ρj ≥ 1+ϵ−2δ
d for

each j, and since x exp (−ax) is decreasing when ax > 1,

E[X
(j)
k ] ≤ nk(ed)k−1ρk−1

j (1 − ρj)
(1−δ)dk

≤ nk [edρj exp (−(1 − δ)dρj)]
k

≤ nd [e(1 + ϵ− 2δ) exp (−(1 − δ)(1 + ϵ− 2δ))]k

≤ nd [(1 + ϵ− 2δ) exp (−ϵ + 4δ)]k .

Furthermore, we have that 1 + x ≤ exp
(
x− x2

3

)
for small enough x and therefore

E[X
(j)
k ] ≤ nd

[
exp

(
ϵ− 2δ − (ϵ− 2δ)2

3

)
exp (−ϵ + 4δ)

]k
≤ nd exp

(
−
(
ϵ2

3
− 3δ

)
k

)
≤ nd exp

(
−ϵ3 log2 d

)
,

where we used that k ≥ log2 d and that δ is small enough with respect to ϵ. By Markov’s
inequality, we have

P
[
X

(j)
k ≥ nd3 exp

(
−ϵ3 log2 d

)]
≤ 1

d2
.

Thus, by the union bound over all the at most δd possible values of k, whp there are at most
δd · nd3 exp

(
−ϵ3 log2 d

)
= od(n) vertices in components of order between log2 d and δd.

We can now bound the number of vertices in |VL(G(j))|.

Lemma 4.3. For all j ∈ {1, 2, 3}, whp |VL(G(j))| ∈ [(1 − od(1)) y(ϵ− 2δ)n, (1 + od(1)) y(ϵ)n].

Proof. By Lemma 4.1, we have that whp for all j ∈ {1, 2, 3},

|VS(G(j))| ∈ [(1 − od(1)) (1 − y(ϵ))n, (1 + od(1)) (1 − y(ϵ− 2δ))n] .

Furthermore, by Lemma 4.2, whp for all j ∈ {1, 2, 3}, |V (G) \ (VS(G(j)) ∪ VL(G(j))) | = od(n).
Therefore, whp for all j ∈ {1, 2, 3},

|VL(G(j))| ≤ n + od(n) − (1 − od(1)) (1 − y(ϵ))n = (1 + od(1)) y(ϵ)n, and,

|VL(G(j))| ≥ n− od(n) − (1 − od(1)) (1 − y(ϵ− 2δ))n = (1 − od(1)) y(ϵ− 2δ)n,

as required.

We now turn to the task of estimating |WL(G(2))|. We begin with a lemma bounding from
above the probability that a vertex has many neighbours which do not lie in large components
in G(1). Throughout the rest of the section, we suppose we have enumerated the vertices of
V (G) according to some arbitrary ordering.
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Lemma 4.4. Let v ∈ V (G). The probability that there exists U ⊆ NG(v) such that∣∣∣∣∣ ⋃
u∈U

CG(1)(u)

∣∣∣∣∣ ∈ [δd, 2δd]

and |U | ≤ δ2d is at most exp
(
−δ2d

)
.

Proof. We restrict ourselves to U ′ ⊆ U , such that CG(1)(u) are disjoint for each u ∈ U ′. Let F
be a spanning forest of the components meeting U ′ in G(1) such that |V (F )| = k ∈ [δd, 2δd].
This forest is composed of some 1 ≤ ℓ ≤ δ2d tree components, B1, . . . , Bℓ, so we may assume
that for every i ̸= j, Bi ∩ Bj = ∅ and all the edges leaving each Bi are not in G(1). Each
Bi contains a unique vertex ui ∈ U ′ for 1 ≤ i ≤ ℓ. Note that if there is a subset U ⊆ NG(v)
satisfying the conditions of the lemma, then such an F exists.

Let us now bound from above the probability such a forest F exists. There are at most∑δ2d
m=1

(
d
m

)
≤
(

e
δ2

)δ2d
ways to choose U ′ ⊆ NG(v) with |U ′| ≤ δ2d. We can then specify the

forest F by choosing |V (F )| = k ∈ [δd, 2δd], the number 1 ≤ ℓ ≤ δ2d of tree components, their
sizes |Bi| = ki such that

∑ℓ
i=1 ki = k and finally the tree components {B1, . . . , Bℓ}, for which,

by the second inequality in Lemma 2.3, we have at most
∏ℓ

i=1(ed)ki−1 = (ed)k−ℓ choices (note
that there is no factor of n in the estimate since the roots of the tree components are determined
— these are the vertices in U ′). For a fixed forest F , there are k − ℓ edges which must appear
in G(1), which happens with probability ρk−ℓ

1 . Since |V (F )| ≤ 2δd there are at least k(d− 2δd)
edges in the boundary of F which must not appear in G(1), which happens with probability at
most (1 − ρ1)

k(d−2δd). Thus, by the union bound, the probability such F exists is at most

( e

δ2

)δ2d 2δd∑
k=δd

δ2d∑
ℓ=1

∑
k1,...,kℓ

k1+···+kℓ=k

(ed)k−ℓρk−ℓ
1 (1 − ρ1)

k(d−2δ)d.

Since ρ1 ≥ 1 + ϵ− 2δ and as x exp(−ax) is decreasing when ax > 1,

(ed)k−ℓρk−ℓ
1 (1 − ρ1)

k(d−2δ)d ≤ [e(1 + ϵ− 2δ) exp (−(1 − 2δ)(1 + ϵ− 2δ))]k

≤
[
exp

(
ϵ− 2δ − (ϵ− 2δ)2

3

)
exp (−ϵ + 5δ)

]k
≤ exp

(
−ϵ3k

)
,

where the penultimate inequality follows from 1 + x ≤ exp
(
x− x2

3

)
and the last inequality

follows since δ is sufficiently small with respect to ϵ. There are
(
k−1
ℓ−1

)
ways to choose k1, . . . , kℓ

such that
∑ℓ

i=1 ki = k. Recalling that k ∈ [δd, 2δd] and ℓ ∈
[
δ2d
]
, we have that

(
k−1
ℓ−1

)
≤
(
2e
δ

)δ2d
.

Altogether, the probability that such F exists is at most(
2e

δ2

)2δ2d

exp
(
−ϵ3δd

)
≤ exp

(
−ϵ3δd

2

)
≤ exp

(
−δ2d

)
,

where we used the fact that δ is sufficiently small with respect to ϵ.

Recall that WL(G(2)) =
{
w ∈ V (G) : |NG(w) ∩ VL(G(2))| ≥ δ5d

}
. We are now ready to

bound |WL(G(2))|.

Lemma 4.5. Whp, |WL(G(2))| ≥
(
1 − exp

(
−δ6d

))
n.
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Proof. Let v ∈ V (G), and let NG(v) = {u1, . . . , ud}. Let us bound the probability that
v /∈ WL(G(2)). To that end, we consider a modified BFS process, during which we will keep
track of the sets Q and W as in Section 2.1, as well as the set XL of vertices in large components
(of order at least δd) in G(2), and a set XS of vertices in components which might not be large,
where initially XL = XS = ∅.

The process runs in a number of epochs, at the start of which the queue Q is empty. We
begin the next epoch by moving the first ui ∈ NG(v) \ (XL ∪XS) into Q. We then run the BFS
algorithm in G(1) starting at ui, where we copy every vertex discovered during the epoch to a
set K, and we empty K at the end of every epoch. We call ui the root of the epoch. We then
modify the BFS algorithm in the following ways:

• If |K| = δd at some moment during the epoch, then once we finish exploring the connected
component in G(1), we move all the vertices in K to XL.

• Otherwise, if at some moment during the epoch, the first vertex w in Q has at least δd
neighbours in XL, we expose the edges in Gp2 between w and XL. If any of the queries
are successful, we end the epoch, move all the vertices in Q to W and move all the vertices
in K to XL. Otherwise, we continue exploring the component in G(1).

• Otherwise, if we have not moved ui to XL due to the first two items, and we are at the end
of the epoch since Q = ∅, we query all the unqueried edges between K and XL in G(1).
If any of these queries are successful, we move all the vertices in K to XL. Otherwise, we
move all the vertices in K to XS .

We stop the process either after δ2d epochs, or once NG(v) \ (XL ∪XS) = ∅.
Note that if all the vertices in K moved to XS at the end of an epoch rooted at ui, then the

component of ui in G(1) has size at most δd, since all edges incident to this component in G(1),
and potentially some in G(2), were exposed during this epoch. We thus claim that by Lemma
4.4 at the end of this process |XS | ≤ 2δd with probability at least 1− exp

(
−δ2d

)
. Indeed, let Y

be the set of all roots ui of epochs with ui ∈ XS . Since there are at most δ2d epochs, we have
that |Y | ≤ δ2d. Suppose that at the end of this process |XS | > 2δd. Consider the first moment
|XS | ≥ δd, and let U ⊆ Y be the set of all roots ui of epochs with ui ∈ XS at that moment.
Note that since |XS | changes in size by at most δd at each time, at that moment we have that
|XS | ≤ 2δd, and thus |XS | ∈ [δd, 2δd]. Therefore, U satisfies the conditions of Lemma 4.4.

Now, conditioned on |XS | ≤ 2δd, at the end of the process we have two cases. If we had
less than δ2d epochs, then the process stopped since NG(v) ⊆ XL ∪ XS . However then, since
|XS | ≤ 2δd, we have that |XL| ≥ (1−2δ)d > δ5d, and thus v ∈ WL(G(2)). We may thus assume
we had δ2d epochs.

We claim that, if |XS | ≤ 2δd at the start of an epoch, then, conditioned on the full history
of the process so far, the probability that the root ui of the epoch is moved into XL at the
end of the epoch is at least δ2

2 . Indeed, assume that we have yet to discover δd vertices during
the epoch rooted at ui. If during this epoch no vertices with more than δd neighbours in
XL were discovered, then by assumption each vertex discovered during the epoch has at most
4δd neighbours which have already been discovered when it is queried — at most δd from
the current epoch, at most δd from XL and at most 2δd from XS . Therefore, we can couple
the BFS exploration in this epoch with a Galton-Watson tree B with offspring distribution
Bin ((1 − 4δ)d, p1), such that the BFS exploration stochastically dominates B as long as |B| ≤
δd. Hence, standard results imply that with probability at least y((1 − 4δ)dp1) ≥ δ, |B| grows
to infinity, and in particular the BFS exploration discovers at least δd vertices.

Conversely, if during this epoch a vertex w with at least δd neighbours in XL was discovered,
then, the probability that ui ∈ XL is at least the probability that one of the δd edges from w
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to XL lies in Gp2 , which is at least

1 − (1 − p2)
δd ≥ 1 − exp (−δdp2) = 1 − exp

(
−δ2

)
≥ δ2

2
,

where the last inequality follows since exp (−x) ≤ 1 − x
2 for small enough x.

Hence, conditioned on the event that |XS | ≤ 2δd, which holds with probability at least
1 − exp

(
−δ2d

)
by Lemma 4.4, and assuming that we had δ2d epochs, then |XL ∩ NG(v)|

stochastically dominates Bin
(
δ2d, δ

2

2

)
. Hence, by Lemma 2.1, with probability at least 1 −

exp
(
−δ5d

)
we have that |XL ∩NG(v)| ≥ δ5d.

Therefore, putting all these together, the probability that |XL| < δ5d is at most

exp
(
−δ2d

)
+ exp

(
−δ5d

)
≤ 2 exp

(
−δ5d

)
.

It follows that the probability that any particular v ∈ V (G) is not in WL(G(2)) is at most
2 exp(−δ5d), and so by Markov’s inequality, whp |V (G) \WL(G(2))| ≤ exp(−δ6d)n.

We are now ready to prove Theorem 1.

Figure 1: Illustration of the sets utilised in the proof of Theorem 1 and their properties. By
Lemma 4.5, whp |WL(G(2))| = n− o(n/d) (appears in dark blue). VL(G(2)) appears
in purple, together with a partition of it into A (red-dotted) and B (green-dotted).
This extends to A′ (red-dotted) and B′ (green-dotted), which cover WL(G(2)). In the
figure, the edge xy between A′ and B′ appears in solid black. X, the neighbourhood
of x in A, appears in purple, and its size is lower-bounded by construction. Similarly,
Y , the neighbourhood of y in B, appears in purple with its size also lower-bounded by
construction. When sprinkling with probability p3, with very high probability there
will be many black edges between A′ and B′ in Gp3 , which we can then extend to
paths of length three between A and B.

Proof of Theorem 1. By Lemma 4.3, whp

|VL(Gp)| ≤ (1 + od(1)) y(ϵ)n, |VL(G(2))| ≥ (1 − od(1)) y(ϵ− 2δ)n ≥ y(ϵ)n− 5δn.

We claim that, after sprinkling with probability p3, whp all but of most δn of the vertices
in VL(G(2)) merge into a single component. Let A ⊔ B be a partition of the components
forming VL(G(2)), satisfying δn ≤ k := |A| ≤ |B|. Let A′ be A together with all the vertices
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in V (G) \ B which have at least δ5d
2 neighbours in A, and let B′ be B together with all the

vertices in V (G) \ A′ which have at least δ5d
2 neighbours in B. Note that A′ ∩ B′ = ∅ and

VL(G(2)) ∪WL(G(2)) ⊆ A′ ∪B′.
Fix the partition A ⊔B of (the components forming) VL(G(2)). Note that |A′|, |B′| ≥ k and

one of them is of order at most n
2 . We may assume without loss of generality that k ≤ |A′| ≤ n

2 .
Thus, by our assumption on the isoperimetric constant of G, that is, i(G) ≥ C, there are at
least Ck edges in G between A′ and (A′)C . Since G is d-regular, and by Lemma 4.5 whp
|V (G) \WL(G(2))| ≤ exp

(
−δ6d

)
n = o(n/d), it follows that eG(A′, B′) ≥ Ck/2.

Let us now expose these edges (between A′ and B′) with probability p3. By Lemma 2.4, with

probability at least 1 − exp
(
− δ2Ck

d

)
there is a matching of size at least δ2Ck

d between A′ and

B′ in Gp3 . Assume such a matching exists. By the definition of A′ and B′, from the endpoints

of each edge in the matching there are at least δ5d
2 edges into A, and at least δ5d

2 edges into B.
The probability that a given edge in the matching does not extend to a path of length three
between A and B is thus at most 2(1− p3)

δ5d/2 ≤ 2 exp
(
−δ6/2

)
≤ exp

(
−δ7

)
. These events are

independent for the edges of the matching, and thus the probability that there is no path in
Gp3 connecting A and B is at most

exp

(
−δ7 · δ2Ck

d

)
≤ exp

(
−Cδ10n

d

)
.

Since there are at most 2
n
δd possible component-respecting partitions A ⊔B of VL(G(2)), by

choosing C = 2
δ20

, we conclude that with probability at least

1 − exp

(
−Cδ10n

d
+

n

δd

)
≥ 1 − exp

(
−
√
Cn

d

)
,

Gp contains a component of order at least y(ϵ)n − 5δn − δn = y(ϵ)n − 10
C1/20n, as required.

Furthermore, the second-largest component is of order at most (1 + od(1)) 10n
C1/20 .

Remark 4.6. A careful reading of the proof of Theorem 1 shows that we do not use the full
extent of our assumption i(G) ≥ C. In fact, a milder requirement suffices: for any S ⊆ V (G)
with δn ≤ |S| ≤ n

2 , we require that ∂G(S) ≥ Cδn. Furthermore, we note that it suffices to

choose δ = ϵ2

10 , and so we can take C0 = Ω
(
δ−20

)
= Ω

(
ϵ−40

)
.

5 Tightness of Theorem 1

We begin by describing the construction which will be used for the proof of Theorem 2.

5.1 Construction for Theorem 2

First construction Let d1, d, and n be even integers satisfying the following conditions:

d = ω(1) is such that d + 2 divides n, d1 =
d

Ce2
, and n = ω

(
d2
)
. (5)

Let H0 be an
(

n
d+2 , d1, λ

)
-graph with λ = O

(√
d1
)

(note that d1 · n
d+2 is even, since d1 is even

and d+ 2 divides n). Indeed, whp a random d1-regular graph on n
d+2 vertices satisfies this (see

[31], [36], [35] and the references therein for even stronger results). Note that, by the expander
mixing lemma (see [3]), it follows that i(H0) ≥ d1

3 .
For every v ∈ V (H0), let F0(v) be a (d + 1)-clique and let M(v) ⊆ E (F0(v)) be an arbitrary

matching of size d−d1
2 . Let F1(v) = F0(v) −M(v) be the graph obtained by deleting the edges

of this matching from the clique.
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We now consider the graph G formed by taking the union of H0 and
⋃

v∈V (H0)
F1(v) and

joining each v ∈ V (H0) to each vertex in V (M(v)) ⊆ V (F1(v)) (see Figure 2 for an illustration
of G).

Figure 2: An illustration of the First construction

Let us first show that our graph G satisfies the assumptions of Theorem 2, noting that
d1
5d ≥ 1

5Ce2
≥ 1

40C .

Claim 5.1. Let G be the graph built according to the First construction. Then G is a d-regular
n-vertex graph with i(G) ≥ d1

5d .

Proof. We first note that G is d-regular. Indeed, every vertex v ∈ V (H0) has d1 neighbours in
H0, and d− d1 neighbours in V (M(v)) ⊆ V (F1(v)). Furthermore, every vertex in V (F1(v)) \
V (M(v)) has d neighbours in G, since F0(v) ∼= Kd+1 and the degree of vertices not in V (M(v))
has not been changed.

Furthermore, G has n vertices. Indeed, |V (H0)| = n
d+2 and for each v ∈ V (H0), |F1(v)| = d+1.

Therefore,

|V (G)| =
n

d + 2
+ (d + 1)

n

d + 2
= n.

Let us now show that i(G) ≥ d1
5d . Given S ⊆ V (G) with |S| ≤ n

2 , let S1 = S ∩ V (H0) and for
every v ∈ V (H0), let SF (v) = S ∩ ({v} ∪ V (F1(v))).

Suppose first that |S1| ≥ 4|S|
5(d+1) and |S1| ≤ |V (H0)|

2 . Then, since

e(S, SC)

|S|
≥ eH0(S1, S

C
1 )

|S|
,

it follows from the fact that i(H0) ≥ d1
3 that

eH0(S1, S
C
1 )

|S|
≥

d1|S1|
3

|S|
≥ d1

4d
.

If |S1| ≥ 4|S|
5(d+1) and |V (H0)|

2 ≤ |S1| ≤ 2|V (H0)|
3 , then

eH0(S1, S
C
1 )

|S|
≥

d1|Sc
1|

3

|S|
≥ d1 |V (H0)|

9|S|
≥ 2d1 |V (H0)|

9(d + 2) |V (H0)|
≥ d1

5d
.

Now, suppose that |S1| < 4|S|
5(d+1) . Then, we may assume that there is some subset S2 ⊆ S of

size at least |S|
5 which lies in some union of SF (v) where v ̸∈ S. Then, since S =

⊔
v∈V (H0)

SF (v)
we can see that

e(S, SC)

|S|
≥ 1

5
min
v∈S2

e(SF (v), SC)

|SF (v)|
. (6)
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However, for each v ∈ S2 we have that SF (v) meets F1(v) and does not contain v. Since F1(v)
is a (d + 1)-clique with a matching removed, we have that

e(SF (v), SC) ≥ e(SF (v), F1(v) \ SF (v))

≥ |SF (v)| (d + 1 − |SF (v)|) − |SF (v)| = |SF (v)| (d− |SF (v)|) .

Note that as long as |SF (v)| < d, the above is at least |SF (v)|. On the other hand, if |SF (v)| = d,
then since SF (v) does not contain v and v has d− d1 neighbours in F1(v) \ {v}, we have that

e(SF (v), SC) ≥ e(v, SF (v)) ≥ d− d1 − 1.

Hence, in this case by (6),
e(S, SC)

|S|
≥ 1

5
· d− d1 − 1

d
≥ d1

5d
,

where the last inequality holds by our assumption on d1.
Finally, suppose that |S1| ≥ 2|V (H0)|

3 . Then, since |S| ≤ n
2 , there is a set S′

1 ⊆ S1, |S′
1| ≥

|V (H0)|
6 , such that for every v ∈ S′

1, SF (v) ∩ F1(v) ̸= F1(v). In particular, each such copy
contributes at least d− d1 edges to the boundary of S. Therefore,

e(S, SC)

|S|
≥ (d− d1) |V (H0)|

6|S|
≥ d− d1

3(d + 2)
≥ d1

5d
,

where once again the last inequality holds by our assumption on d1.

Note that i(G) = Θ
(
d1
d

)
. Indeed, let S = {v} ∪ F1(v). Then |S| = d + 2 and ∂G(S) = d1,

and thus i(G) ≤ d1
d+2 .

Theorem 2 will be an immediate corollary of the following Lemma.

Lemma 5.2. Let G be the graph built according to the First construction. Let p = C
d . Then,

whp, all the components of Gp have size at most 3d log n.

Proof of Lemma 5.2. Let k ≥ 3d log n and let Ak be the event that Gp contains a component
of size k. Note that if Ak occurs, then there is a tree T of size k in G, of all whose edges lie
in Gp. It follows that there is a subtree T ′ ⊆ T of size at least k0 := k

d+1 ≥ 2 log n, such that
T ′ ⊆ H0 ⊆ G, all of whose edges lie in Gp. Recalling that H0 is a d1-regular graph on n

d+2

vertices, by Lemma 2.3 there are at most n
d+2(ed1)

k0−1 ways to choose T ′, and we retain its

edges in Gp with probability pk0−1. Therefore, since pd1 = 1
e2

, we have

P [Ak] ≤ n

d + 2
· (ed1)

k0−1pk0−1 =
n

d + 2
·
(

1

e

)k0−1

= o

(
1

n

)
.

Hence, by the union bound, whp Ak does not hold for all 3d log n ≤ k ≤ n.

5.2 Construction for Theorem 3

Second construction Let C, t, d, and p be as in the statement of Theorem 3. Let C1 = 3C,
and let d1 = d − C1. We further assume that C1, t, and d1 satisfy the parity requirements for
what follows.

Let H be a C1-regular graph on n := t(d1 + 1) vertices, with i(H) ≥ C1
3 = C (indeed, whp

a random C1-regular graph on n vertices satisfies this). Since we may assume t = ω(C), we
conclude that there exists an equitable (proper) colouring of H in t colour classes, A1, . . . , At,
with each colour class containing exactly d1 + 1 vertices [22]. We form G by adding to H
all the possible edges in H[Aj ], that is, G[Aj ] ∼= Kd+1 , for every j ∈ [t]. Note that G is a
d1 + C1 = d-regular graph on t(d− 3C + 1) vertices. Furthermore, i(G) ≥ i(H) ≥ C.

With this construction at hand, we are ready to prove Theorem 3.
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Proof of Theorem 3. Note that, for every j ∈ [t], the edges between Aj and V (G)\Aj are those
in H. Let X be the number of sets A ∈ {A1, . . . , At}, such that eHp(A, V (H) \A) = 0.

For each fixed j ∈ [t] we have that eH(Aj , V (H) \Aj) = C1(d1 + 1). The probability this set
is disjoint from the rest of the graph in Hp is

(1 − p)C1(d1+1) ≥ exp

(
−2

C1(d− C1 + 1)

d

)
≥ exp (−4C1) ,

where we used d ≥ 7C = 7C1
3 . Hence, E[X] ≥ exp(−4C1)t. Now, note that changing one edge

can change the value of X by at most two. Hence, by Lemma 2.2,

P
[
X ≤ E[X]

2

]
≤ 2 exp

(
−exp(−8C1)t

2/4

2 · C1np · 4

)
≤ 2 exp

(
−exp(−8C1)t

12

)
.

Thus, with probability at least 1 − exp (− exp(−10C1)t) = 1 − exp (− exp(30C)t), there are at

least exp(−4C1)t
2 disjoint sets A ∈ {A1, . . . , At} in Gp. Since G[Aj ] ∼= Kd1+1 for every j ∈ [t], we

have that with probability 1−od(1) there exists a component of order ϵd1 in Gp[Aj ]. Therefore,
with probability at least 1 − exp (− exp(−30C)t) − od(1), there are at least two components of
order ϵd1 ≥ ϵn

2t in Gp.

6 Discussion and avenues for future research

In this paper, we aimed to capture the minimal requirements on a host graph G, guaranteeing
the percolated subgraph Gp undergoes a similar phase transition, with respect to the size of
the largest component, as that in G(n, p). Theorem 1, together with the two constructions
(Theorems 2 and 3) showing that it is qualitatively tight, gives a qualitative answer to this
question. In Theorems 3.1 and 4, we further demonstrated the intrinsic connection between the
isoperimetry of the host graph, both global and local, to the existence of large components in
the percolated subgraph.

There are several natural questions which arise in this context. While Theorem 1 gives a
qualitative answer to Question 1.2, one can ambitiously aim for a more precise quantitative
answer as to the minimum requirements on i(G), or a more restricted notion of expansion,
which guarantees this behaviour.

Question 6.1. What is the minimal C(ϵ, d) such that every d-regular n-vertex graph G with
i(G) ≥ C(ϵ, d), and d → ∞, is such that Gp whp contains a unique component of linear order,
specifically one of order asymptotic y(ϵ)n?

Theorem 1 implies that any function C(ϵ, d) = ω(1) is sufficient, and Theorem 2 implies that
it is necessary to take C(ϵ, d) ≥ 1

40(1+ϵ) . It would be interesting to determine if the answer is in

fact independent of d (or even ϵ).
It is known (see, for example, [13, Theorem 1]) that in subcritical percolation on any d-regular

graph the largest component typically has logarithmic order. Theorem 1.1 demonstrates that in
G(n, p) the second-largest component is of logarithmic order in the supercritical regime, which
is a particularly simple facet of the duality principle which holds for G(n, p), which broadly says
if we remove the giant component from a supercritical random graph, what remains resembles
a subcritical random graph. Similar behaviour, at least in terms of the order of the second-
largest component, is known to hold in many other percolation models such as percolation on
(n, d, λ)-graphs [20] or on hypercubes [9] (and in fact on any regular high-dimensional product
graph [13]).

Whilst Theorem 1 shows that relatively weak assumptions on the expansion of G are sufficient
to demonstrate a threshold for the existence of a linear-sized component, Theorem 3 shows that
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such assumptions alone are not sufficient to effectively bound the size of the second-largest
component in the supercritical regime.

It is an interesting open problem to determine natural conditions on the host graph which
guarantee that the phase transition quantitatively resembles that of G(n, p).

Question 6.2. Let G be a d-regular n-vertex graph with d → ∞. Let ϵ > 0 be a sufficiently
small constant, and let p = 1+ϵ

d . What are the minimal requirements on G, such that whp the
largest component in Gp is of asymptotic order y(ϵ)n, and the second-largest component is of
order O(log n)?

For graphs G of minimum degree at least d, Krivelevich and Samotij [30] showed that when
p ≥ 1+ϵ

d then not only does Gp whp contain a path of length Ω(d), but in fact even a cycle of
length Ω(d). Furthermore, when p = ω

(
1
d

)
Krivelevich, Lee, and Sudakov [28] (see also [34])

showed that Gp typically contains a cycle of length at least (1 − o(1))d. In both cases, the
existence of a path of the appropriate length can be deduced in a simple fashion by analysing
the DFS process, but unlike in G(n, p) the existence of a long path does not immediately imply
the existence of a long cycle via a sprinkling argument, since we have no control over the local
structure of the host graph G. In light of these results and Remark 3.3, it would be interesting
to know if a stronger conclusion can be drawn under the assumptions of Theorem 4.

Question 6.3. Let G and p satisfy the assumptions of Theorem 4. Does Gp contain a cycle of
length Ω(k) with probability tending to one as k tends to infinity?

Whilst the assumptions of Theorem 4 impose a restriction on the minimum degree of the host
graph G, the assumptions of Theorem 3.1 are much weaker. However, an averaging argument
shows that the assumptions of Theorem 3.1 at least impose a restriction on the average degree
of G. Motivated by their work on percolation on graphs with large minimum degree, Krivelevich
and Samotij [30] ask whether there is a quantitatively similar threshold for the existence of a
large component in graphs with large average degree. In particular, if G has average degree d
and p = 1+ϵ

d , they ask if whp Gp contains a component (or indeed, even a cycle) with Ω(d)
vertices.
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