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Abstract
Let Gn and Hm be two non-degenerate linear recurrence sequences defined over a function
field F in one variable over C, and let μ be a valuation on F . We prove that under suitable
conditions there are effectively computable constants c1 and C ′ such that the bound

μ(Gn − Hm) ≤ μ(Gn) + C ′

holds for max (n,m) > c1.
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1 Introduction

Linear recurrence sequences have been studied by many authors in the past until now. Here,
by a linear recurrence sequence we mean a polynomial-exponential function, from the set
N0 of nonnegative integers into a given field F , of the form

Gn = a1(n)αn
1 + · · · + ad(n)αn

d ,

where the αi are called the characteristic roots of the linear recurrence sequence and the
coefficients ai (n) are polynomials in n. It is well known that such a sequence satisfies a
linear recurrence formula. We say that the sequence (Gn)n∈N0 is defined over the field F if
all characteristic roots αi as well as all coefficients of all polynomials ai (n) belong to F . The
recurrence sequence is called non-degenerate if no ratio of two distinct characteristic roots
αi/α j for i �= j is a root of unity in the case that F is a number field, or if no ratio of two
distinct characteristic roots αi/α j for i �= j is contained in the field of constants when F is
a function field in one variable over C, respectively.
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In [2] the author together with Fuchs gave a bound on the size of the nth element of such
a linear recurrence sequence defined over a function field, see Proposition 3.4 below. They
also provide a proof for a well-known bound on the growth of Gn in the case that F is a
number field in the appendix of [2].

Recently, Pethő [6] considered the size of the difference of two linear recurrence sequences
over number fields. More precisely, it is proven that for two recurrences An and Bm , taking
only integer values, under some technical conditions (An has a dominant root, i.e., there is a
unique characteristic root α withmaximal absolute value, Bm has a pair of conjugate complex
dominating characteristic roots, and some further assumptions) the bound

|An − Bm | > |An |1−(c0 log2 n)/n

holds for (n,m) ∈ N
2
0 with max (n,m) > c1, where c0, c1 are effectively computable

constants. For more results in this direction see the book [7].
The purpose of the present paper is to find and prove a suitable similar bound in the setting

of function fields in one variable over the field of complex numbers.

2 Notation and results

Throughout this paper F denotes a function field in one variable over C and g denotes
the genus of F . For the convenience of the reader we will give a short wrap-up of the
notion of valuations that can also be found in, e.g., [2, 3]. For c ∈ C and f (x) ∈ C(x)∗,
where C(x) is the rational function field over C, νc( f ) denotes the unique integer such that
f (x) = (x − c)νc( f ) p(x)/q(x) with p(x), q(x) ∈ C[x] such that p(c)q(c) �= 0. Further we
write ν∞( f ) = deg q−deg p if f (x) = p(x)/q(x). Additionally, we set ν(0) = ∞ for each
ν from above. These functions ν : C(x) → Z ∪ {∞} are up to equivalence all valuations in
C(x). If νc( f ) > 0, then c is called a zero of f , and if νc( f ) < 0, then c is called a pole
of f , where c ∈ C ∪ {∞}. For a finite extension F of C(x) each valuation in C(x) can be
extended to no more than [F : C(x)] valuations in F . This again gives up to equivalence all
valuations in F . Both in C(x) and in F the sum-formula

∑

ν

ν( f ) = 0

holds for each nonzero f , where the sum is taken over all valuations in the considered function
field. Moreover, valuations have the properties ν( f g) = ν( f ) + ν(g) and ν( f + g) ≥
min (ν( f ), ν(g)) for all f , g ∈ F . For more information about valuations we refer to [8].

For a finite set S of valuations on F , O∗
S denotes the set of S-units in F , i.e., the set

O∗
S = {

f ∈ F∗ : ν( f ) = 0 for all ν /∈ S
}
.

Lastly, we call two elements α, β ∈ F multiplicatively independent if αrβs ∈ C for r , s ∈ Z

implies that r = s = 0.
Our first result is now the following theorem which states that there cannot be much

cancellation in the expression aGn − bHm if both indices are large:

Theorem 2.1 Let Gn = a1(n)αn
1 + · · · + ad(n)αn

d and Hm = b1(m)βm
1 + · · · + bt (m)βm

t be
two non-degenerate linear recurrence sequences defined over F. Assume that α1 /∈ C, and
that for any j ∈ {1, . . . , t} the pair (α1, β j ) is multiplicatively independent. Furthermore,
let μ be a valuation on F such that μ(α1) ≤ μ(αi ) for i ∈ {1, . . . , d}. Fix a, b ∈ F∗. Then
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there exist effectively computable constants c0 and C, independent of n and m, such that for
min (n,m) > c0 we have

μ(aGn − bHm) ≤ μ(Gn) + C .

The non-degeneracy condition already implies that there is at most one characteristic root
in each of the two linear recurrences which is constant. If we require all characteristic roots
to be nonconstant, then we can prove a little bit more:

Theorem 2.2 Let Gn = a1(n)αn
1 + · · · + ad(n)αn

d and Hm = b1(m)βm
1 + · · · + bt (m)βm

t be
two non-degenerate linear recurrence sequences defined over F. Assume that no αi as well as
no β j is contained in C, and that for any j ∈ {1, . . . , t} the pair (α1, β j ) is multiplicatively
independent. Furthermore, let μ be a valuation on F such that μ(α1) ≤ μ(αi ) for i ∈
{1, . . . , d}. Fix a, b ∈ F∗. Then there exist effectively computable constants c1 and C ′,
independent of n and m, such that for max (n,m) > c1 we have

μ(aGn − bHm) ≤ μ(Gn) + C ′.

In the case μ(aGn) �= μ(bHm), the inequality directly follows from the strict triangle
inequality. Thus, the power of the above theorems concentrates on the case μ(aGn) =
μ(bHm). There they give a nontrivial upper bound, whereas the trivial lower bound in the
case μ(aGn) = μ(bHm) is

μ(aGn − bHm) ≥ min (μ(aGn), μ(bHm)) = μ(aGn) = μ(Gn) + μ(a).

Rephrased in words, our theorems state that for large indices the recurrence Hm cannot cancel
out too much from Gn if at least one “size-determining” root α1 is independent of the roots
of Hm .

The assumption that α1 is multiplicatively independent of each characteristic root of the
second recurrence sequence is needed to avoid situations like Hm := G2m , where Gn − Hm

is zero for n = 2m arbitrary large, and thus the statement of the theorems cannot hold. That
things are different if the two considered linear recurrence sequences are too similar can also
be seen in the results of other authors, see, e.g., [5]. Let us mention that, as in Corollary 4 in
[5], we can deduce here that under the assumptions of Theorem 2.2 the solutions (n,m) to
aGn = bHm are bounded effectively from above.

From Theorem 2.1 to Theorem 2.2 we extended the area in which the bound for the
valuation holds from min (n,m) > c0 to max (n,m) > c1 to the cost of a little bit stronger
assumptions. The restriction max (n,m) > c1 cannot be removed completely. Indeed, there
may be sporadic solutions to aGn − bHm = 0 whence μ(aGn − bHm) = ∞ is possible for
small indices.

To illustrate the result, we formulate the following corollary which immediately follows
from Theorem 2.1 by choosing μ = ν∞ for the function field C(x). An analogous corollary
can be formulated for Theorem 2.2.

Corollary 2.3 Let Gn = a1(n)αn
1 + · · · + ad(n)αn

d and Hm = b1(m)βm
1 + · · · + bt (m)βm

t be
two non-degenerate linear recurrence sequences of polynomials in C[x] where all the char-
acteristic roots are polynomials as well. Assume that α1 /∈ C, and that for any j ∈ {1, . . . , t}
the pair (α1, β j ) is multiplicatively independent. Furthermore, assume that degα1 ≥ degαi

for i ∈ {1, . . . , d}. Fix nonzero a, b ∈ C[x]. Then there exist effectively computable constants
c0 and C, independent of n and m, such that for min (n,m) > c0 we have

deg(aGn − bHm) ≥ degGn − C .
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3 Preliminaries

In the next section we will make use of height functions in function fields. Let us therefore
define the height of an element f ∈ F∗ by

H( f ) := −
∑

ν

min (0, ν( f )) =
∑

ν

max (0, ν( f )) ,

where the sum is taken over all valuations on the function field F/C. Additionally, we define
H(0) = ∞. This height function satisfies some basic properties that are listed in the lemma
below which is proven in [4]:

Lemma 3.1 If H denotes the height on F/C, then for f , g ∈ F∗ the following properties
hold:

a) H( f ) ≥ 0 and H( f ) = H(1/ f ),
b) H( f ) − H(g) ≤ H( f + g) ≤ H( f ) + H(g),
c) H( f ) − H(g) ≤ H( f g) ≤ H( f ) + H(g),
d) H( f n) = |n| · H( f ),
e) H( f ) = 0 if and only if f ∈ C

∗,
f) H(A( f )) = deg A · H( f ) for any A ∈ C[T ] \ {0}.
Moreover, the following result due to Brownawell and Masser will be used when proving

our statements. It is an immediate consequence of Theorem B in [1]:

Proposition 3.2 (Brownawell–Masser) Let F/C be a function field in one variable of genus
g. Moreover, for a finite set S of valuations, let u1, . . . , uk be S-units and

1 + u1 + · · · + uk = 0,

where no proper subsum of the left-hand side vanishes. Then

max
i=1,...,k

H(ui ) ≤
(
k
2

)
(|S| + max (0, 2g − 2)) .

Furthermore, we will use the following function field analogue of the Schmidt subspace
theorem. A proof can be found in [9]:

Proposition 3.3 (Zannier) Let F/C be a function field in one variable of genus g, let
ϕ1, . . . , ϕn ∈ F be linearly independent over C and let r ∈ {0, 1, . . . , n}. Let S be a finite
set of places of F containing all the poles of ϕ1, . . . , ϕn and all the zeros of ϕ1, . . . , ϕr . Put
σ = ∑n

i=1 ϕi . Then

∑

ν∈S

(
ν(σ ) − min

i=1,...,n
ν(ϕi )

)
≤

(
n
2

)
(|S| + 2g − 2) +

n∑

i=r+1

H(ϕi ).

In addition, the next proposition will be applied in our proofs. It is proven as Theorem
1 in [2] and we state it here in a combined version with the paragraph immediately before
Theorem 1 in [2]:

Proposition 3.4 Let (Gn)
∞
n=0 be a non-degenerate linear recurrence sequence taking values

in F with power sum representation Gn = a1(n)αn
1 + · · · + at (n)αn

t . Let L be the splitting
field of the characteristic polynomial of that sequence, i.e., L = F(α1, . . . , αt ). Moreover,
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let μ be a valuation on L. Then there are effectively computable constants C+ and C−,
independent of n, such that for every sufficiently large n the inequality

C− + n · min
j=1,...,t

μ(α j ) ≤ μ(Gn) ≤ C+ + n · min
j=1,...,t

μ(α j )

holds.

Note that an inspection of the proof of the last proposition shows that it is possible to calculate
a (admittedly rather complicated) bound N0 such that “sufficiently large n” can be replaced
by n ≥ N0.

Last but not least, we will need the following small lemma about multiplicatively
independent elements, which is proven in [3]:

Lemma 3.5 Let γ, δ ∈ F \ C be multiplicatively independent and n,m ∈ N. Assume that

H
(

γ n

δm

)
≤ L.

Then there exists an effectively computable constant L ′, depending only on γ, δ, g and L,
such that

max (n,m) ≤ L ′.

4 Proofs

We have prepared all auxiliary results needed for proving our theorems. Thus, we can start
with the proof of our first theorem.

Proof of Theorem 2.1 First note thataGn is again a non-degenerate linear recurrence sequence
with the same characteristic roots as Gn and that μ(aGn) = μ(a) + μ(Gn). The analogue
holds for bHm . So, without loss of generality, we may assume that a = b = 1.

Let us rewrite the linear recurrence sequences in a more suitable manner. With

ai (n) =
ei∑

k=0

aikn
k,

we can write

Gn =
d∑

i=1

ai (n)αn
i =

d∑

i=1

ei∑

k=0

aikn
kαn

i . (4.1)

Now fix for each i ∈ {1, . . . , d} a maximal C-linear independent subset
{
πi1, . . . , πiki

}
of{

ai0, . . . , aiei
}
. Using these elements, we can write (4.1) as

Gn =
d∑

i=1

ki∑

g=1

Pig(n)πigα
n
i

for polynomials Pig(n) ∈ C[n]. Analogously, we get

Hm =
t∑

j=1


 j∑

h=1

Q jh(m)ψ jhβ
m
j ,
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where Q jh(m) ∈ C[m] are polynomials and
{
ψ j1, . . . , ψ j
 j

}
is linearly independent over

C for any j ∈ {1, . . . , t}. Together these representations yield

Gn − Hm =
d∑

i=1

ki∑

g=1

Pig(n)πigα
n
i −

t∑

j=1


 j∑

h=1

Q jh(m)ψ jhβ
m
j . (4.2)

In order to be able to apply Proposition 3.3, we would need the summands in (4.2) to be
linearly independent over C. Therefore we will check this in the sequel and make changes
where necessary. The procedure for doing so is as follows: We assume that we have given
an arbitrary but fixed pair (n,m) of indices and, considering several cases, deduce that then
either min (n,m) ≤ c0, which falls out of the scope of the statement where we only say
something for min (n,m) > c0, or a related (but in general slightly modified) sum to (4.2)
consists of C-linear independent summands. During this procedure, the bound c0 will be
updated several (but only finitely many) times without changing its label, i.e., it is always
denoted by c0. As an initial value we choose c0 large enough such that

d∏

i=1

ki∏

g=1

Pig(n) ·
t∏

j=1


 j∏

h=1

Q jh(m)

is nonzero whenever min (n,m) > c0. Note that this is possible because, without loss of
generality, by construction the polynomials Pig and Q jh are not the zero polynomial as the
recurrences are not the zero recurrence by the non-degeneracy assumption.

Now suppose that the summands in (4.2) are linearly dependent over C. Then we have
complex numbers λig, γ jh ∈ C, not all zero, such that

d∑

i=1

ki∑

g=1

λig Pig(n)πigα
n
i +

t∑

j=1


 j∑

h=1

γ jh Q jh(m)ψ jhβ
m
j = 0. (4.3)

Note that λig and γ jh may depend on (n,m)which we assume as fixed for this consideration.
Now we consider a minimal vanishing subsum of (4.3), i.e., no subsubsum of this subsum
vanishes. In particular, all λig and γ jh appearing in this minimal vanishing subsum are
nonzero. Moreover, we fix a finite set S of valuations such that all αi , β j , πig and ψ jh are
S-units, and such that μ ∈ S, and define the constant

Caux :=
(∑d

i=1 ki + ∑t
j=1 
 j

2

)
(|S| + max (0, 2g − 2)) .

Both S and Caux are independent of n and m. We consider six cases:
Case 1: The minimal vanishing subsum contains only summands with the same factor

αn
i . Recalling that

{
πi1, . . . , πiki

}
is linearly independent over C, we see that this case is not

possible.
Case 2: The minimal vanishing subsum contains only summands with the same factor

βm
j . Recalling that

{
ψ j1, . . . , ψ j
 j

}
is linearly independent over C, we see that this case is

also not possible.
Case 3: The minimal vanishing subsum contains summands with the factors αn

i and αn
j ,

respectively, where i �= j . Dividing the minimal vanishing subsum by a summand containing
the factor αn

j and then applying Proposition 3.2 (note that all summands are S-units since
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λig, Pig(n), γ jh, Q jh(m) ∈ C) yields

H
(

λig Pig(n)πigα
n
i

λ jg′ Pjg′(n)π jg′αn
j

)
≤ Caux

for some indices g, g′. By Lemma 3.1, this implies

n · H
(

αi

α j

)
= H

(
αn
i

αn
j

)
≤ Caux + H

(
πig

π jg′

)

and, since Gn is non-degenerate, further

n ≤
Caux + maxi, j,g,g′ H

(
πig

π jg′

)

mini �= j H
(

αi

α j

) . (4.4)

The upper bound in (4.4) is independent of n and m and thus, for an updated c0 we get
min (n,m) ≤ n ≤ c0.

Case 4: The minimal vanishing subsum contains summands with the factors βm
i and βm

j ,
respectively, where i �= j . This case is handled completely analogously to the previous one.

Case 5: The minimal vanishing subsum contains summands with the factors αn
1 and βm

j ,
respectively. Dividing the minimal vanishing subsum by a summand containing the factor
βm
j and then applying Proposition 3.2 yields

H
(

λ1g P1g(n)π1gα
n
1

γ jh Q jh(m)ψ jhβ
m
j

)
≤ Caux

for some indices g, h. By Lemma 3.1, this implies

H
(

αn
1

βm
j

)
≤ Caux + H

(
π1g

ψ jh

)
.

From this we get either, again by Lemma 3.1,

n ≤
Caux + max j,g,h H

(
π1g

ψ jh

)

H(α1)

if β j ∈ C, or, by Lemma 3.5,
max (n,m) ≤ L ′

if β j /∈ C. In both subcases, the upper bound is independent of n and m, and thus we get
min (n,m) ≤ c0, for an updated c0.

Case 6: The minimal vanishing subsum contains summands with the factors αn
i and βm

j ,
respectively, where i �= 1. In particular, we may assume that no summand with a factor αn

1
is contained. Then we can dissolve the minimal vanishing subsum after one of the appearing
terms of the shape Q jh(m)ψ jhβ

m
j , i.e., express this term by a C-linear combination of the

remaining terms in this subsum. Now we insert this expression for Q jh(m)ψ jhβ
m
j into (4.2),

sum terms which differ only by a constant factor, and get recurrences G ′
n as well as H

′
m with

the following properties: We have Gn − Hm = G ′
n − H ′

m for the considered pair (n,m), all
expressions of the shape πigα

n
i or ψ jhβ

m
j appearing in G ′

n − H ′
m also appear in Gn − Hm
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(in general with different coefficients in C), no summand containing π1 gα
n
1 got lost, and

G ′
n − H ′

m has less summands than Gn − Hm .
Next we check whether the summands inG ′

n −H ′
m are linearly independent overC. If not,

then we do the same as we have done above withGn−Hm . Observe that we are automatically
in Case 6 again since we are only interested in min (n,m) > c0. Here we perform the same
reduction process to get G ′′

n − H ′′
m . As in each reduction process the number of summands

reduces, this iteration ends after finitely many steps, and after renumbering terms (note that
α1 stays α1 since terms containing α1 can not be removed during the reduction process) we
get

Gn − Hm = G∗
n − H∗

m :=
d∗∑

i=1

k∗
i∑

g=1

P∗
ig(n)πigα

n
i −

t∗∑

j=1


∗
j∑

h=1

Q∗
jh(m)ψ jhβ

m
j . (4.5)

Note that d∗ ≥ 1 and k∗
1 ≥ 1, i.e., α1 appears on the right-hand side. The summands in

the expression on the right-hand side of equation (4.5) are now linearly independent over
C because we only consider min (n,m) > c0 and no further reduction steps were possible.
Nevertheless, which summands from Gn − Hm still appear in G∗

n − H∗
m may depend on the

considered pair (n,m). However, this will not be a problem in the sequel since the number
of summands is bounded uniformly (cf. our definition of Caux).

We are now able to apply Proposition 3.3. By our choice of S, each summand of the
right-hand side of (4.5) is an S-unit. Put

r1 :=
d∗∑

i=1

k∗
i as well as r2 :=

t∗∑

j=1


∗
j

and set
(ϕ1, . . . , ϕr1) :=

(
P∗
ig(n)πigα

n
i

)

i,g

for an arbitrary ordering of the summands of G∗
n as well as

(ϕr1+1, . . . , ϕr1+r2) :=
(
−Q∗

jh(m)ψ jhβ
m
j

)

j,h

for an arbitrary ordering of the summands of H∗
m . With this notation, Proposition 3.3 implies

∑

ν∈S

(
ν(G∗

n − H∗
m) − min

z=1,...,r1+r2
ν(ϕz)

)
≤ Caux. (4.6)

Since Gn − Hm = G∗
n − H∗

m , each summand in the sum on the left-hand side of (4.6) is
nonnegative, and μ ∈ S, we get

μ(Gn − Hm) − min
z=1,...,r1+r2

μ(ϕz) ≤ Caux.

From this we infer

μ(Gn − Hm) ≤ Caux + min
z=1,...,r1+r2

μ(ϕz)

≤ Caux + μ
(
P∗
11(n)π11α

n
1

)

= Caux + μ(π11) + n · μ(α1)

= Caux + μ(π11) + n · min
i=1,...,d

μ(αi )

≤ Caux + μ(π11) + μ(Gn) − C−

123



On the size of a linear combination of two linear...

= μ(Gn) + C,

where in the second to last line we have used Proposition 3.4 and c0 becomes updated for
the last time. This proves the theorem.

The assumptions in our second theorem contain all assumptions from Theorem 2.1. So it
is not surprising that the proof of it builds on Theorem 2.1.

Proof of Theorem 2.2 By Theorem 2.1, there exist constants c0 and C such that for
min (n,m) > c0 we have

μ(aGn − bHm) ≤ μ(Gn) + C .

It remains to consider the case when one index is small.
Therefore let, firstly, m ≤ c0 be fixed. Then Hm is fixed as well. Since there are only

finitely many such cases, we can perform the following for each of this cases and write H(m)

for Hm in the calculation to emphasize that we consider only a fixed value for m each time.
Put αd+1 := 1 and consider the linear recurrence sequence

G̃n := aGn − bH(m)α
n
d+1 = aGn − bH(m).

As Gn is non-degenerate and has no constant characteristic root, G̃n is also non-degenerate.
Thus, Proposition 3.4 yields

μ
(
aGn − bH(m)

) = μ
(
G̃n

)

≤ C+
(m) + n · min

i=1,...,d+1
μ(αi )

≤ C+
(m) + n · min

i=1,...,d
μ(αi )

≤ C+
(m) + μ(Gn) − C−

= μ(Gn) + C(m)

for n > c1,(m).
Consider now the second possibility, namely that n ≤ c0 is fixed. Then Gn is fixed as

well. Since there are only finitely many such cases, we can perform the following for each
of this cases and write G(n) for Gn in the calculation to emphasize that we consider only a
fixed value for n each time. Put βt+1 := 1 and consider the linear recurrence sequence

H̃m := aG(n)β
m
t+1 − bHm = aG(n) − bHm .

As Hm is non-degenerate and has no constant characteristic root, H̃m is also non-degenerate.
So Proposition 3.4 yields

μ
(
aG(n) − bHm

) = μ
(
H̃m

)

≤ C+
(n) + m · min

j=1,...,t+1
μ(β j )

≤ C+
(n) + m · μ(βt+1)

= C+
(n)

= μ
(
G(n)

) + C(n)

for m > c1,(n).
Finally, we put

c1 := max

(
c0, max

m≤c0
c1,(m),max

n≤c0
c1,(n)

)
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and

C ′ := max

(
C, max

m≤c0
C(m),max

n≤c0
C(n)

)
.

For these constants, it holds that

μ(aGn − bHm) ≤ μ(Gn) + C ′

whenever max (n,m) > c1, and the theorem is proven.
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