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A B S T R A C T

Modeling buildings and smart energy systems requires coupling a wide range of components into
one unified simulation process, which can be difficult given the complexity of these systems.
Hence, a large number of researchers integrate separate simulations for each of the individual
components in a co-simulation instead. To systematically analyze techniques, standards, tools
and applications of co-simulation in the field of buildings and smart energy systems, the
publications on co-simulations in this field are reviewed by means of taxonomic analysis.
Furthermore, the reproducibility as well as the validation approach of the respective papers
are evaluated. Results show that Functional Mock-up Interface (FMI) is the most prominent
standard for co-simulation in modeling buildings and smart energy systems. Co-simulation is
mostly used in Heating, Ventilation, and Air Conditioning (HVAC) and occupancy analysis
applications. Since nearly 70% of publications are not reproducible, we advocate that journals
and funding agencies adopt stricter data and code-sharing policies.

. Introduction

Many real-world engineered systems integrate multiple components in one complex process, which includes physical parts,
oftware, and their interconnection aspects. This complexity poses many challenges to the modeling and simulation of these
ystems. Each independent simulation is an experiment performed on a model with a set of variables that evolve over time [1].
ne way to simulate systems that comprise several components is to model and simulate the entire system using one tool in the

o-called monolithic simulation. Another widely known approach is to simulate the system in a co-simulation; a synthesis of separate
imulations for each of the systems’ components, coordinated and synchronized based on a coupling strategy, a coupling algorithm,
s well as coupling and synchronization settings [2,3]. Co-simulation can be seen as a generalized form of simulation, where a coupled
ystem is simulated through the composition of simulation units [4]; while a simulation unit is an executable software entity responsible
or simulating a part of the system [5]. A co-simulation involves a closed-loop simulation of two or more subsystems. If there is no
eedback between two subsystem models, they are coupled in a sequential or open-loop strategy [6]. By definition, these open-loop
imulations are not considered co-simulations in this article.

Bringing together different subsystems in one co-simulation process allows for the behavioral integration of the subsystems,
ncorporating each system’s simulation algorithm in one system, and exchanging variables without the need for a clear declaration of
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Fig. 1. Trend of articles published between 2008 and 2021 for Co-Simulation used for Buildings, Smart Grids, Energy Systems, and Cyber–Physical Energy
Systems according to a Scopus search. The bar plot represents the publications for the ‘‘Co-simulation’’ terminology and aims to give the reader a scale of the
keyword search. The selected articles in the last 4 years fall under the darker bar plots.

Fig. 2. Distribution of the publications reviewed between 2018 and 2021 for the selected keywords based on the authors’ countries.

the content, protecting private information and avoiding problems such as license fees [7]. These benefits have led researchers to use
co-simulation in different domains and resulted in a progressive increase in the number of publications in the field of co-simulation
for various domains in the last decade, as shown in Fig. 1.

However, due to the complexity of the co-simulation process, it can be affected by factors such as the use of domain-specific
software, the choice of programming languages, co-simulation solvers, other supporting tools, and the inter-operation of these tools.
These challenges are generally addressed by collaborations within the research community. Therefore most of the implementations
found in the literature are based on collaborations from different countries. Fig. 2 shows the distribution of the researchers working
on co-simulation topics between 2018 and 2021 worldwide.

In the field of Smart Energy Systems, co-simulation plays a vital role in combining sets of powerful tools in one synchronized
hybrid simulation. However, works in the literature sometimes lack a detailed description of the co-simulation process, which limits
reproducibility and requires time and effort to find suitable configurations for each tool. In this paper, we analyze the literature on
co-simulation in terms of the details of the co-simulation process described by each work and provide a summary of the details and
set-ups that are necessary to reproduce the results.

1.1. Main contribution

To the best of our knowledge, there is no literature study that attempts to systematically analyze co-simulations in the field of
smart energy systems. This paper closes this gap by presenting a taxonomic analysis of co-simulation in the field of smart energy
systems. Based on this analysis, we intend to answer the following questions:

∙ Where is co-simulation applied in the field of smart energy systems?
2
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∙ Which coupling techniques, standards, master algorithms, and tools are used?
∙ Is the work reproducible in terms of data, models, set-up, and co-simulation configurations?

By analyzing the results of a taxonomic review and comparing the results with other state-of-the-art reviews, we identify research
gaps and propose best practices for co-simulation applications within smart energy systems.

2. Related work

There are several articles on implementing co-simulations, using various tools and methods, in different applications. A definition
f co-simulation terminology, along with a description of state-of-art co-simulation frameworks can be found in [8,9]. Hafner and
opper [10] focuses on the classification and the structuring of the co-simulation methods, while [7] provides an empirical survey
n current co-simulation challenges, research needs, standards, and tools.

Co-simulation has been used extensively in energy-related applications such as smart grids and smart buildings. Therefore, many
xisting studies discuss how to simulate large energy systems by combining more than one tool in a co-simulation process. Vogt et al.
11] surveys 26 smart grid co-simulation frameworks and shows different simulation tools, synchronization methods, and use-cases.
averes-Cachat et al. [12] examines co-simulation for performance prediction of Advanced Building Envelops (ABEs) using ten
uestions that cover the co-simulation process. Tian et al. [13] conducts a systematic review, which points out that co-simulation
s time-consuming and challenging, especially for practical applications with high computational load, due to the complication of
ach simulation tool. Singh and Sharston [14] provides a literature review on coupling Computational Fluid Dynamics with Building
nergy Simulations (CFD-BES) and includes a review of different coupling techniques. The study concludes that combining such
wo simulations results in a powerful framework for building performance prediction. Additionally, it shows that the best coupling
ethod always depends on the general goal of the co-simulation. A bibliographic analysis of co-simulation in district heating and

ooling systems is presented in [15]. It demonstrates the importance of control strategies in these applications and highlights the
mportance of accurate system specifications in choosing the correct control method. However, no literature review systematically
nalyses the use of co-simulation in the field of smart energy systems. Hence, in this paper, we present a taxonomic analysis of
tate-of-art applications in terms of the simulation tools, standards, models, and co-simulation setup implemented in each work.

. Method

We conducted a taxonomic literature review (as defined in [16]) to (i) identify common applications for co-simulation in
mart energy systems; (ii); identify common co-simulation techniques, standards, and tools and (iii) evaluate the reproducibility
f the results and the validation approach applied by each work. The structure of the taxonomy is based on existing review
apers [2,11,17,18] and the expertise of the authors. The final taxonomy includes main categories, sub-categories, and keywords as
hown in Fig. 11. As there was no review paper on co-simulation in smart grids and energy systems, we identified relevant journal
ublications by using a combination of the ‘‘Co-simulation’’ keyword in Scopus [19,20] with the following applications:‘‘Buildings’’,

‘Smart Grids’’, ‘‘Energy Systems’’ and ‘‘Cyber-Physical Energy Systems’’. For this review, we selected all articles published in the
ast five years (2018–2022). We also used the keywords to produce Fig. 1 which shows the number of publications per year in each
f these fields. As shown in Fig. 3 we identified 143 articles with the categories and keywords we defined.

A total of 46 articles had to be excluded due to at least one of the following reasons:

∙ Duplicated articles
∙ Review articles
∙ Articles describing any projects (H2020) without demonstrating and application of the workflow they present
∙ Articles not related to the energy domain but hunted by keyword searches such as Chen2020-Silicon photonic networks paper
∙ Articles listed because of a typo, such as ‘‘... and Belmar in Lakewood, CO. Simulations ..’’.
∙ Articles listed in Scopus but unavailable to download
∙ Articles not in English
∙ Articles presenting co-simulation methods in the discussion or the future work section, but not actually utilizing them.

Additionally, we removed 17 papers because they use sequential simulation processes as co-simulation, which does not align with
the definition of co-simulation used in this paper so that in total we reviewed 80 articles [21–99].

Since co-simulation is an interdisciplinary field of research, the selection of the keywords can be seen as a threat to validity,
however, to the best of our knowledge, this is the most transparent selection process that covers the scope of this paper. In addition,
we selected a list of journal articles that describe the co-simulation process with all the needed details according to the criteria that
we defined previously. We reviewed each of the articles by answering a list of questions that is available on the survey repository,
in an effort to ensure consistency and transparency.

4. Results and discussion

In this section, we present the key findings from the taxonomy-based analysis. We provide an analysis of the co-simulation
application, covering the input data, the domain, and the type of the system that is modeled in 4.1. We discuss the details of the
co-simulation processes, including the techniques, standards, and orchestration algorithms in 4.2 and describe the modeling tools
in 4.3. Other important considerations, such as the reproducibility of the results and the validation process are discussed in 4.4. The
taxonomy-based review is available at https://github.com/tug-cps/CosimulationTaxonomy and contains all questions and answers
3

formulated during the analysis process of the papers we reviewed.
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Fig. 3. A flow diagram shows the number of identified, excluded, and included articles in our study.

.1. Application

In the field of buildings and smart energy systems, co-simulation is mainly used for two reasons: (i) What-if analyses can give
ystem designers valuable insights into system-level properties and enable them to evaluate design decisions such as the impact of
ntegrating storage or PV systems on self-consumption and demand peaks. (ii) In addition, co-simulation is widely used to control
nd optimize the operation of buildings and smart energy systems. The papers we reviewed describe various applications and use
ases throughout different domains.

Fig. 4 groups the papers by their use-case: (a) virtual/synthetic systems using synthetic data and assumptions of the system and
b) real systems and subdivides each category by the use-case’s application domain. It shows that 79% of the studies are conducted for
perational analysis with 48% of real-world applications. The most common applications for co-simulation are Heating, Ventilation,
nd Air Conditioning (HVAC) systems and occupancy analysis.

In the case of modeling complex heterogeneous systems, one of the most interesting testing and development techniques is the
o-called hardware-in-the-loop (HIL) method [21]. HIL is a technique to test physical systems on special test benches that receive
ata input from physical devices and test them within a simulation process. The analysis of the taxonomic review shows that more
han 90% of the papers did not consider HIL in their systems. This might be due to the technical challenges in setting up a HIL
xperiment for complex systems requiring additional effort and introducing additional costs.

.2. Co-simulation techniques, standards, and orchestration

There are different coupling techniques for co-simulation [12]:

∙ One-to-one coupling: Communication between submodels is accomplished through dedicated implementations such as
TRNSYS type 155 that links the TRNSYS with Matlab, or S-function that links Matlab/Simulink with other software such
as EnergyPlus [42,62,90,100].

∙ Middleware coupling: A third program implements a co-simulation orchestration algorithm that coordinates the simulation
programs and manages the data exchange between them. The main advantage of using middleware coupling is that it can
include more than two simulation programs in a very flexible way [101–103]. Middleware can work solely to connect
submodels or as a connection and modeling tool; consider, for instance, the Building Control Virtual Test Bed (BCVTB) in [81].

∙ Standard interface coupling: Submodels communicate through a standardized interface for co-simulation, which allows
for direct coupling between any software that implements the interface. The Functional Mock-up Interface (FMI) and the
High-Level Architecture (HLA) are well-known examples of standardized co-simulation interfaces [50,72,104,105].

Fig. 5 shows the percentage of papers using each of these three techniques in the literature.
Co-simulation standards include rules and specifications for model initialization and synchronization. Standards, such as FMI

r HLA, allow for data exchange and synchronization using high-level APIs and the deployment of distributed, network-based
imulations on different machines. So-called master algorithms follow these standards and orchestrate the co-simulation coupling
rocesses. In each co-simulation scenario, the master algorithm is responsible for setting the co-simulation process and defining
he initial conditions, data and variables exchange, and time synchronization of the sub-models [106]. Fig. 6 shows a list of the
o-simulation standards used in the publications we analyzed, with FMI being the most prominent standard. These findings are in
4
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Fig. 4. Applications goals, Systems, and Domains of co-simulation in the reviewed papers.

Fig. 5. Co-simulation techniques in the reviewed papers.

line with the results in Schweiger et al. [2], where empirical results show that experts consider the FMI standard to be the most
promising standard for continuous time, discrete event, and hybrid co-simulation. There are multiple master algorithms for FMI
such as Modelica tools [107] (Dymola, JModelica, OpenModelica), EnergyPlus [108], and Mosaik [109] as shown in Fig. 7.

4.3. Tools

Results show that the choice of tools typically depends on the application domain. Fig. 8 shows the most common modeling
tools grouped by the main domains (keywords), independently of the coupling strategy. It shows that TRNSYS-Matlab and TRNSYS-
EnergyPlus, are the dominant tool combinations in HVAC systems, while EnergyPlus-BCVTB is most commonly used in building
applications.
5
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Fig. 6. Co-simulation standards in the reviewed papers.

Fig. 7. Tools used as a master algorithm with FMI standard in the reviewed papers.

Fig. 8. How many times each combination of tools is used according to each application Circle size corresponds to the number of publications; circles color
corresponds to the domain.

4.4. Reproducibility and validation

Reproducibility and validation are two important considerations when talking about co-simulation. A reproducibility crisis
refers to circumstances where many scientific studies cannot be reproduced [110]. Goodman et al. [111] defines different types
of reproducibility:

∙ Method reproducibility: provide sufficient detail about procedures and data so that the same procedures can be repeated
exactly.
6
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Fig. 9. Reproducibility possibility of the reviewed papers based on the reproducibility of data, models, configuration and setup.

Fig. 10. Validation implementation in the reviewed papers.

∙ Result reproducibility: obtain the same results from an independent study with procedures as closely matched to the original
study as possible.

∙ Inferential reproducibility: draw the same conclusions from either an independent replication of a study or a reanalysis of
the original study.

From this, we can conclude that a work is only fully reproducible if (i) all data is accessible and (ii) all methods are described unam-
biguously [112]. While data sharing is one of the cornerstones of science, enabling large-scale analysis and reproducibility [113],
the requirement that data (and code) need to be shared to consider a study reproducible is not so obvious. In certain disciplines,
such as medicine, data sharing may be hampered by privacy concerns, for example.

In this work, we define reproducibility for simulation-based analysis similar to how it is defined in Malhotra et al. [114], i.e., as
being able to reproduce an experiment/simulation from data acquisition to results. Accordingly, we classify articles as reproducible
if (i) the data used during the co-simulation is available; (ii) the co-simulation models are open or available; (iii) the co-simulation
setup parameters, such as the solver configuration, time-step, etc, are described in the paper. Fig. 9 shows that the majority of the
papers are non-reproducible as 84% do not provide their data, 82% do not provide the models, and 75% do not mention which
setup and configurations they use. Among all the papers we reviewed, only 8% provide all three factors for reproducibility, and
only 14% provide two out of three (data and models, data and setup configurations, or models and setup and configurations). This
could be due to various reasons, including:

∙ restrictions on the availability of some countries’ information such as meteorological data;
7
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∙ data sources and/or models are not open-source and/or open data (sometimes provided by commercial software);
∙ data sources are not mentioned;
∙ data pre-processing process is not mentioned in the paper; and
∙ configuration and setup of the co-simulation process are not described in detail, mainly because it combined more than one

model.

This makes the absence of any setting significantly affect the entire reproducibility possibility. These results are in line with similar
studies on simulation-based analysis in the field of building energy simulation [114], which found that about 95% of the studies
were not reproducible due to the lack of information on crucial aspects such as data sources, or simulation set-up.

Validation checks how well the results of a co-simulation represent the real system that was used as the data source. The input
ata for the validation process can be measured data, simulated data, or based on the experts’ assessment. Fig. 10 shows whether a
aper included the validation step in their work or not, in addition to the data source. Results show that around 60% of the papers
e reviewed included some means of validation, with expert assessment being the most common approach.

. Conclusion

The complexity of many real-world applications poses challenges to the modeling and simulation of systems. In recent years
o-simulation has become a common means to address the increasing complexity of systems by the behavioral integration of
pecialized submodels. In the field of buildings and smart energy systems, co-simulation plays a vital role in the development of
ynchronized, hybrid simulations. There is a large number of publications describing the application of co-simulation to the field of
mart energy systems. For this paper, we systematically analyzed these publications through a taxonomic analysis and identified the
ost common co-simulation techniques, standards tools, and applications. Additionally, we evaluated the reproducibility of each of

he co-simulations based on the information provided by the respective papers and examined the validation approach the authors
f these papers applied. We summarize the most findings in the subsequent listing:

∙ Most common applications for co-simulation are HVAC systems (38%) and occupancy analysis (14%).
∙ 45% of the reviewed papers uses middleware to couple the sub-models together; while FMI is the most prominent standardized

co-simulation interface; this is in line with previous work where experts consider the FMI standard to be the most promising
standard for co-simulation.

∙ 67% of the analyzed studies were not reproducible because data and/or models are not openly available, and/or the co-
simulation setup is not described in detail. There is (a) a need for stricter policies for data and code sharing by journals
and especially by funding agencies which could have a great impact on the open science practice, and (b) researchers and
reviewers should be more critical in ensuring the reproducibility of their work when conducting simulation-based analyses.
For papers that apply co-simulations, we suggest including at least the following information: modeling tool and detailed
specification of each sub-model; details co-sim ‘‘set - up’’... (old ‘‘Master algorithm of co-simulation; Coupling technique and
standard; Coupling variables; Coupling interval; Total simulation time; Input data’’.).

∙ About one-fifth of the articles refers to sequential simulations as co-simulation. Thus, the definition of co-simulation as a
closed-loop simulation is not yet well understood in the community. For many open-loop applications that could simply be run
as a sequential simulation, the reason for co-simulation, with its associated increased development effort and computational
requirements, is not apparent.

∙ 43% of the analyzed works did not mention the used coupling interval, 32% did not mention the total simulation time, 41%
did not mention which co-simulation standard they use, and 38% did not specify which master algorithm they use.

Data availability

Data will be made available on request

cknowledgments

This project (GA numbers 879315, 887002, and 881150) is funded by the Austrian Research Promotion Agency and supported
y TU Graz Open Access Publishing Fund.

ppendix

See Fig. 11.
8



Simulation Modelling Practice and Theory 126 (2023) 102770Q. Alfalouji et al.
Fig. 11. Overview of the taxonomy.
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