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ABSTRACT

A number of typical tasks in photogrammetry are seen as interpolation problems.
Experiences in some of these arc used to advocate a more differentiated judgement
of interpolation methods. Some of the methods are compared and an attempt is
madc to show that it is wise to rely on a number of different interpolation
methods for different photogrammetric tasks.

RESUME

Un certain nombre de travaux photogrammetnquca sont considérés comme étant
des problemes d‘mterpolatlon Les expériences faites dans certains de ces travaux
sont utilisées pour préconiser quun jugement plus différentié soit apporté entre
les dnverses méthodes d’mterpolatlon Quelques-unes de ces méthodes sont
comparées et un essai est tenté pour montrer qu'il est judicieux de compter sur
plusleurs méthodes d'interpolation pour aborder des différents travaux photo-
grammétriques.

] INTRODUCTION

The present paper intends to draw attention to the fact, that interpolation
in photogrammetry is too important a problem to approach it with an
attitude that “linear interpolation is good enough”, that “‘one method is
perfect in all applications”, or that “the best method of interpolation is
the one which costs the least effort”. Instead, in evaluating the problem
one has to differentiate many aspects. As an example, superiority of an
interpolation algorith does not necessarily have to be based on superior
accuracy and/or reduced efforts. It may be based on other characteristics
of a method, such as for example smoothing power, or the availability of
a quantitative criterion that can replace the intuition of the photogram-
metrist in the selection of computational parameters.

The present paper elaborates on these considerations by first dealing

with a number of theoretical concepts. These are then supported from
specific photogrammetric interpolation experiences, concerning projection
errors in Dutch test field photography, film deformation correction,
SLAR mapping and interpolation for Digital Terrain Models (DTM)

2 A DEFINITION OF INTERPOLATION
A phenomenon is known at a number of discrete points in n-dimensional
space (“‘reference space”). These points are called “reference-" or “‘data
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points”. Interpolation consists of estimating the same phenomenon at
intermediate points using the given data. The phenomenon under con-
sideration may be described by a skalar, or by a vector of dimension
m > 1 (see figure 1a).

observed phenomenon
interpolnted‘? (1 dimenslon) =

|

cdata point C‘;\on data point refaronco spacs)
(1 dimension)

fig la

@:arpolated
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noise/
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Cdate boim . Chnon dﬁta point reference s.paca)
{1 dimension}
fig 1b

figure 1

This definition is rather practical and does not specifically refer to
“smoothing”, “filtering” or “‘regression”. These concepts will become
relevant, if the data in the reference points are measured, and thus
composed of the “signal” and an uncorrelated measuring error, “noise”.
In this case it becomes a meaningful problem to separate in the data
points the observational errors from the signal, and to obtain at non-data
points estimates of the signal only (““filtering of the noise” or smoothing
(see figure 1b)). And finally, noise does not always have to consist of
observational errors, but can simply represent an uncorrelated component
in the data much like observational errors; in this case, the signal is the
correlated part of the data.

Interpolation as defined here is part of the more general mathematical
theory of approximation, of which it represents a particular application.
Further pertinent terminology refers to “curve-” and “surface fitting”
and “prediction” (to denote interpolation and extrapolation).
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In the following these concepts will be explained by a number of tasks

in practical photogrammetry. In this context, the term “interpolation”

is also used to denote problems covering smoothing, filtering, or surface
fitting. Although such nomenclature might not satisfy other fields of
science, it is the one traditionally understood in photogrammetry [ 0, 15].

3 PHOTOGRAMMETRIC INTERPOLATION TASKS

Table 1 summarizes a number of photogrammetric tasks which involve
interpolation. It also specifies the dimension of the reference space as
well as observed phenomena. It turns out that the correction of radial
symmetric lens distortion is one of the simplest interpolation problems.
The reference space is one dimensional: the radial distance. The observed
phenomenon is the one-dimensional radial lens distortion. A more
complicated task is interpolation of Ax, Ay, Az block- or strip-
deformation in the 3d co-ordinate system of the strip, block or
terrain.

In a number of cases the phenomenon to be studied is observed directly,
as for example in lens distortion and film deformation. In others the
observations are indirect, as in strip- and block deformation. Typically
these indirect observations are obtained as residuals after transformation
by the method of least squares in which the mathematical model is
imperfect. In this context it is relevant to note that transformation and
interpolation are tasks performed sequentially. They can to some extent
substitute each other. In the example of absolute orientation of a well
controlled photogrammetric model, a conformal transformation followed
by an interpolative correction of model deformation might be as effective
as a sole transformation with more than just the conformal parameters.

Moreover, a perfect mathematical model for a least squares adjustment
will result in purely uncorrelated residuals. If however the mathematical
model is simplified, there will then be a “‘signal” left in the residuals, so
that post-processing of the least squares adjustment results can be useful.
Least squares adjustment, filtering and interpolation can be combined

in one algorithm. This is called by Moritz “least squares collocation”.
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TASK

DIMENSIONS OF
REFERENCE SPACE

DIMENSION OF
PHENOMENON

determination of
refractive index

3 (x, y, z co-ordinates,
plus event. time?)

1 (refractive index)

lens distortion correc-
tion in photograph
(a)

2 (x, y image co-ordi-
nates; or radial dis-
tance r and azimuth)

2 (tangential and
radial distortion; or
Ax, Ay image errors)

lens distortion correc-
tion in photograph,

1 (radial distance r)

1(radial distortion)

only radial (b)
film deformation 2 (x and y image co- | 2 (Ax, Ay film
correction ordinates) deformations)
rectification 2 (x and y image 2 (Ax, Ay image
co-ordinates) deformations)
instrumental error
correction
(a) comparator 2 (x, y co-ordinates) | 2 (Ax, Ay)
(b) plotter 3 (x, y, z model 3 (Ax, Ay, Az)
co-ord.)
model deformation 3 (x,y, z model 3 (Ax, Ay, Az model
correction co-ord.) deformations)

external strip ddjust-
ment, planimetry
and height

3 (x, y, z strip co-or-
ordinates)

3 (planimetry: Ax, Ay;
& height:  Az)

external block
adjustment
planimetry + height

3 (x,y, z block co-
ordinates)

3 (planimetric +
height deformations)

digital terrain model

(DT™M)

2 (x, y reference
plane)

1 (z...height)

table 1:
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4 A CLASSIFICATION OF INTERPOLATION METHODS

Interpolation methods could be classified according to the purpose for
which they would be suited, eg according to Rice, whether they are:

for mathematical representation (derive values at non-
data points);

for data analysis (smoothing, extract signal, analyse
trend);

for data compression (elimination or redundant in-
formation);

for easy manipulation and evaluation

Photogrammetric interpolation tasks often combine some or all of these
four objectives. In such a case another classification might be appro-
priate, depending on whether:

interpolation is with a single, global function;

interpolation is by piecewise, locally defined func-
tions;
interpolation is pointwise.

Interpolation with a global function is applied for example in strip
adjustment. All data points are used simultaneously to define the inter-
polating function. This might be acceptable for strip adjustment with
only a few control points.

But for a large number of control points a low order function cannot
conform to all data points. High order functions tend on the other hand
to be unstable if an orthogonalization procedure is not used. A solution
to this dilemma is interpolation by piecewise functions [ 6 ]. The
reference space is subdivided into patches and for each patch another
interpolation function is defined. Often the necessity arises to enforce
some continuity between neighbouring patches to avoid cracks. This
does not necessarily require explicit consideration of boundary or
joining conditions [ 2 ]. Typical piecewise interpolation is by linear
interpolation, piecewise polynomial interpolation, double linear inter-
polation [ 13 ], or spline functions.

Pointwise interpolaticn defines a new interpolation function for each
non-data point, using the surrounding subset of data points. Pointwise

interpolation is flexible and does not require extensive computer memory;
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but it is often slower than the other two classes of interpolation.
Typical pointwise interpolation methods are by moving averages [ 3 ],
[ 14 ], linear prediction [ 5 ] and weighted arithmetic mean. A detailed
description of each of these can be found in the references and a short
review is included in the appendix.

Instead of referring to “methods of interpolation” Rice refers to

“algorithms”. With these he denotes a computer programme performing
an interpolation task. This algorithm, however, is composed of different
constituents, namely:

interpolation form (polynomials, piecewise functions,
etc);

error measure (least squares, perfect fit at data points,
etc);

method of solving for the unknown.

Rice mentions that the same constituents can produce a number of
alternative algorithms and compares the situation with “cooking”.

5 CONCEPTS FOR EVALUATION OF INTERPOLATION METHODS
5.1 GENERAL

At present there is a need for objective comparison of interpolation
methods in photogrammetry. In the past, the parameters of a specific
method have usually been optimised for a specific application. One of
the reasons for this might be the degree of intuition often used in
choosing an interpolation method, and a lack of criteria over and above
accuracy for differentiating between methods. A common approach is
therefore to assert that all interpolation methods work equally well,

so that the simplest (and cheapest) can be used.

But it has been experienced that there are cases where significant
differences exist in the performance of different interpolation methods
even with respect to overall accuracy. Whereas in other cases this
accuracy might not differ as between one method and another. The
performance of an interpolation algorithm may vary considerably as a
function of the structure of the input data (distribution of data points).

H

In addition to having performance criteria other than accuracy, the
evaluation of interpolation methods is made difficult by this dependence
on input data structure. But for a given input, Rice identifies a series of
properties of interpolation algorithms to be used for comparative
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evaluation.
speed (of solving for unknowns)

flexibility (overall accuracy and maintaining shape of
small features)

smoothing power

constraint imposition (terrain break lines in DTM)
memory requirement

smoothness (continuous, derivatives)

speed of evaluation (of interpolating function)

Speed of solving for the unknowns and speed of evaluation cannot be
considered separately in pointwise interpolation, but can be separated
in piecewise polynomials. Smoothing power refers to the capability of
filtering a measuring error from the given data, whereas smoothness
refers to the appearance of an interpolated curve or surface, and
whether it is continuous or not. From practical experience it seems
useful to add to these properties

usefulness for extrapolation

and

reliability (sensitivity to right choice of parameters).
5.2 THE ACCURACY OF INTERPOLATION METHODS

The evaluation of interpolation methods is usually attempted on a basis
of their accuracy, which can be described by a root mean square inter-
polation error. What is this error and how can it be obtained?

In a controlled experiment, the interpolation error can be found by
using checkpoints in which the interpolated and the known values are
compared. Such an error is composed of the propagation of the
measuring error into the interpolated value, and of the loss of information
through sampling of the phenomenon at discrete points. In actual
applications, the interpolation error can be estimated by interpolation in
data points, without using the information of the data point except for
comparison with the interpolated value. If sampling was regular, then
this method might produce an error estimate which is too large, since
the distance between any non-data point to the closest reference value
is at least half as small as the distance from such check points to the
closest data point. The error estimate can however be used for a
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comparative evaluation of different interpolation methods, or the
optimisation of parameters within a method [ 8 ]. Propagation of
variances into an interpolated value does not result in an estimate of
the interpolation error. Such propagation would only account for the
effects of measuring errors (noise) which will often be much smaller
than the effect of a limited sampling density.

An approach to evaluating the accuracy of interpolation can be
derived from the theory of random functions [ 1 ], assuming that

a phenomenon can be defined as a stochastic function z = f(x), which
is characterized by the covariance function cov (x; , X:), between the
random variables z; = f(xi), z. = f(x.); X;, X;€X, wherejx is the
continuous range of definition of the independent variable. All inter-
polation methods mentioned in section 4 can be described as a linear
relation between the interpolated value z_ and the values in the data

. P
points Z, z2 zn:

The coefficients a are specific for each interpolation method (and also
specific for each position of the non-data point). Variance propagation
is applied to the expression

€=Zp-Zp

with the result that
2 = +al X -2.at .
0Z cov(xp, xp) a . Cov(x;, xJ) .a 2.3.@'(xp, xJ)

Here, cov(xp, xp) is a skalar, namely the variance of the phenomenon.

Cov(x:, x;) is a matrix of covariances among all n data points
i=1,.. n; j = 1,...n)

cov(x.,, xi) is a vector of covariances between the interpolated and given

values. The elements of this vector depend on the position of the non-
data point.

. . . 2 . .
Clerici and Kubik [ 1 }have used 9= for a comparative evaluation of
linear prediction and linear interpolation. The conclusion was that there
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is hardly a significant difference between the accuracy of the two methods.
This conclusion is. however, based on the assumption that the phenome-
non can fully be described by the covariance function. Often this might
not be the case. This might explain why, in contradistinction to the con-
clusion in [1], significant differences between linear interpolation and
other methods were encountered in an experiment with DTM data [9] .

5.3 PROPERTIES OF SOME INTERPOLATION METHODS

The judgement of interpolation methods should consider the structure
of the input data to which the methods are to be applied. A thorough
effort in this direction should be undertaken since, at the present time,
only a subjective judgement for square-grid interpolation can be
presented in table 2. Its main purpose is to give an example of an
attempt to evaluate interpolation methods. It is intended as a basis for
discussion only and not an authoritative classification.

5 5
Sla i 9 i
ele |z 3¢ lw A 2. .5|% .5 21% o
sE|S|E55|255|85g|2a5|Eag|E D38
215 l1eT= 3] =3 |3 o )
EE|R|EcR|SEE|BRE|RSER|QREE|ER|RR
speed F |F F F F U M U U
accuracy U |U M M U F F F F
smoothing
power UM U §) M F F F M
ST ulM| u |uU M F F F | M
imposition
memory F|F| F F F M U F | F
requirement
smoothness M| F M M M F F F F
speed qf F F
evaluation
use for
. g F U
extrapolation u|u u u 3 F U

table 2: subjective evaluation of a number of interpolation methods:
| SO, favourable; M ..... medium; U ..... unfavourable ;
square-grid interpolation assumed
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6 SOME EXPERIENCES WITH INTERPOLATION PROBLEMS

6.1 FILTERING OF PROJECTION ERRORS IN TEST FIELD
PHOTOGRAPHY
On behalf of the Dutch Photogrammetric Society a large set of aerial
photographs was obtained of the Flevopolder test field, with different
cameras and at different flying heights. The purpose was to study the
errors of the central projection, comparing photogrammetric points
with the “theoretical” points derived from terrestrial surveys by a
resection in space. Consequently a set of projection errors was obtained
for each of the given photographs, representing a 2 dimensional
phenomenon on a 2 dimensional reference space. Part of the data analysis
was to study the trend and the amount of random noise in these errors.
The details of the project have still to be published, but what is of interest
here is the interpolation aspect of it; the usefulness of 4 different
algorithms was compared for the purpose. Since one objective was data
analysis, the use of a number of methods without smoothing power was
not possible (eg linear interpolation). So the methods selected were: a
single regression polynomial with 1 to 10 coefficients, independent for
Ax and Ay errors; a meshwise 3rd order polynomial according to [ 2 ];
a moving average of order 1 to 10; and linear prediction.

It was soon found that for the project undertaken, these methods all
produced the same results, which are shown in figure 2. A similar result
was obtained by Kupfer in comparing a single polynomial with linear
prediction in an application of test photography of the Rheidt test area
near Bonn, in Germany; a 3rd order polynomial with 10 coefficients was
found to be sufficient to describe the signal in the data. *“Sufficient”
was defined by a lack of correlation in the residuals left after filtering.
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RMS residuals (m)

uncorrelated component
{noise)

35004
4000+
6500 -
8000+
16 000

20000

scale number

separation of projection errors into signal
and noise

figure 2

The conclusion one might be tempted to draw from these results is that
there are no differences between the accuracy or power of interpolation
methods. It will be demonstrated in another experience that such a

conslusion is premature. One can only state that the specific data do
not show such a difference.
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The interpolation aspect of the study demonstrates the importance of
the concept of filtering in photogrammetry. By means of the
correlation function, the presence of a signal in the data can be verified.
In the particular case of the analysis of projection errors, one might use
a “signal” found in the data analysis step for correction of projection
errors in future flight missions. Such an objective would mean
mathematical representation. Pointwise interpolation algorithms are
inappropriate for this purpose. Instead of such a pointwise numerical
trend, a mathematical global function can be used. Since the global
polynomial proved sufficient in the data analysis step, it would be the
obvious function to use for correction of projection errors.

6.2 PLANIMETRIC MAPPING WITH SIDE-LOOKING RADAR IMAGERY

As part of a large mapping project in Colombia, it was necessary to
perform a planimetric triangulation with SLAR imagery covering
approximately 400,000 km? and 41 ground control points [ 10 ]. The
task was split into an internal and external adjustment. First, SLAR
strips were transformed into a common block system using piecewise
3rd order polynomials with continuous 1st derivative. The internally
adjusted block of SLAR images was then transformed into the set of
ground control points. Discrepancies in these points were used to
compute corrections in radargrammetric points (external adjustment).

The corrections were interpolated by global polynomials, pointwise

linear prediction, arithmetic mean and moving averages of order 1 and 3.

The results are shown in table 3 and are self-explanatory.
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§E, RMSEX | 3.93 0.55 | 3.69 | 042 | 0.50 | 1.42 | 0.83
908
o L) e
822 RMSEY | 3.50 069 | 248 | 058 | 0.75 | 1.58 | 1.00
gg RMSE X 3.58 3.34 | 5.76 | 4.66
= 1
©5E RMSEY 3.25 3.00 | 392 | 7.18
g8

. results of interpolative correction of SLAR block deformations in x and vy,
using a number of different methods; the values in mm at image scale,
computed from 41 control- and 610 tiepoints

-
1
o
—
[¢]
w

The lack of check points prohibited a reliable estimate of the accuracy.
But interpolation in each control point, without using it in the
computation, leads to an upper bound for the residual errors in non-
data points (RMSE X =% 2.15 mm; RMSE Y =+ 2.14 mm). However,
this upper bound is far from the actual accuracy, since control spacing
is very large.

The data point distribution created the problem that in some areas
extrapolation had to be done rather than interpolation. Figure 3 shows
clearly how a 3rd order polynomial degenerates in areas of no control,
while linear prediction produces corrections of the order of magnitude
of the discrepancies in the control points. This suggested that, for the
given project, it had to be an interpolation method such as linear
prediction, rather than global polynomials.
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figure 3 a
PRORADAM radar mapping of Amazonas Colombia:
interpolated corrections of block deformation of SLAR
imagery; result obtained with a 10-parameter polynomial
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In conclusion, an interpolation which might turn into extrapolation
requires great care in selecting the algorithm. If no check points are
available as in PRORADAM, the danger of extrapolation remains hidden.
To be safe, linear prediction can always be used in this case. It has the
property of producing O-corrections in areas of no control. Similar to
this is the arithmetic mean, though often less accurate and without
quantitative filter control. A global function can only be used for inter-
polation with large areas of no control, if constraints can be imposed on
the function pulling it towards zero in areas of no control.
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6.3 CORRECTION OF FILM DEFORMATION WITH RESEAU [4, 16, 17]

The importance of filtering the measuring error, or at least an un-
correlated component of the observations, is demonstrated by the
results obtained from two methods of correcting film deformation

with reseau photography. The observed co-ordinates of a reseau are
compared with the theoretical co-ordinates. The differences are the sum
of film deformation and the measuring error, and represent the data
points for the interpolation of corrections in photogrammetric points.

One method of correcting film deformation in non-data points was
based on the assumption that it is equal in both a non-data point, and
the nearest reseau point, which in all cases is a distance smaller than 7
mm in reseau photography. To reduce the effect of systematic
measuring errors, the nearest reseau point was measured always after
measurement at a photogrammetric (non-data) point.

The other method of film deformation correction was by linear pre-
diction, using exactly the same observations as before. Table 4 shows

the results of the experiments after relative and absolute orientation:

the photogrammetric model co-ordinates are compared with accurate
terrestrial points. The root mean square co-ordinate differences without
film deformation correction, and with corrections using these two
methods, are shown in the table. It is demonstrated that linear prediction
produces significantly smaller root mean square differences than the
simpler method, which does not allow for any smoothing of observed
data.
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without reseau
reference [16]
model 1 model 2

with reseau,
no filtering
reference [17]

model 1 model 2

with reseau,
linear prediction
reference [4])

model 1 model 2

with reseau,
linear prediction
reference []7]
model 1 model 2

9
9

RMSE X| 7.8 7.2 8.8 8.0 6.2 6.8 4.6 6.7
RMSE Y|l 7.9 9.1 8.0 7.0 5.8 5.5 5.5 6.0
RMSE Z||15.8 11.8 12.2 11.8 |11.8 10.1 9.8 10.9

tuble 4: root mean square discrepancies between 2 photogrammetric stereomodels
and terrestrial control, in {tm at photoscale, with and without use of
reseau; scale 1:10500, 23 control point nests with 3 points each

In table 4, results after linear prediction are shown as obtained by two
different authors. The fact that these results are somewhat different
indicates that the performance might be considerably altered through
the parameters used within an interpolation method (in this example:
type of trend, type of correlation function, see [4] and [17]).

In conclusion this interpolation demonstrated that there can be differ-
ences between accuracies obtained in one or another algorithm, as
opposed to a conclusion drawn from a previous experience.

6.4 INTERPOLATION IN SQUARE GRID DTM

In a controlled numerical experiment to relate the accuracy of a Digital
Terrain Model (DTM) with the density of sampling terrain along a
regular grid, and with the type of terrain [ 9 ], it was also possible to
compare a number of interpolation algorithms. The methods were
compared in their application to six different types of terrain, 8
different sampling densities, and also with a variation of the number of
data points to be used in an interpolation of a new value. Table 5
illustrates the overall results of the comparison of methods. The
numbers in this table are obtained as root mean square values of the
results of over a million interpolations. Each interpolated value was
compared with the “true” terrain height. In order to allow comparison
of interpolation methods applied to different terrain and different
sampling densities, the interpolation error of any method was always
divided by the interpolation error after linear interpolation. Consequently,
linear interpolation produces an interpolation error of “100%”. Other
methods produce in general smaller interpolation errors. The differences
in performance amount to 24% in the experiment.
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method of || linear | bi-linear weighted movingl meshwise | linear

interpolation} interpol [polynomial |arithm mean |average | polynomialf prediction
.4d2 -

weights 1/a4 erdd /a4 | (1+d?/4y?

4 1.00 0.89 0.92 0.88

16 0.97 0.76 0.76 0.76

no of data
points used
per interpol

36 1.03 0.77 0.76

table 5: relative comparison of interpolation methods, applied to square grid DTM ;
values are in 7 relative to linear interpolation, and represent interpolation
errors in checkpoints

It is beyond the scope of this paper to go into the details of the study,
but some conclusions relevant to the present topic are presented here.

Table 5 shows conclusively that linear interpolation produces larger
errors than the more complex algorithms of linear prediction, moving
averages or piecewise polynomials. On the other hand, it also indicates
that there are two groups of methods which perform differently: the
“simple”” methods (linear interpolation, bi-linear polynomial, double
linear interpolation, weighted arithmetic mean); and the “complex”
methods. Within a group, the differences are not distinct.

Table 6 compares the efforts necessary when using these methods. The
splitting into 2 main groups also persists there: a slight reduction of the
interpolation error can only be obtained with considerable increase of
time of computation. It should be noted, however, that linear prediction
should not be more expensive than linear interpolation, provided it is
also only applied to the 4 closest reference points and not more. But in
general it is also clear that the benefit of reduced interpolation errors
might often not be worth the extra effort involved. Only for specific
purposes it will have to be a “complex’ method, which is to be used
perhaps not for the interpolation error, but for other properties.
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method of |linear| bi-linear |arithm [ moving | meshwise | linear
interpolation inter | polynom| mean |average | polynomial prediction
pol

. c|4 [0.04 0.04 | 0.04 0.04

P Qo

=] =

2 =216 0.05 0.21 0.25 0.12
287

°2 2|36 0.08 | 0.43 0.23

e 3.5

table 6: comparison of variable computing time per interpolation of a point;
values are seconds, valid for the PDP 11/45 of ITC

The efforts shown refer to data points on a regular square grid. It must
be stressed that for irregular distribution of data points, linear inter-
polation becomes as expensive as linear prediction: a point selection
algorithm will require considerable effort to define the 3 closest data
points.

DTM interpolation does not necessarily require filtering, if it can be
assumed that measuring errors are comparatively small. The possibility
of filtering might however be desirable in applications where measuring
errors are significant, or where smoothing is essential (generalization).

An important problem in photogrammetric work with DTMs is the
consideration of terrain break lines. Typically this is a matter of
imposing constraints on the interpolated surface. A number of solutions
to this problem exist. They have in common the requirement that a
pointwise interpolation algorithm be used.! Successful attempts to

1
for example: Assmus, E., Extension of Stuttgart Contour Programme
to treating Terrain Break Lines ISP-Comm III Symp. Stuttgart, 1974
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consider terrain irregularities in piecewise interpolation are not yet
known by the author, although an unsuccessful effort has been
mentioned by Jancaitis and Junkins®.

7 CONCLUSIONS

The number and importance of photogrammetric tasks which make
use of interpolation and filtering, suggest that the theory and methods
of interpolation can be a worthy tool for the photogrammetrist.
However, approaches to interpolation are often intuitive and not
systematic. Fortunately there has been a new stimulus to study of the
problems of interpolation and filtering, namely the Digital Terrain
Model (DTM). The DTM itself does not pose the largest problems, nor
does it require the most advanced theories of interpolation. These may
be useful in problems of data analysis (eg filtering) as applied to strip
and block adjustment.

Although some applications may require very specific solutions, it has
been found that a majority of problems can be treated with the same
set of algorithms. An important element of these is the possibility of
computing correlation functions. These may show, quantitatively,
whether the data contain a correlated component. This is rather
important for data analysis and helps to avoid interpolation and filtering
being attempted in completely random noise. The set of algorithms
should further contain a component for computing regression polyno-
mials. This is required for simple smoothing problems (trend analysis),
for mathematical representation, and to preprocess data for linear
prediction. This latter method should then be available as a general
purpose interpolation and smoothing algorithm. Although it isa
computer-intensive method (expensive) it is useful because of the fact
that it allows for well controlled smoothing and does not degenerate in
cases of extrapolation. As a last algorithm it is recommended to have
available piecewise polynomials (spline functions). These might be of
use, if a more flexible mathematical representation of a phenomenon is
required than is possible with a global polynomial.

2
Jancaitis, J.E. and Junkins, J.L., Personal Communication
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With this set of algorithms, a number of photogrammetric interpolation
tasks have successfully been carried out at the ITC. Some of these tasks
have been described in this paper to justify conclusions on a comparison
of interpolation methods. It was shown that interpolation errors varied
up to 24% using different methods of interpolation. But it was attempt-
ed to evaluate methods of interpolation not only on a basis of inter-
polation errors, but also according to criteria such as smoothing power,
usefulness for extrapolation, etc. It is this spectrum of properties which
should be used to decide on the choice of a particular method of inter-

polation, rather than the traditional considerations concerning only
interpolation errors and efforts.
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APPENDIX - Interpolation Methods

The following description of interpolation methods assumes a one-
dimensional phenomenon on a two-dimensional reference space.

Linear Interpolation

The 3 closest data points with observed values Z,, Z,, Z, are used to
define a new value Z o by fitting a plane surface, so that

Z,=3a; ta .x+ta.y 1)

Coefficients a, a,, a, can be solved from the 3 data points.

Co-ordinates (xi A ) give the location of a point i in the reference
space.

Double Linear Interpolation

The 4 closest data points forming a quadrangle are selected. The 4
points define 2 triangles, which each contain the new point. Two linear
interpolations can be carried out, in each triangle one linear inter-
polation. The arithmetic mean produces Zp as:

Zp = (Zi) + Z; )2
where Z;), Z; are produced according to (1).
Bilinear Polynomial
The 4 closest data points define a quadrangle. This allows one to

compute Z p using the bilinear polynomial

Zp =aj;ta.xta.yta.x.y

Arithmetic Mean

From n data points, a new value Z » is found from:
- = ky/ 3 k
Zp i?;‘ l(xi/di )/iE= 1I/di

Here, di2 = (x- x ) + (y;- yp)z, and k is selected according to the
intuition of the user. Weight 1 /dik can also be replaced
by other functions.
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Moving Average

For each new data point, the n surrounding reference points are
selected. The new point is chosen as the origin of planimetric co-ordi-
nates. The absolute term of a polynomial of order m is computed from
the n data points, giving each of them a different weight, eg according
to distance from the new point. The computed absolute term is the
interpolated Z_, sincex_ = y_ = 0. The described process is a
weighted moving average of order m, using n points.

Linear Prediction

A (polynomial) regression function (trend t(x, y)) is computed from n
data points. The residuals only can be input to linear prediction. From
the residuals, a correlation function cov (d, a) is computed, or chosen
a priori.

The correlation function cov (d, a) describes the dependence of two
residuals a distance d apart and defining the direction a. Usually,
dependence on a is not assumed, so that one uses cov (d)only. A
correlation matrix Cov_ is defined:

1 cov(d, ’2) ... cov(d, ,n)

Cov = cov(dz,l) 1 cov(dz,n)

cov(d_ ;) cov(d_ ,) 1

Distances d;; are between data points i and j. Also a correlation vector
cov is defined between the new and data points:

cov = (cov(dl,p), cov(d2,p), ..... cov(dn’p))
The new point obtains:

- -1 t. _ '
z, = t(x,,y,) + cov -Cov’ LAZNAZ = (AZ{AZ, )

Careless application of linear prediction can be detrimental and so
careful study of the literature (eg [ 5], [ 11 ]) should precede actual
use of the method.
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Patchwise Polynomials (Spline Functions)

There are many ways of computing patchwise polynomials. Within the
interpolation area, a not-necessarily-regular grid is chosen. Within each
mesh of the grid, a different polynomial is defined. If the polynomials
of order n join along the boundaries of adjacent meshes, with all
derivatives up to order n-1 being continuous, one speaks of *‘spline
functions”.

Continuity can be obtained by interpolating values and eventually also
tangents of the phenomenon in the grid points. This represents a simple,
fast, memory saving process, and can be done with a moving average.
Next, the generated function values (and tangents) are used to define

the polynomial in each mesh. Making an appropriate choice of the
polynomials, and having sufficient values at the grid points, the generated
polynomials will have continuous (n-1)st, ... 2nd, 1st, Oth derivative.

The method evaluated in section 6.4, applied 3rd order polynomials
with 12 coefficients. In each grid point 1 function value and 2 tangents

(tx, ty) were computed. These were per mesh the 12 given data to define

the 12 coefficients of the polynomial piece.

This article has also appeared in Photogrammetric Engineering and Remote Sensing,
1974-5.
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