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Biocatalytic cascade transformations for the synthesis of 
C-nucleosides and N-nucleoside analogs
Martin Pfeiffer1 and Bernd Nidetzky1,2

Nucleosides and their analogs, including those that feature 
substitution of the canonical N-glycosidic by a C-glycosidic 
linkage, provide access to potent antiviral, antibacterial, and 
antitumor drugs. Furthermore, they are key building blocks of m- 
RNA vaccines and play a crucial role for vaccine therapeutic 
effectiveness. As the medicinal applications of nucleosides 
increase in number and importance, there is a growing need for 
efficiency-enhanced routes of nucleoside synthesis. Cascade 
biocatalysis, that is, the application of natural or evolved enzymes 
promoting complex transformations in multiple steps in one pot 
and without the need of intermediate purification, emerges as a 
powerful tool to obtain nucleosides from readily available starting 
materials. Recent efforts in enzyme discovery and protein 
engineering expand the toolbox of catalysts active 
toward nucleosides or nucleotides. In this review, we highlight 
recent applications, and discuss challenges, of cascade 
biocatalysis for nucleoside synthesis. We focus on C-nucleosides 
and important analogs of the canonical N-nucleosides.
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Introduction
Structural analogs of the canonical N-nucleosides 
(Figure 1) are important synthetic targets in medicinal 
chemistry, mostly for inhibitor development but also for 
application as noncanonical building blocks of synthetic 

RNA and DNA. Various nucleoside analogs have be
come widely known as potent inhibitors of RNA or DNA 
polymerases [1] and of reverse transcriptase [2]. Ad
ditionally, they can inhibit enzymes of the nucleoside de 
novo and salvage pathways, including nucleoside phos
phorylases (NPs) [3] and inosine-5´-monophosphate 
dehydrogenases [4]. The recently developed nucleoside 
analogs Molnupiravir and Islatravir are promising drug 
candidates against COVID-19 [5] and HIV infections [1], 
respectively. Furthermore, nucleoside analogs are in
tegral part of the success story of m-RNA-based ther
apeutics [6]. Uniform replacement of uridine by the 
natural C-nucleoside pseudouridine (Ψ), or by the syn
thetic Ψ derivative N-1-methyl-pseudouridine (N1mΨ), 
enhances the translation efficiency and reduces the im
munogenicity of therapeutic RNA. This crucial evidence 
has enabled major breakthroughs in RNA vaccine de
velopment. Therefore, Ψ or N1mΨ (Figure 1) are key 
constituents of the current vaccines used to combat the 
COVID-19 pandemic [6].

Chemical synthesis of nucleosides is challenging due to 
the structural complexity and the stereochemical re
quirements of the different target molecules. Typically, 
only the β-glycoside stereoisomer is bioactive (Figure 1). 
The preferred route to N-nucleosides involves nucleo
philic addition of the nucleobase to an activated pentose 
intermediate [7,8]. Modification of canonical N-nucleo
sides [9] and de novo synthesis of the nucleoside from 
achiral starting material [10] constitute alternative ap
proaches. C-nucleosides are synthesized by direct cou
pling of carbohydrates and the nucleobases or 
alternatively, by stepwise reconstruction of the glycone 
or aglycone upon the relevant functional moieties 
[11–19]. Although substantial improvements were made 
in these synthetic approaches regarding stereoselectivity 
[12,15] and reaction step economy [10,19], important 
challenges remain: the requirement of harsh reaction 
conditions, extensive use of protecting group chem
istry, and usage of harmful chemicals. Biocatalysis offers 
an attractive alternative to pure chemical synthesis, 
overcoming many of the above-mentioned drawbacks. In 
the field of N-nucleoside synthesis, enzymatic routes 
have been explored for many decades [20–22]. Over the 
last years [23–35], however, the detailed characterization 
of C-nucleoside metabolic pathways (e.g. microbial bio
synthesis of C-nucleoside antibiotics, salvage pathways 
of C-nucleosides) has resulted in the discovery of C- 
nucleoside-active enzymes that expand the toolbox of 
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biocatalysis [36••–40]. In this review, we introduce the 
enzymes of C-nucleoside synthesis in the broader con
text of biocatalytic synthesis of nucleosides. Ad
ditionally, we discuss recent advances in biocatalytic 
cascade transformations for the synthesis of N-nucleo
side analogs, such as Molnupiravir [40,41••,42] and Is
latravir [43••], and the C-nucleoside Ψ [36••]. 

Biocatalytic toolbox for the formation of N- 
and C-nucleosides 
Enzymatic turnover of the β-N-glycosidic linkage is 
central for the biosynthesis and the recycling of nu
cleosides and nucleotides. Phosphoribosyl transferases 
(PRT) such as orotate-PRT are involved in the de novo 
biosynthesis of pyrimidine nucleosides. By contrast, 
adenosine-PRT, 6-oxopurine-PRT, and uracil (Ura)- 
PRT are key enzymes in the purine and pyrimidine 
salvage pathways (Figure 1a). They catalyze the forma
tion of nucleoside monophosphates from 5-phospho-D- 
ribosyl-α-1-pyrophosphate (PRPP) and a nucleobase. A 
SN2-like (configurationally inverting) nucleophilic dis
placement of the pyrophosphate by the nucleobase gives 

the β-N-glycosidic product. Although highly abundant in 
nature, PRTs are not widely applied in biocatalytic 
synthesis of nucleosides [44–47], perhaps because of the 
(perceived) difficulty to supply the pyrophosphate-acti
vated ribosyl donor to their reactions. It can be inter
esting, therefore, to explore synthetic routes to PRPP by 
in vivo or in vitro cascade biotransformations. 

As an alternative to the PRT-dependent salvage 
pathway, many organisms possess an additional route, 
based on NP, for the recycling of nucleoside compo
nents. As shown in Figure 1b, NP catalyzes the re
versible phosphorolysis of a nucleoside to its 
corresponding purine or pyrimidine base and α-D-ribose 
1-phosphate (Rib1P). The Rib1P substrate for the re
verse NP reaction in synthesis is readily accessible from 
a sacrificial nucleoside used as ribosyl donor in a con
current NP phosphorolysis reaction [48,49]. Alter
natively, D-ribose (Rib) can be phosphorylated at the C5 
by ribokinase (RK) using adenosine 5′-triphosphate 
(ATP). Phosphopentomutase-catalyzed isomerization 
gives Rib1P. The Rib phosphorylation–isomerization  

Figure 1  
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Enzymatic reactions for the installment of (a–b) a β-N-glycosidic and (c–e) a β-C-glycosidic linkage in nucleoside or nucleotide synthesis. The types of 
enzyme in solid frame have shown potential for application in biocatalytic synthesis. The other types (dashed frame) have had limited use so far, 
probably due to the complex requirements of their reactions.   
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[36••,43••,50••] has been instrumental in the devel
opment of biocatalytic applications of NPs and the en
zymes are now a preferred choice for nucleoside 
synthesis. Furthermore, NPs appear to exhibit in
herently relaxed substrate specificity [51]. This together 
with the significant success of NP-directed evolution  
[43••,50••] toward expanded substrate scope (e.g. 
modified pentoses or nucleosides), has promoted NP 
applications in nucleoside analog synthesis. 

In contrast to NPs that are well established for N-nu
cleoside synthesis, enzymes for C-nucleoside synthesis 
are less explored. Although naturally occurring C-nu
cleosides are known for many decades, the relevant 
pathways of their metabolic turnover (i.e. biosynthesis, 
degradation) have only recently been elucidated [23–35]. 
The evidence reveals three distinct types of enzymes 
responsible for the formation of the defining β-C-glyco
sidic bond. Each type belongs to a unique enzyme fa
mily unrelated to the others in sequence and structure. 
The mechanisms used appear to be also different  
[25•,26,31•,32,36••,51–55]. 

First, pseudouridine synthases (PUS) are found in all 
domains of life and are responsible for the post-tran
scriptional modification of RNA. They catalyze the site- 
specific isomerization of RNA-bound uridine into its C- 
nucleoside isomer Ψ (Figure 1c). Unfortunately, the 
strict requirement for RNA as a substrate, and the lack of 
activity with free nucleosides or nucleotides hinders the 
use of PUS in biocatalysis [56–58]. 

Second, the 4-(D-ribofuranosyl)aminobenzene synthases 
(β-RFAS) are biosynthetic enzymes found in the me
thanopterin [54,55] and pyrazole-based C-nucleoside 
antibiotic pathways (e.g. formycin A, pyrazomycin)  
[23,29•,31•]. β-RFAS catalyze β-C-ribosidic bond for
mation between PRPP and various acceptor substrates 
featuring a carboxylic group, depending on the enzyme. 
Examples are aromatic acceptors (e.g. para-amino
benzoic acid) or pyrazole-derived carboxylic acids 
(Figure 1d). Pyrophosphate release coupled to dec
arboxylation involves substantial driving force to make 
these reactions effectively irreversible. However, as al
ready mentioned above in connection to PRTs, not-well- 
established access to the PRPP substrate presents a 
limitation. The strict requirement for carboxylic acid 
group in the acceptor additionally restricts the substrate 
scope. Applicability of β-RFAS to biocatalytic synthesis 
remains to be demonstrated. 

The third type is represented by a family of enzymes 
forming β-C-glycosides from ribose 5′-phosphate (Rib5P). 
A pyrimidine nucleobase [32,33], a pyridine heterocycle, a 
2-amino-1H-pyrrole-5-carboxylic acid [29•], or polyaro
matic polyketide [26,37] can serve as the second sub
strate, depending on the enzyme (Figure 1e). The 

enzymes are found in diverse biological contexts, in
cluding the catabolic pathway of Ψ or the biosynthesis of 
C-nucleoside antibiotics, such as showdomycin and ox
azinomycin [26,34,59]. The physiological degradation of 
Ψ is promoted by the Ψ-5′-monophosphate (ΨMP) gly
cosidase YeiN. Interestingly, inspite of its biological role 
and representing a net hydrolysis of the Ψ β-C-riboside, 
the isolated YeiN reaction involves an equilibrium far on 
the side of the ΨMP substrate, not the Rib5b and Ura 
products, as one might anticipate. This has important 
bearings on the use of YeiN in synthesis as discussed 
later. Mechanistically, YeiN catalyzes β-C-glycosidic bond 
formation via a covalent intermediate that features the 
open-chain ribose phosphate linked to an active-site ly
sine of the enzyme [32]. The imino-intermediate can 
undergo C–C bond formation with Ura in a Mannich-like 
reaction. The C–C bond formation with polyaromatic 
polyketides may involve a different reaction mechanism, 
via a Michael addition that does not strictly require the 
covalent intermediate [26]. As the Rib5P substrate is 
obtainable readily from Rib by phosphorylation with RK, 
YeiN and related enzymes of the Ψ-5′-monophosphate 
glycosidase protein family (ΨMPG, InterPro entry: 
IPR007342) [34] are promising for use in biocatalysis. 
Indeed, the first examples of enzymatic production of a C- 
nucleoside applied this class of enzyme [36••,37]. 

Biocatalytic cascade reactions for synthesis 
of Ψ-5′-monophosphate and pseudouridine 
First-time example of a biocatalytic cascade reaction for 
C-nucleoside synthesis is presented by the multistep 
one-pot transformation of Rib and Ura into Ψ [36••]. 
Both Rib and Ura are readily accessible starting mate
rials. As shown in Figure 2, the Rib is converted to 
Rib5P using RK under recycling of ATP by the pyruvate 
(PYR) kinase reaction. The YeiN reaction gives ΨMP. 
The substrate scope of YeiN enables a limited set of 
modifications on the sugar phosphate and nucleobase 
substrate. The equilibrium position of the C–C coupling 
favors the β-C-nucleoside formation [36••]. The 5′- 
phosphate group of the product is removed by an un
specific phosphatase, to obtain Ψ from ΨMP. Preparation 
of the nucleoside triphosphate (e.g. pseudouridine 5′- 
triphosphate (ΨTP)) is of additional interest. ΨTP is 
used as substrate of RNA polymerases during in vitro 
transcription reactions for the production of therapeutic 
RNAs. The 5′-monophosphate is iteratively phosphory
lated in a one-pot reaction that combines nucleoside 
monophosphate kinase (ΨMP → pseudouridine 5′-di
phosphate (ΨDP)) and PYR kinase (ΨDP → ΨTP). 
Phosphoenolpyruvate is used as phosphate donor and 
ATP is present in catalytic amounts (6 mol%). Interest
ingly, a specific nucleoside diphosphate kinase was not 
necessary, given the ability of the PYR kinase to phos
phorylate ΨDP from ATP. The cascade reactions typi
cally afford the products (ΨMP, Ψ, and ΨTP) in 
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excellent yields of between 80% and 90%, based on the 
limiting nucleoside used (5–15 mM) and with Rib(5P) 
present in a 2.5-fold molar excess. The products were 
recovered in high purity (> 85%, 10–60 mg) from small- 
scale reactions (15 mL). The isolated ΨTP could be 
utilized for RNA polymerase-catalyzed synthesis of 
RNA featuring uniform substitution of uridine by Ψ. 
Various analogs of Ψ were synthesized based on toler
ance of YeiN for structural variation in the substrates 
used: the 5′-monophosphates of 2-deoxy-Rib, 2-deoxy- 
2-fluoro-Rib, D-xylose, and D-arabinose are accepted as 
Rib5P analogs. 3-Methyluracil, 6-aminouracil, 4-thiour
acil, and 2-thiouracil are used as analogs of Ura. 

Adenosine 5′-monophosphate was considered as an al
ternative source of Rib5P upon acid hydrolysis [38–40]. 
A disadvantage is that the Rib5P thus released requires 
isolation, to remove potential inhibitors (e.g. purine 
base, adenine) and to reduce the high-salt load, before it 
can be used in the enzymatic reaction. The general 
concept of cascade reaction in Figure 2 seems to be 
applicable to other members of the ΨMPG superfamily. 
Various natural product C-ribosides may thus become 
accessible through biocatalytic synthesis [29•,30,35,37]. 

Biocatalytic cascade reaction for synthesis of 
Islatravir 
Islatravir (MK-8591) is an N-nucleoside analog (Figure 
3). It is Merck’s investigational nucleoside reverse 
transcriptase translocation inhibitor under evaluation for 

the treatment and prevention of HIV-1. A synthetic 
route solely based on biocatalytic steps was described. It 
starts from 2-ethynylglycerol and uses 9 enzymes in total 
(Figure 3) [43••]. A desymmetrizing oxidation of 2- 
ethynylglycerol is catalyzed by an engineered galactose 
oxidase. The enzyme was evolved in 12 rounds of di
rected evolution that selected for enhanced activity and 
S stereoselectivity. Indeed, the reaction by the oxidase 
proceeded with up to 99% enantiomeric excess and a 
yield of 68% (200 mM, 22.8 g/L). The galactose oxidase 
(from Fusarium graminearum) was used as an im
mobilized enzyme preparation. The His6-tagged en
zyme was immobilized onto Nuvia IMAC resin (Bio- 
Rad) charged with nickel. Use of the galactose oxidase 
required the soluble addition of peroxidase and catalase. 
Peroxidase is used to maintain the galactose oxidase in 
its active Cu2+ oxidation state. Catalase destroys H2O2. 
The O2 substrate of the galactose oxidase is supplied by 
bubbling air. Following the initial oxidation, a coimmo
bilized preparation of pantothenate kinase (from Es
cherichia coli) and acetate kinase (AcK) is added to 
phosphorylate the aldehyde intermediate. The pan
tothenate kinase was evolved in three steps for activity 
toward (R)-2-ethynylglyceraldehyde. The two His6- 
tagged kinases were immobilized on nickel-charged 
Nuvia IMAC resin (Bio-Rad). Oxidation and phosphor
ylation needed to be performed sequentially due to lack 
of selectivity (single phosphorylation of only one primary 
hydroxy group) on the part pantothenate kinase. ATP 
used at 1.5 mol% is regenerated from acetyl phosphate 

Figure 2  
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Biocatalytic cascade routes to ΨMP, Ψ, and ΨTP. Phosphoenolpyruvate = PEP, AEX= anion exchange chromatography.   
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(AcP) used in 1.5-fold molar excess of substrate. The 
intermediate 2-ethynylglyceraldehyde 3-phosphate is 
obtained in 97% yield. After filtering off the solid en
zymes, the subsequent reaction steps are carried out si
multaneously. An engineered deoxyribose 5-phosphate 
aldolase (from Shewanella halifaxensis, 2 rounds of di
rected evolution for acetaldehyde tolerance and expres
sion, 25-fold enhancement) catalyzes a 
diastereoselective aldol condensation with acetaldehyde 
to yield (3S,4R)-4-ethynyl-deoxyribose 1-phosphate. 1,5- 
Isomerization is catalyzed by an engineered phospho
pentose mutase (from Escherichia coli) that had under
gone 2 rounds of directed evolution for activity 
enhancement (68-fold). The final step involves N-β-ri
bosylation of 2-fluoro-adenine by a purine NP (from 
Escherichia coli). The enzyme was enhanced in specific 
activity for the particular reaction by 344-fold through 4 
rounds of directed evolution. To pull the phosphorylase 
reaction to high conversion toward Islatravir, strategy of 
in situ product removal was developed. The phosphate 
released is used by sucrose phosphorylase and ‘trapped’ 
as α-D-glucose 1-phosphate. The nucleoside product 
crystallizes from the reaction mixture and is filtered off 
(> 95% purity). The overall cascade reaction was 

performed at 0.5-g scale. Islatravir is obtained as a single 
stereoisomer in 51% yield from 2-ethynylglycerol. 

Biocatalytic cascade reaction for synthesis of 
Molnupiravir 
The N-nucleoside analog Molnupiravir (Figure 4) is an 
orally administered antiviral drug active against a broad 
spectrum of viruses. It increases the mutation rate in 
viral RNA and thus impairs viral replication in the host  
[5]. A number of synthetic routes to Molnupiravir have 
been reported [42]. Here we focus on the major strate
gies of biocatalysis applied (Figure 4). One route pro
ceeds from Rib via a uridine isobutyric acid ester 
intermediate. Chemical hydroxyamination gives the 
product [50••]. The other routes start from cytidine and 
involve either enzymatic [41••] or chemical [60] amino 
hydroxylation as the key step. The Rib route (Figure 4a) 
is performed in three steps. First, Rib acylation is cata
lyzed by Novozyme 435 in 96% yield. Second, an en
riched preparation of the esterified Rib (327 mM) is 
converted to esterified uridine in a 5-enzyme cascade. 
The main reactions, phosphorylation and nucleoside 
transfer, are catalyzed by two engineered enzymes, a 5- 
S-methylthioribose kinase (from Klebsiella spp.) evolved 

Figure 3  

Current Opinion in Biotechnology

Biocatalytic cascade route toward Islatravir. α-D-glucose 1-phosphate = αGlc1P, acetate = Ac. Evolved enzymes are highlighted with * and 
immobilized enzymes with §.   
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in 3 rounds for α-stereoselective anomeric phosphoryla
tion of the esterified Rib (> 100-fold improvement) and a 
uridine phosphorylase evolved in 5 rounds to tolerate the 
isobutyric acid side chain at the position O5 of Rib1P 
(80-fold enhancement of specific activity). The ATP 
(0.5 mol%) was recycled from AcP using AcK. The 
phosphate released in the phosphorylase reaction was 
recycled through the decarboxylating pyruvate oxidase 
reaction that converts pyruvate (1.25-fold excess) and 
phosphate (10 mol%) in the presence of O2 into AcP, 
CO2, and H2O2. The generated H2O2 is removed by 
catalase providing in situ generation of O2. Additionally, 
O2 is supplied by sparging air at 0.5 slpm. Besides pro
viding the AcP for ATP regeneration, the pyruvate oxi
dase reaction provides thermodynamic pull for the β-N- 
glycosylation to complete. The multistep one-pot reac
tion gives the intermediate product (5′-isobutyril-ur
idine) at >  280 mM concentration. The product is 
extracted into 2-methyl-tetrahydrofuran (THF) extrac
tion and subsequently crystallized (≥ 99.5% purity, ∼87% 
yield). Finally, the amidic carbonyl of uridine is con
verted to the corresponding oxime by chemical hydro
xyamination in hexamethyldisilazane solvent in a yield 

of up to 96%. Molnupiravir is thus obtained from Rib in 
an overall yield of 69% (Figure 4a) [50]. 

The cytidine routes (Figure 4b,c) developed by Burke 
et al. [41••] and Vasudevan et al. [60] circumvent the 
synthetic installment of the β-N-glycosidic bond due to 
judicious choice of substrate. In the first route, an en
gineered cytidine deaminase (3 rounds of directed evo
lution directed toward activity and selectivity) catalyzes 
the formation of N-4-hydroxy-cytidine in the presence of 
hydroxylamine. The key feature of the evolved enzyme 
is that it prefers the addition of hydroxylamine over 
deamination to give uridine. At a substrate concentration 
of 500 mM or lower, the product ratio of N-4-hydroxy- 
cytidine and uridine was about 8:1. When the cytidine 
concentration was increased to 750 mM and the tem
perature lowered to 4 °C, the N-1-hydroxy-cytidine 
crystallized spontaneously in situ. This enabled the in
termediate product to be recovered directly from the 
mixture in 85% yield and 98% purity at 5-g scale. Fur
ther scale-up to 150 g was performed using enzyme as 
lyophilized cell extract instead of purified preparation. 
The yield was 71%. Although not immediately shown by 

Figure 4  
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Synthetic routes toward Molnupiravir. Acetate = Ac. Evolved enzymes are highlighted with * and immobilized enzymes with §.   
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the authors, the literature demonstrates 5′-acylation of 
N-4-hydroxy-cytidine with isobutyric acid [60]. Catalytic 
acylation from the isobutyric acid methylester using 
Novozyme 435 proceeds in 74% yield [60]. Thus, an 
overall yield for the biocatalytic cascade reaction in two 
steps is estimated as 52%. Significant potential for a 
streamlined production of Molnupiravir is suggested. In 
an alternative route, Vasudevan et al. [60] (Figure 4c) 
combine the biocatalytic acylation of cytidine using 
Novozyme 435 with chemical hydroxamination of the 
cytidine ester. The two-step synthesis has an overall 
yield of 75%. Interestingly, inversion of the reaction 
steps, so that the hydroxyamination of cytidine is per
formed before the esterification, gives a yield of only 
35%. This effect is due to reduced efficiency of the 
hydroxyamination. The synthetic routes of Burke et al.  
[41••] and Vasudevan et al. [60] both offer substantial 
improvement over the first reported synthesis route that 
involved 5 chemical steps with an overall yield of just 
17% [42]. 

Conclusions and outlook 
Multienzyme one-pot cascade transformations are pow
erful tools for the synthesis of nucleosides as active 
pharmaceutical ingredients. Protein engineering can 
adapt the enzymes to the requirements of the cascade 
reaction in terms of specificity and selectivity [61,62], 
typically within just a few months [49••]. A general 
synthetic strategy toward analogs of the canonical nu
cleosides, bearing structural modifications on the β-ri
bosyl or nucleobase part of the molecule, involves a 
sugar 1-phosphate intermediate [43••,50••]. The inter
mediate is obtained directly by α-selective anomeric 
phosphorylation or through a two-step process of 5- 
phosphorylation and 1,5-isomerization. Engineering ap
proaches targeting the regeneration of the phosphoryla
tion agent ATP in combination with in situ product 
removal for equilibrium shift help to make the cascade 
reactions highly efficient overall. Product concentrations 
of around 200 g/L can be obtained in excellent yields. 
Installment of the required modifications directly on a 
natural nucleoside represents an interesting alternative 
concept of biocatalysis for nucleoside analog synthesis  
[41••]. Discovery of enzymes for C–C coupling pro
motes C-nucleoside synthesis through cascades invol
ving Rib5P as intermediate [36••]. Biocatalytic cascade 
transformations emerge as sustainable alternatives to 
purely chemical routes of nucleoside synthesis. 
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