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Abstract 
An increasingly large dataset of pharmaceutics disciplines is frequently challenging to comprehend. Since machine learning 
needs high-quality data sets, the open-source dataset can be a place to start. This work presents a systematic method to choose 
representative subsamples from the existing research, along with an extensive set of quality measures and a visualization 
strategy. The preceding article (Muthudoss et al.. in AAPS PharmSciTech 23, 2022) describes a workflow for leveraging 
near infrared (NIR) spectroscopy to obtain reliable and robust data on pharmaceutical samples. This study describes the 
systematic and structured procedure for selecting subsamples from the historical data. We offer a wide range of in-depth 
quality measures, diagnostic tools, and visualization techniques. A real-world, well-researched NIR dataset was employed 
to demonstrate this approach. This open-source tablet dataset (http://​www.​models.​life.​ku.​dk/​Table​ts) consists of different 
doses in milligrams, different shapes, and sizes of dosage forms, slots in tablets, three different manufacturing scales (lab, 
pilot, production), coating differences (coated vs uncoated), etc. This sample is appropriate; that is, the model was devel-
oped on one scale (in this research, the lab scale), and it can be great to investigate how well the top models are transferable 
when tested on new data like pilot-scale or production (full) scale. A literature review indicated that the PLS regression 
models outperform artificial neural network-multilayer perceptron (ANN-MLP). This work demonstrates the selection of 
appropriate hyperparameters and their impact on ANN-MLP model performance. The hyperparameter tuning approaches 
and performance with available references are discussed for the data under investigation. Model extension from lab-scale to 
pilot-scale/production scale is demonstrated.
Highlights
• We present a comprehensive quality metrics and visualization strategy in selecting subsamples from the existing studies
• A comprehensive assessment and workflow are demonstrated using historical real-world near-infrared (NIR) data sets
• Selection of appropriate hyperparameters and their impact on artificial neural network-multilayer perceptron (ANN-MLP) 
model performance
• The choice of hyperparameter tuning approaches and performance with available references are discussed for the data 
under investigation
• Model extension from lab-scale to pilot-scale successfully demonstrated
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CR	� Catboost Regression
CU	� Content Uniformity
CV	� Cross-Validation
DW-Test	� Durbin-Watson test
DQM	� Data Quality Metrics
DT	� Decision Tree
EDA	� Exploratory Data Analysis
EMSC	� Extended Multiplicative Scatter Correction
ETR	� Extreme Tree Regression
FT	� Fourier Transform
GIGO	� Garbage In Garbage Out
GBM	� Gradient Boosting Machine
HPLC-UV	� High-Performance Liquid Chromatography 

Ultraviolet
iPLS	� Interval Partial Least Squares (iPLS)
KNN	� K-Nearest Neighbors
LightGBM	� Light Gradient Boosting Machine
LOOCV	� Leave One Out Cross-Validation
LoR	� Logistic Regression
LR	� Linear Regression
MAE	� Mean Absolute Error
MSC	� Multiplicative Scatter Correction
MSE	� Mean Square Error
NIR/NIRS	� Near-Infrared Spectroscopy
PAT	� Process Analytical Technology
PC	� Principal Component
PCA	� Principal Component Analysis
PLS	� Partial Lease Squares
R2	� Coefficient of Determination
CI	� Confidence Interval
RF	� Random Forest
RMSE	� Root Mean Square Error
RTRT​	� Real Time Release Testing
SA	� Sensitivity Analysis
SG	� Savitzky-Golay
SNV	� Standard Normal Variate
UV-Vis	� Ultraviolet or Visible
VIF	� Variance Inflation Factor
XGB	� Extreme Gradient Boost

Introduction

Since near-infrared spectroscopy (often referred to as NIR or 
NIRS) is non-destructive and non-intrusive, it requires little 
to no sample preparation. Moreover, its overall analysis time 
may be considerably reduced hence it is an ideal real-time 
analytical tool [1–4]. Few sectors employ NIRS to effectively 
evaluate both chemical and physical features of solid sam-
ples which includes fine chemicals, agriculture, the food and 
dairy industry, pharmaceuticals, cosmetics, pulp and paper, 
three-dimensional (3D) printing, and precision medicine 
[5–14]. Derivatization, normalization, scatter correction, 

and advanced approaches (sequential and parallel) are a few 
of the data pre-processing techniques used to conceal physi-
cal information and retrieve chemically related information 
from NIR data [15–18]. Modelling is employed after physi-
cal/chemical information has been segmented. If underlying 
linearity assumptions are satisfied, multivariate linear cali-
bration models will frequently perform better than the non-
linear models [14, 19, 20]. Principal component regression 
(PCR) and partial least squares regression (PLS) is used in 
multivariate linear models [14, 19]. Since NIR peaks are fre-
quently broad, chemical properties are extracted using resolu-
tion enhancement techniques like derivatization, difference 
spectroscopy, deconvolution, two-dimensional (2D) correla-
tion spectroscopy, self-modelling curve resolution methods, 
machine learning (ML), and deep learning (DL) [21–23].

For NIR-based BU or CU, current pre-processing 
approaches involving normalization, second derivative, mul-
tivariate scatter correction (MSC), extended MSC (EMSC), 
and standard normal variate (SNV) might not be pertinent if 
any of the following conditions exist: (1) data demonstrat-
ing heteroscedasticity, non-normality, and multicollinearity 
which are the prerequisites for the parametric models [20, 
24, 25], (2) also, if physical properties are of simultaneous 
importance, (3) the types of physical fluctuations are uncon-
trollable or may not be representative of future samples, (4) 
the artifacts are non-linear/non-parametric. To the best of 
our knowledge, this is the first work to provide an intuitive 
understanding of the gaps in existing NIR-based BU analysis.

The study examines data from pharmaceutical tablets 
manufactured in labs, pilot plants, and at production levels. 
The data contains 310 tablets NIR spectra that were evalu-
ated over 404 wave numbers between 7400 and 10,500 cm−1. 
The tablet dataset is freely accessible at http://​www.​models.​
life.​ku.​dk/​resea​rch/​data/​Table​ts/. A good collection of work 
has been done using the “Tablet” dataset, including non-lin-
ear calibration [19], deep learning approaches for regression 
and classification [26, 27], and variable importance selection 
[28, 29] methodologies to support chemometrics, machine 
learning, and deep learning. However, most of the above-
mentioned work compared the models’ performance meas-
ures. Similarly, most researchers intend to use an empiri-
cal method for choosing a subsample while using an open 
dataset. However, since selecting sub-samples from a dataset 
is a critical step, we attempt to describe a workflow. A por-
tion of the tablet data was used to create the models in this 
study, and performance tests using hybrid cross-validation 
and external cross-validation were implemented. The output 
of the PLS model is the benchmark used for comparison. 
Although ANN models generate poor predictive perfor-
mances, we hypothesize that the generalizability and trans-
ferability of ANN models will be better than the linear PLS 
models. To achieve the aforementioned objective, we employ 
the following multidisciplinary approach.
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a.	 Advanced Data Visualization: Approaches to select the 
sub-samples for model development

b.	 Quality Metrics: To understand the deviations from the 
linear assumptions

c.	 Model Selection and Hyperparameter Tuning: For 
Artificial Neural Network

d.	 Performance Metrics: Hold out, Internal Cross-valida-
tion (CV), external/hybrid cross-validation, and Boot-
strapping

e.	 External Validation: Develop Model on Lab Batch then 
Extend to Pilot and Production batches

Materials and Methods

Data Set and Data Understanding

In this investigation, a tablet dataset acquired employing 
near-infrared transmittance spectroscopy data related to Esci-
talopram® tablets (publicly available [30]) from the literature 
was utilized. Tablet [24] data set was constructed through the 
analysis of 310 pharmaceutical tablets acquired employing NIR 
spectroscopy, which included around 400 wave numbers in the 
spectral wavenumber range between 7400 and 10,500 cm−1. The 
tablets were manufactured at the laboratory (lab), pilot plant, and 
production scale. For more detailed information, please refer 
to the sub-section literature review under the ‘Results’ section.

Performance Metrics

The coefficient of determination (R2), mean absolute error 
(MAE), mean square error (MSE), and root mean square error 
(RMSE), which are specified in the following Eqs. (1)–(4), 
where each was used to assess the model’s predictive power 
[31, 32]. While the absolute values of the MAE, MSE, and 
RMSE results should be as low as feasible, the R2 ranges on 
a scale from 0 to 1 and should have higher values (> 0.95).

where yi
actual and yi

pred represented the reference and ML 
predicted values, respectively. On the other hand, yactual,mean  
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represents the experimental value meanwhile number of data 
points is represented as ‘n’.

Training‑Test Split

The training and test split of a dataset is necessary for evalu-
ating the performance of algorithm and models’ predictabil-
ity, generalizability, and transferability.

Hold‑out Dataset: Assess Selection of Best ML Model

To choose the optimal ML model, the laboratory batch data 
used in this study served as the hold-out dataset. This data is 
divided using a random selection method in proportions 
of 80 (for the train): 20 (for the test). Using this hold-out 
approach, the effectiveness of the machine learning algo-
rithms could be evaluated objectively.

K‑fold Cross Validation (CV): Model Generalizability

Sensitivity analysis identifies the causes of bias and vari-
ance in model inputs by examining how they differ from the 
model’s output. Point estimates obtained from hold-out data 
are regarded as being ambiguous, hence sensitivity analysis 
is considered to be desirable. Resampling techniques like 
k-fold CV are among the most affordable ways to undertake 
sensitivity analysis on the generated model. This method 
divides the given dataset into k groups, each of which can 
be utilized as a training set while the other groups serve as 
the test set [33].

External/Hybrid Validation: Model Transferability

The external validation sample could be made up of brand-
new pilot or production-scale samples. This is precisely 
how the model lifecycle management can be established. 
Additionally, a novel strategy known as internal–external 
validation architecture, is utilized by Muthudoss et al., [34]. 
This strategy combines the advantages of internal and exter-
nal validation. The model performance on production scale 
batches is predicted using these two approaches.

Data Analysis and Statistics

For this study, we explored the tablets datasets acquired 
using NIR as described in Ref [30] (found at: http://​www.​
models.​life.​ku.​dk/​Table​ts). Python was used to analyze 
data using univariate and ML approaches (version 3.9.0). 
Machine learning models were built by using the LightGBM 
package (version ‘3.2.1’) [35], Xgboost package (version 
‘1.5.2’) [36], Catboost package (version ‘1.0.4’) [37, 38] 
and sci-kit sklearn package (version ‘0.24.0’) [39] in Python. 
Matplotlib package (version ‘3.4.1’) [40] were employed in 
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generating plots. Statistical analysis and visualization were 
carried out using JMP standard package (JMP®, Version 16, 
SAS Institute Inc. Cary, NC, 1989–2022).

Results and Discussion

Original and Related Work

In the original work [30], the authors included many parame-
ters or variabilities like different doses in milligrams, different 
shapes, and sizes of dosage forms, slots in tablets, and three 
different manufacturing scales (lab, pilot, full/production), 
coating differences (coated vs uncoated), while manufacturing 
tablets. The NIR was acquired from tablets which represents a 
wholesome variability. In the original work, the reference ana-
lytical tool employed was high performance liquid chroma-
tography whereas the orthogonal tool employed was Raman 
spectroscopy. Similarly, the authors have used extensive pre-
processing followed by partial least squares (PLS)/interval 
PLS (iPLS) along with tenfold cross-validation [30]. In this 
study, we demonstrate the generalizability and transferability 
of the developed model on an EDA-selected data. Moreover, 
another aim was to demonstrate how exploratory data analysis 
coupled with machine learning can provide a low RMSE or 
MAE model compared to the model developed using only 
traditional chemometric approaches on NIR data.

Data Visualization

A methodical data visualization strategy was implemented 
because it was clear from the original work that the authors 
had employed a very complex system, and because it is 
widely believed that even a slight difference can affect the 
quality of the data and how it is interpreted. The goal is to 
select a subset of data that potentially represents the popu-
lation, i.e., incorporate the bulk of the variations, and then 
extend the analysis to new samples. The first part of the 
paper focuses on identifying the subset (sample) from the 
overall dataset (population).

The count  of tablets is shown in Fig.  1, with the 
type shown on the x-axis and the scale of manufacturing 
scale on the y-axis while reversed in Fig. 2. The API content 
in %w/w is depicted as the secondary x-axis, the colour bar, 
and the colour gradient of Figs. 1 and 2. Only Type-A has 
the lowest API content (4–6% w/w), which is manufactured 
at all scales. On the other hand, lab-scale batches of Type 
B-D typically have the most significant API content, which 
ranges between 8 and 10% w/w. The pilot and full-scale 
consist of only a few tablets of higher API content. Lower 
and higher API content can alter a tablet’s characteristics 
and can also contain common irregularities like noise or 
NIR spectral variations. Hence, it is recommended as well as 
inferred scale-based sample selection be carried out. Next, 
visualizations are carried out to address whether the subset 

Fig. 1   Approaches to understand the data (scale vs. type)

34 Page 4 of 16



AAPS PharmSciTech (2023) 24:34 

1 3

of samples is selected from lab/pilot/full scale batches. Visu-
alizations for the comparison of the scale of manufacturing 
and the variations were carried out. Figure 3 is a boxplot 
demonstrating the variations among the scale of samples as 
a function of type of manufacture and API content (%w/w). 
Similarly, Fig. 4 represents a vertical bar chart depicting the 
manufacturing scale as a function of API content (%w/w).

Data Quality Metrics (DQM)

Testing Parametric Assumptions

The quality of input data comprehends the quality of the 
model, which is mainly referred to as the “GIGO or gar-
bage-in garbage-out” concept [24, 25, 34]. To this end, the 
tablet dataset was put through several rigorous tests to look 
for anomalies such as outliers, linearity, multicollinearity, 
homogeneity in variance, or homoscedasticity, and cluster-
ing tendency. The assumptions to be satisfied for the para-
metric test and their results are shown in Table I. For details 
about the procedures please refer to [24, 25, 34].

Diagnostic Data Analysis

Reiterating, NIR spectra are sensitive to both physical and 
chemical information. Such datasets require a significant, 
visible reduction in dimensionality while minimizing infor-
mation loss. Various statistical, chemometric, machine 

learning, and deep learning-based data analytics method-
ologies have been used to decoded individual contributions 
[34]. One of the earliest and most prominent methods for this 
purpose is principal component analysis. It generates new, 
uncorrelated variables and it is an a priori strategy (unsu-
pervised approach) that gradually maximizes the variance 
of the dataset. Since it preserves as much statistical data (or 
“variability”) as possible, it is an adaptive data analysis tech-
nique. The combination of NIR and PAT has been success-
fully implemented to comprehend the operational processes 
of the milling operation [41], decipher the effects of powder 
sampling on undesired segregation of particles [24, 42, 43], 
and monitor real-time release testing [44, 45].

We employ advanced visualizations and PCA as the explor-
atory diagnostic tool. In order to determine the randomness, 
representativeness or segregation error, procedure devised by 
Saravanan et al., [24] was utilized. Figures 5a and b show 
the PCA results for this, which were then used to extrapolate 
more details about the Tablet dataset variability and likely 
selection of subsamples. No peaks appeared or disappeared 
when the tablet dataset (310 NIR spectral observations) was 
superimposed (data not shown). Without any prior data pre-
treatment, these tablet datasets were exposed to PC projection 
and score plot interpretation. This process increases dataset 
variance, which is useful for capturing variability associ-
ated with physical properties. The variability in the dataset 
is adequately captured by using just two principal compo-
nents as demonstrated using a scatterplot. The PCA-based 

Fig. 2   Approaches to understand the data (type vs. scale)
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Fig. 3   API content (%w/w) as a function of type (A, B, C, D)

Fig. 4   API content (%w/w) as a 
function of full scale, pilot scale 
and lab scale
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Table I   Data Quality Metrics

Test Decision rule Results

Shapiro–Wilk Test
(test for normality)

Null hypothesis: p > 0.05, data follow normal 
distribution

p-value < 0.05, Non-normal

Alternate Hypothesis: p-value < 0.05 implies 
data do not follow normality

Levene’s Test
(test for homogeneity of variance/homosce-

dasticity)

Null hypothesis: p > 0.05, data shows homo-
scedasticity

p-value < 0.05, Heteroscedasticity exist

Alternate Hypothesis: p-value < 0.05, data is 
not show homoscedastic

Scatterplot Matrix (SPLOM)
(test for linearity)

Pairwise combinations of continuous variables Figure S1. Independent features are non-linear 
with target cell

Variance Inflation Factor (VIF)
(test for multicollinearity)

Values < 5 indicate less or no, Figure S2. Values > 10, Multicollinearity exist
Values 5–10 imply moderate
Values > 10 indicate severe

Cook’s Distance A datapoint that has extreme values (either 
large or small) than nearest value

Figure S3. Outliers and highly influential data 
points observed

Durbin-Watson (measure for autocorrelation 
and test for independency)

Null hypothesis: p > 0.05, implies data has no 
first order autocorrelation

Figure S4 and S5. Figure p-value < 0.05, Serial 
Autocorrelation exist, and Data are not inde-
pendent. Data is statistically nonlinearAlternate Hypothesis: p-value < 0.05, implies 

first order autocorrelation exists

Fig. 5   a Exploratory data 
analysis employing PCA to 
determine pattern (scores plot 
based on tablet dataset with 
respect to type). b Exploratory 
data analysis employing PCA 
to determine pattern (scores 
plot based on tablet dataset with 
respect to batch)
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score plots for type (Fig. 5a) and batch (Fig. 5b) were used 
to analyze tablet datasets in order to diagnose patterns and 
trends. Data points in the scatterplot were found to be well-
clustered and distinct trends could be detected, indicating that 
there are differences between and within samples. The next 
stage is to choose the subsamples for developing predictive 
machine learning models based on these interpretations and 
in conjunction with advanced visualization. The best dataset 
that could mimic population could be lab scale data with all 
types (approach 2) rather than approaching vice-versa. These 
various visualizations and diagnostic PCA plots make it abun-
dantly evident that the lab batches have the widest variability 
and can serve as the ideal samples for predictive modelling, 
which can also account for potential future variations.

Inferences from DQM

Evaluating for the presence of extreme values, inhomogene-
ity of variance, correlated independent variables, non-inde-
pendence of data is considered a prerequisite as they can con-
tribute to the non-linearity associated with unprocessed data 
[24, 34]. Hence, the data quality metrics (DQM) involving 
test for normality, test for heteroscedasticity, test for multicol-
linearity, test for outliers were carried out, refer to Table I. 
The results indicated that these assumptions were violated, 
which can yield inaccurate parameter estimates. That is, it is 
regarded as a significant concern when a model is trained on 
one dataset (in this case, lab-scale) and forecasted to another 
with a distinctive or unknown structure of collinearity, het-
eroscedasticity, non-independence, noise, or outlier (like pilot 
or full/production size). Additionally, the Durbin-Watson 
(DW) test [46–48] was utilized to statistically evaluate for the 
presence of non-linearity, assess autocorrelation, and test for 
data independence, Table I. Since the p-value < 0.05, pres-
ence of serial autocorrelation is confirmed, and it can be con-
cluded that the data are not independent. Through the DQM 
analysis, it is evidenced that the model open-source data was 
found not to comply with the linearity assumptions and the 
data is non-linear. Hence, apart from PLS we selected a range 
of non-linear regression tools from distance-based approach 
(kNN), decision-tree (bagging and boosting), support vector 
machine etc. However, these models also did not perform 
well. Hence, artificial neural network-multilayer perceptron 
incorporating a hybrid approach involving non-linear archi-
tecture followed by linear hyperparameters for API content 
(%w/w) estimation was employed.

Selection of Subset of Sample During Analytical 
or Product Development Lifecycle

The main concept of the data visualization as well as 
DQM is to choose the suitable subset of samples for model 

training, validation and subsequent analysis. This is signifi-
cant since the method development is based on lab batches 
at the beginning of product development in the R&D phase. 
The methodology created should be a generalised approach 
with the expectation that it will be scaled to forecast the 
pilot and production scales or subsequent batches of sam-
ples. It is not advisable to keep tuning the parameters of the 
model as the formulation changes and/or samples changes 
occurs. That is, the developed model needs to be robust to 
detect the actual variabilities than the random variations or 
noises. To understand as well as extract the changes existing 
between the batches, we first adopted the advanced visu-
alization strategy, then the model development was carried 
out using the lab batches as training set. The pilot and pro-
duction scales are utilized as external validation samples 
to demonstrate the model generalizability and model trans-
ferability. Target variable (API %w/w) was visualized as a 
function of scale as an independent variable. The various 
data visualization strategies, like boxplot, histogram, scat-
terplot, scatterplot matrix, DQM, diagnostic plots etc., were 
performed. The results indicated that the lab scale batches 
consisted of the maximum variabilities as shown in Fig. 3. 
Moreover, the data is found to form clusters or groups as 
shown in Fig. 5a and b.

Model Selection

Univariate Analysis

This data was then subjected to univariate analysis using the 
API specific peak 8833 cm−1 as shown in Fig. 6. It is well 
known that the NIR results are prone to physical variations 
specifically scattering variations hence the nonperformance 
can be attributed to these causes.

Model Selection: Hold‑out Dataset

•	 Traditional Machine Learning

Reiterating, DQM from Table I as well as Figs. 7, and 8 
demonstrate the non-linearities associated with the “Tab-
let” dataset. Hence, as a first step, a framework for choosing 
an appropriate baseline model is employed, which includes 
both linear and non-linear models. The framework selec-
tion is performed on the hold-out dataset (for details refer 
to section on “Training-Test Split”). The calibration data, 
also known as “hold-out data”, are divided in this study 
using a random selection approach in the ratios of 80% (for 
the train): 20% (for the test). By separating training data 
from test data, which precisely reflect the calibration data, 
unbiased evaluation of the machine learning algorithms 
performance is made possible. The top-performing models 
were ranked using the performance assessment measures R2, 
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MAE, MSE, and RMSE. Table II summarizes the results of 
numerous models (the top 10) and performance measures. 
As reported by various authors as well as it is evident from 
the table that the linear models like PLS are comparatively 
efficient, refer to Table II.

PLS is the de facto  linear multivariate regression 
approach with a wide range of analytical applications in the 
pharmaceutical industry. It is well known that the approach 
is capable to handle weak nonlinearities in the independ-
ent variable (X) dimension, it lacks to link this relationship 

between independent (X) and dependent (response or y) var-
iables [19]. Similarly, although PLS is the de facto standard 
for linear multivariate regression, the pre-processing of the 
spectral data is considered a prerequisite. Savitzky-Golay 
(SG) based derivatization (first or second derivative), nor-
malization (min–max or vector or similar normalization), 
standard normal variate (SNV), multiplicative scatter cor-
rection (MSC), and extended MSC (EMSC) are commonly 
used pre-processing approaches [15–18]. However, these 
approaches are parametric in nature, that is, these work well 

Fig. 6   Typical NIR spectra of 
lab scale samples
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Fig. 7   Univariate peak analysis 
based on API content vs. API 
peak at 8833 cm−1
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for linear and normal data. For NIR-based measurements, 
current pre-processing approaches involving normaliza-
tion, second derivative, MSC, EMSC, and SNV might not 
be pertinent if any of the following conditions exist: (1) data 
demonstrating homoscedasticity, normality, absence multi-
collinearity, absence of outliers, absence of non-linearity are 
the prerequisites for the parametric models [20, 24, 25], (2) 
also, if physical properties are of simultaneous importance, 
(3) the types of physical fluctuations are uncontrollable, (4) 

may not be representative of future samples, (5) the arte-
facts/residuals/data are non-linear. The presence of noise and 
outliers cannot be reproducible, hence second derivative and 
normalization could have erroneous results. That is, the PLS 
can perform well with internal validation data. However, 
when presented with new unseen data or new data from a 
different process etc. might have severe limitations. Hence, a 
non-linear model like ANN was also evaluated. Additionally, 
to evaluate tablet dataset, artificial neural network-multilayer 

Fig. 8   Univariate peak analysis 
based on API content vs. API 
peak at 8833 cm−1 (addition 
of another dimension denoting 
type depicts both sub-clustering 
and non-linearity)

Table II   Comparison of the Various Model as a Function of Performance Metrics

Model R2_Train_Score R2_Test_Score MAE_Train_Score MAE_Test_Score MSE_Train_Score MSE_Test_Score

3 PLS Regression 0.982199 0.967942 0.158755 0.208416 0.041466 0.090002
6 Decision Regression 1.0 0.879293 0.0 0.250635 0.0 0.338878
8 Bagging Regression 0.946867 0.925163 0.228638 0.299584 0.123771 0.2101
11 XGB Regression 0.999999 0.906188 0.000778 0.304566 0.000001 0.263372
1 Ridge Regression 0.925343 0.937921 0.320858 0.310998 0.173909 0.174284
14 ETR Regression 1.0 0.89311 0.0 0.312222 0.0 0.300086
10 GradientBoost Regres-

sion
0.997975 0.881278 0.051976 0.340058 0.004717 0.333305

13 CatBoost Regression 0.99671 0.892106 0.06295 0.350341 0.007664 0.302904
7 Random_Forest 

Regression
0.962479 0.893493 0.206278 0.395863 0.087404 0.29901

5 KNN Regression 0.779722 0.798693 0.5072 0.540402 0.513128 0.565156
12 LightGBM Regression 0.77531 0.748262 0.551061 0.650319 0.523405 0.706739
9 ADABoost Regression 0.857663 0.78076 0.516457 0.667102 0.331568 0.615503
0 Linear Regression 1.0 0.447688 0.0 0.80399 0.0 1.55058
4 SVM Regression 0.243182 0.252879 1.03347 1.255004 1.762975 2.097493
2 Lasso Regression 0.0 -0.010742 1.387464 1.544971 2.329458 2.837591
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perceptron (ANN-MLP) was employed. Furthermore, com-
parison between PLS and ANN-MLP with respect to model 
generalisability and model transferability is evaluated.

•	 Artificial Neural Network-Multilayer Perceptron 
(ANN-MLP)

It is hypothesized that there could exist a nonlinear 
relationship between the sample and the NIR spectra [46]. 
Because the open-source tablet dataset violated the DQM 
tests and the existence of non-linearity is established, it has 
been deemed appropriate to explore beyond the PLS, for 
more information, refer to Table I. In such scenarios, pro-
ceeding with parametric methods could be detrimental. That 
is, violation of these tests will make the model less reliable, 
and the predictive results will have more uncertainty and 
errors. Such mishaps could impact models’ explainability, 
interpretability, generalizability, and transferability. This is 
one of the discoveries in our previous works [24, 25, 34]. 
Also, when there are more dependent variables to be inves-
tigated, ANN-MLP could be quite useful [46]. Moreover, 
the currently available spectral pre-processing approaches 
like SNV, MSC, EMSC, normalization etc. are paramet-
ric in nature. One of the objectives was to avoid the pre-
processing as that can negatively affect the performance of 
developed PLS models. Similarly, one other objective was 
to demonstrate the model generalizability and transferability 
from lab-scale to pilot-scale to full/production-scale, it is 
deemed necessity that developed model requires minimum 
assumptions as well as stable to non-linearities, outliers etc. 
This alternative is what is discussed in this paper through 
the application of hybrid linear-nonlinear ANN-MLP 
framework.

Handling nonlinearity in data using ANN-MLP can be 
achieved through the careful selection of appropriate archi-
tecture (hidden layer structure) and hyperparameters. ANN 
algorithm can approximate any linear or nonlinear relation-
ship. In general, ANN consist of an input layer, one or more 
hidden intermediate layers, and output layers [27, 46, 47]. 
The hyperparameters employed in this study were as fol-
lows: (i) solver employed was ‘lbfgs’ a weight optimizer in 
the family of quasi-Newton methods (non-linear hyperpa-
rameter), (ii) learning rate: ‘invscaling’ to schedule weight 
updates, (iii) activation function (linear hyperparameter): 
‘identity’, no-op activation, useful to implement linear bottle-
neck, (iv) max_iter:125, (v) hidden_layer_sizes = (4,125,8). 
These were chosen through a few trials and an error-based 
approach. However, in the future, hyperparameter tuning 
will be employed. Various parameters like tablet shape, 
slot, active or API content, type, batch etc. severely impacts 
the data analysis. The original paper’s authors used various 
pre-processing approaches to overcome these nonlinearities. 
However, recently, Muthudoss et al., [34] had indicated that 

even when the changes concerning material, method, ana-
lyst, and environment are kept constant, the adoption of data 
analysis preprocessing and processing procedures could con-
tribute to non-linearities. In this context, it is not sure if the 
PLS-based approach can solve non-linearity. Hence, a non-
linear model based on multilayer perceptron is implemented. 
The performance of the nonlinear ANN-MLP on hold-out 
dataset are satisfactory.

Model Robustness: Generalizability

To evaluate the robustness/generalization capability, sen-
sitivity analysis like k-fold cross-validation (tenfold, boot-
strapping and leave one-out) were performed [48–50]. As 
with hold-out validation, tenfold cross-validation of MLP 
had lower error rates (mean of 0.2287% w/w ± standard 
deviation of 0.074% w/w). On the other hand, tenfold CV 
error rates for PLS were mean of 0.2208% w/w ± standard 
deviation of 0.061% w/w. Emphasizing that near-infrared 
spectra are known to be sensitive to physical artefacts, and 
the detected variations can be attributable to the potent 
scattering effects of powders [51]. In summary, the model 
generalization error of CU ± 0.074% w/w was tolerable and 
suggested that the ANN-MLP model is robust [51].

Model Lifecycle Management and Maintenance: 
Transferability (External Cross‑Validation)

It is widely known that estimates are susceptible to vari-
ability or heterogeneity in the dataset, hence inconsisten-
cies. Hence, there determining the model’s transferabil-
ity, recalibration, and/or maintenance needs to be carried 
out. In this study, two new samples that are quite different 
from lab scale batches were included. These samples were 
pilot-scale and full/production scale batches. These sam-
ples were termed external validation samples and were 
subjected to both ANN-MLP and PLS pretrained models. 
The prediction error results are depicted in Fig. 9a and b. 
The errors on new samples were expected to be between 
0.1548 and 0.3028% w/w for MLP whereas between 0.161 
and 0.281% w/w is expected for the PLS baseline model. 
The ANN-MLP performs in line with the cross-validation 
results with respect to the pilot-scale batch. However, its 
performance is slightly less better on full/production scale. 
This could indicate the impact of unseen variability exist-
ing in the full/production scale batches. The future work 
will be directed to developing a slightly different cross-
validation architecture. In summary, the ANN-MLP was 
found to be at par with the PLS baseline model. These two 
samples, which could resemble data from different ven-
dors or new batches of raw materials/processed samples, 
were the most accurate approximations. The findings are 
depicted in Fig. 10.
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This study assessed an open-source “Tablet dataset” that 
many researchers have thoroughly studied. Most of the avail-
able research work focused on developing algorithms, feature 
engineering, feature selection, etc. This work involved methodi-
cal approaches (i) advanced data visualization facilitated the 
ability to understand different investigated parameters in origi-
nal work in an explainable way, (ii) augmentation of diagnostic 
tools made it possible to choose sub-samples with the greatest 

variability for model development, (iii) inspection of the dataset 
using quality metrics reveals that it violates linearity assump-
tions, (iv) based on descriptive, diagnostic analysis and qual-
ity metric results, a selection of relevant hyperparameters and 
their tuning was conducted, (v) model’s robustness and lifecycle 
management were effectively carried out by applying internal 
hold-out validation, internal cross-validation, and external 
cross-validation. The model was first developed on lab-batch to 
evaluate the performance before being expanded to pilot-scale 
and full-scale (both generalisability and transferability were 
assessed). In summary, a workflow has been established for 
the purposes of understanding, curating, choosing sub-samples, 
developing reliable predictive models, etc. for open-source or 
publicly accessible data, as illustrated in Fig. 11.

Relative Prediction Error (RPE)

Instead of creating a model by categorising the data 
according to API content, ANN-MLP models were cre-
ated on a lab scale and evaluated using complete pilot 
and full/production scale datasets. The same error, for 
instance, 0.1508% w/w (lower MAE) and 0.3208% w/w 
(higher MAE), could have different practical implications 
for different tablet strengths because errors are direct 
indicators of a model’s performance in this scenario. 
We therefore give the ynominal error normalised as a func-
tion of the tablet’s API content (%w/w) and total tablet 
weight, which is known as the relative prediction error 
(RPE) in the original study [30]. Table III presents the 
findings. For each dosage strength, the prediction error 
ranges between 1.5 and 6.5% w/w at a 95% confidence 
level. Future work will involve fine-tuning and establish-
ing optimum hyperparameters in order to significantly 
lower the mean absolute error.

Fig. 9   a Prediction error for MLP regressor. b Prediction error for 
PLS regressor

Fig. 10   Comparison of the MAE for train, test, k-fold cross-validation 
and external validation samples from pilot and full/production scale
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Conclusion

A methodical process that involves data visualisation and 
choosing sub-samples from the historical data is described. 
We describe the performance of ANN-MLP (based on care-
ful selection of hyperparameters) on par with the original PLS 
work for the first time. The described procedure should be seen 

as a catalyst for the rapid and efficient implementation of the 
NIR approach whether it is used offline, online, at line, or inline. 
In this study, baseline PLS and multilayer perceptron models 
were employed for regressions analysis on Tablet datasets that 
were publicly available. The initial work involved in understand-
ing the data from the perspectives of both quality and sample 
selection front. It was observed that the dataset hosts a lot of 
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Quality Metrics

Tablet Dataset (Public or Open-Source Data)

Test 

Dataset

Model Selection
• Cross-validation

• Parameter Optimization

• Performance Metrics

Chemometrics 
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MODEL TRANSFERABILITY (EXTERNAL 

VALIDATION)

Performance Metrics

Description of Data (Consist of)
Four different dosage forms: 3 are dose proportional
Different shapes, and sizes of dosage forms
Presence of slot in some tablets
Three different scales (Lab, Pilot, and Production)
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Fig. 11   Workflow for Machine Learning–enabled evaluation of publicly accessible or open-source datasets (Example NIR Spectra of Tablet 
Dataset)

Table III   Relative Prediction Error (RPE) for ANN-MLP Model as a Function of Scale

Nominal weight 
(%)

Nominal content of active sub-
stance per tablet (mg)

Nominal tablet weight 
(mg)

ANN-MLP (Min_MAE) ANN-MLP (Max_MAE)
0.1508 (%w/w) 0.3028 (%w/w)

Laboratory scale
4.8 4.3 90 3.1% 6.3%
6.3 5.7 90 2.4% 4.8%
6.9 9.3 125 2.2% 4.4%
9.1 11.4 125 1.7% 3.3%
6.9 12.9 188 2.2% 4.4%
9.1 17.1 188 1.7% 3.3%
6.9 17.3 250 2.2% 4.4%
9.1 22.8 250 1.7% 3.3%
Pilot scale and full scale
5.6 5 90 2.7% 5.4%
8 10 125 1.9% 3.8%
8 15 188 1.9% 3.8%
8 20 250 1.9% 3.8%
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variabilities hence advanced visualisation helped in selecting the 
right sample that can be representative of the population. Based 
on this understanding, lab batch was selected and the PLS and 
MLP models were trained. Both the models were found to be 
generalizable based on k-fold. The pretrained models were then 
employed on new data from pilot and full/production scale to 
understand the model life cycle and transferability. MLP model 
demonstrated superior transferability concerning pilot scale 
while it was at par with full/production scale. Understanding and 
overcoming such differences will be the subject of future paper. 
A method for meticulously choosing sub-samples from historical 
datasets is developed using cutting-edge visualization, hyperpa-
rameter tuning, and cross-validation. This complex methodology 
aids in bringing non-linear models’ performance up to par with 
that of linear PLS models.
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